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A “short list” of embedded 
systems

Anti-lock brakes Modems
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
A ionic s stems

MPEG decoders
Network cards
Network switches/routers
On-board navigation
PagersAvionic systems

Battery chargers
Camcorders
Cell phones
Cell-phone base stations

Pagers
Photocopiers
Point-of-sale systems
Portable video games
PrintersCell phone base stations

Cordless phones
Cruise control
Curbside check-in systems
Digital cameras

Printers
Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers

Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
F t t l

Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Th ft t ki tFactory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems

Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones

And the list goes on and on

Life support systems
Medical testing systems

Video phones
Washers and dryers



A simple fluid control systemA simple fluid control system
PipeInterface

?
Flow meterInput flow

?
Flow meterp

reading

Processing

Valve
Output valve

angle

Computer

angle

M h t i I t ti f h i lMechatronics: Integration of mechanical
enginnering with electronics and intelligent computer control in the design 
and manifacturing of industrial products and processes 



NXT Sensor APINXT Sensor API
<<class>> <<interface>>
TOUCH_SENSOR

b l i P d()

SENSORCONSTANTS

boolean isPressed() 

JAVADOC



NXT Sensor APINXT Sensor API
<<class>> <<interface>>
I2CSENSOR SENSORCONSTANTS

<<class>>
ULTRASONICSENSOR

<<class>>
MyAppDistanceSensor



UltraSonic MethodsUltraSonic Methods
• int capture()  Set capture mode Set the sensor into capture mode. 
• int continuous() Switch to continuous ping mode• int continuous() Switch to continuous ping mode. 
• int getCalibrationData(byte[] data) Return 3 bytes of calibration data. 
• byte getContinuousInterval() Return the interval used in continuous mode. 
• int getData(int register, byte[] buf, int len) Executes an I2C read transaction
• int getDistance() Return distance to an object. 
• int getDistances(int[] dist) Return an array of 8 echo distancesint getDistances(int[] dist)  Return an array of 8 echo distances. 
• int getFactoryData(byte[] data) Return 10 bytes of factory calibration data.
• byte getMode()  Returns the current operating mode of the sensor.

St i tU it ()• String getUnits() Return a string indicating the type of units in use by the unit. 
• int off()  Turn off the sensor. 
• int ping()  Send a single ping. p g() g p g
• int reset() Reset the device Performs a "soft reset" of the device. 
• int sendData(int register, byte[] buf, int len) Executes an I2C write transaction. 
• int setCalibrationData(byte[] data) Set 3 bytes of calibration data• int setCalibrationData(byte[] data) Set 3 bytes of calibration data. 
• int setContinuousInterval(byte interval) Set the ping interval in continuous mode.



Sensors & ActuatorsSensors & Actuators
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Sensors and ActuatorsSensors and Actuators
• Transducer: “A device which transforms 

energy from one domain (magnetic, 
thermal mechanical optical chemicalthermal, mechanical, optical, chemical, 
electrical) into another”

• Sensors: “devices which monitor aSensors: devices which monitor a 
parameter of a system, hopefully without 
disturbing that parameter.”

• Actuators: “devices which impose a 
state on a system, hopefully Sensor?
independent of the load applied to them” Actuator?



Sensors ExamplesSensors Examples
• Example of sensors• Example of sensors

– Magnetic sensors
• Honeywell’s HMC/HMR magnetometers

– Photo sensors– Photo sensors
• Clairex: CL9P4L

– Temperature sensors
• Panasonic ERT-J1VR103J 

– Accelerometers
• Analog Devices: ADXL202JE

– Motion sensors
• Advantaca’s MIR sensors

• "Without disturbing that parameter" implies that the sensors 
must be small and low-power devices in order to reduce 
energy exchangeenergy exchange.

» Sensors: “devices which monitor a parameter of a system, hopefully 
without disturbing that parameter.”



Sensors TypesSensors Types

• Motion / Rotation
• AccelerationAcceleration
• Force, Torque, Pressure
• Flow
• Temperature• Temperature
• Proximity
• Light
• Image• Image
• …



Sensor TechnologySensor Technology 

• EG. Temperature Sensor

REMARK: Properties!



Sensors PropertiesSensors Properties
R Mi t M l• Range: Min to Max value
– Example 

• HMC1053: +/-6 Gauss
– What decides range?

• Saturated point
• Noise• Noise

• Accuracy / Error
– Diff. Actual and measured value
– HMC1002: 0.05% (Hysteresis)

• Repeatability
– HMC1002: 0 05%– HMC1002: 0.05%

• Linearity
– HMC1002: 0.1% (Best fit straight line +/- 1 Gauss)



Sensors PropertiesSensors Properties
S iti it• Sensitivity
– How output reflects input?

HMC1053 1 V/V/– HMC1053: 1mV/V/gauss
• Efficiency

R ti f th t t t th i t– Ratio of the output power to the input power
– Important for actuators

R l ti• Resolution
– Determined by sensitivity and noise level

M i i l l– Measuring noise level
• SNR
• Noise floor (High noise floor does not mean “useless”)( g )

– HMC1002: 27uGauss



Sensors PropertiesSensors Properties
R ti– Response time

• How fast the output reaches a fraction of the 
expected signal levelexpected signal level

– Overshoot
• How much does the output signal go beyond the• How much does the output signal go beyond the 

expected signal level
– Drift and stabilityDrift and stability

• How the output signal varies slowly compared to 
time

– Offset
• The output when there is no inputp p



Sensor PropertiesSensor Properties



ActuatorsActuators

• Examples of Actuators
– Motor (impose a torque)( p q )
– Pumps (impose pressure or fluid velocity)

A t t b f l l d• Actuators may be powerful, large, and 
complicated

» Actuators: “devices which impose a state on a p
system, hopefully independent of the load applied to 
them”



ActuatorsActuators

• Electrical
• Electromechanical (motor)Electromechanical (motor)
• Electromagnetic
• Hydraulic
• Pneumatic• Pneumatic
• Nano/Micro 

(MEMS)
• ……



Actuator PropertiesActuator Properties



Application RequirementsApplication Requirements
• What’s the implication to theWhat s the implication to the 

application/middleware?
– Select the suitable sensors for the target– Select the suitable sensors for the target 

application
– Imposing three general requirements to theImposing three general requirements to the 

application/middleware



Application RequirementsApplication Requirements
R i t 1 t• Requirement 1: sensor part
– Application designer must be aware of the 

properties of sensorsproperties of sensors
• How to handle imperfect sensor devices

– Error, offset, drift, …
– Repeatability
– Sensors vary

• Requirement 2: sensor reading• Requirement 2: sensor reading
– Application designers must be aware of the errors 

introduced by the mote hardware?y
• The effect of AD converting
• The effect of signal amplification/distortion



Application RequirementsApplication Requirements
• Requirement 3: interaction

– The application designer must be aware of the 
interaction of multiple sensors and the mote 
hardware

How to avoid race conditions on hardware wires and• How to avoid race conditions on hardware wires and 
software event handlers?

• How to control the mutual interaction of various hardware 
components?

– Example: radio component increases the noise floor of the 
motion sensor

• Can we make the sensors complement with each other to 
achieve better sensing?



Supporting circuitSupporting circuit
• Sensors may need supporting circuit toSensors may need supporting circuit to 

integrate with other sensors and the target 
application platformapplication platform
– Makes the electrical features of the computer and 

the I/O device compatiblethe I/O device compatible
– Provides control and data transfer interface to the 

I/O device
• PORT / Memory map
• BUS 
• Interrupts

• Signal conditioning
– Filtering

Amplification– Amplification



Eg Memory Mapped ArchitectureEg. Memory Mapped Architecture

DataData

MemoryCPU DevicesDevicesy

Address



NXT Touch SensorNXT Touch Sensor



NXT Light SensorNXT Light Sensor



Device DriversDevice Drivers
• Software that controls the operation of an I/OSoftware that controls the operation of an I/O 

device
– Uses port registers or memory map to control– Uses port registers or memory map to control 

(read/write) the electronics of the device
– Polling vs. Interrupt drivenPolling vs. Interrupt driven
– Hardware, device and OS dependent

• http://en wikipedia org/wiki/Device driver• http://en.wikipedia.org/wiki/Device_driver



Sensors Data Processing 
Example

M ti i MIR• Motion sensor using MIR
• Micro Impulse Radar

– TWR-ISM-002
• Output (Advantaca’s)

– Analog
– Digital

• Packaging
– 51-pin connector

• Fine tuned receiving gate can potentially detect 
moving objects at a certain distance

• Is it a typical sensor?



Post processingPost-processing

• Post-processing (“POST” ~after raw data hasPost processing ( POST  after raw data has 
been collected) 
– Process the sensor reading to make it useful toProcess the sensor reading to make it useful to 

the application
– The complexity varies from simple threshold e co p e y a es o s p e es o d

algorithm to full-fledged signal processing and 
pattern recognition

• (but pre – before application decides on 
actions)actions)



Post Processing MIR DataPost Processing MIR Data
Indoor test, quiet environment without motion

300

400

500

0

100

200

1 80 159 238 317 396 475 554 633 712 791 870 949 1028

7.IndoorQuiet

• Raw reading of an MIR sensor in a 
quiet environment

1 80 159 238 317 396 475 554 633 712 791 870 949 1028

quiet environment
– The beginning period represents some 

unknown noise, possibly due to the 
positioning of the sensor



Post Processing MIR DataPost Processing MIR Data
39.64Hz.Milton.sb.MIR.DanWalk.3
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39.64Hz.Milton.sb.MIR.DanWalk.3

R di f MIR lk d b

0

20

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277

• Raw reading of an MIR sensor as a person walked by
– The all-zero period is due to unreliable UART interface 

used to collect the reading and can be ignored.



Post Processing MIR DataPost Processing MIR Data

• Use a post-processing algorithm to 
transform the raw reading to what the t a s o t e a ead g to at t e
application needs
– The application needs to know whetherThe application needs to know whether 

the motion of interest is detected
– The post processing needs to filter out p p g

noise whenever possible



Post Processing MIR DataPost Processing MIR Data
• Post-processing algorithmsPost processing algorithms

– “Moving variance” algorithm
• Adapt to the environment dynamically but requires moreAdapt to the environment dynamically but requires more 

computation
• Designed by OSU
• The basic idea is to track the changes of a statistic 

variable
• To avoid the complexity of moving varianceTo avoid the complexity of moving variance 

computation, another statistics variable was used for 
mote-based moving object detection
If “adapting” feature is not required offline modeling• If “adapting” feature is not required, offline modeling 
and online detection can be combined



Post Processing MIR DataPost Processing MIR Data
M “M i i ” l ith• More on “Moving variance” algorithm
– Calculate the variance of the samples
– Example: Suppose the sensor data in a “quiet” environment is as 

f llfollows

5
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1

2

3

4

Series1

• Mean: 3
V i 2 18

0

1 2 3 4 5 6 7 8 9 10 11 12

• Variance: 2.18

» This is my interpretation of OSU’s algorithm. I have not seen their code 
or detailed description of it.or detailed description of it. 



Post Processing MIR DataPost Processing MIR Data
M “M i i ” l ith• More on “Moving variance” algorithm
– Continuously calculate the variance of the recent sampling period
– When the variance changes, fire a “positive detection” event

5

6

7

1

2

3

4
Series1

0

1

1 2 3 4 5 6 7 8 9 10 11 12

• Mean: 3
• Variance: 4.9

» This is my interpretation of OSU’s algorithm. I have not seen their code 
for detailed description of it. 



Post Processing MIR DataPost Processing MIR Data
• More on “Moving variance” algorithm

– Overall, the waveform looks like Motion!

5

6

7

2

3

4
Series1

0

1

1 3 5 7 9 11 13 15 17 19 21 23

– On the right half, a “positive” detection event is fired



Post Processing MIR DataPost Processing MIR Data
• More on “Moving variance” algorithm

– This technique can be applied to other statistical 
variables

• Mean
Standard deviation• Standard deviation

• MIN, MAX

– The main idea is to use the statistics in a recentThe main idea is to use the statistics in a recent 
sampling period to 

• detect “phase change”
• filter out burst noise reading

• Change in waveformChange in waveform
• SIGNAL PROCESSING



Embedded Systems HW
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A “short list” of embedded 
systems

Anti-lock brakes Modems
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
A ionic s stems

MPEG decoders
Network cards
Network switches/routers
On-board navigation
PagersAvionic systems

Battery chargers
Camcorders
Cell phones
Cell-phone base stations

Pagers
Photocopiers
Point-of-sale systems
Portable video games
PrintersCell phone base stations

Cordless phones
Cruise control
Curbside check-in systems
Digital cameras

Printers
Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers

Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
F t t l

Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Th ft t ki tFactory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems

Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones

And the list goes on and on

Life support systems
Medical testing systems

Video phones
Washers and dryers



Processor technologyProcessor technology
• Processors vary in their customization for the problem at hand• Processors vary in their customization for the problem at hand

total = 0
for i = 1 to N loopfor i = 1 to N  loop

total += M[i]
end loopDesired 

f i li
p

functionality

General-
purpose 

processor

Single-
purpose 
processor

Application-specific 
processor

p ocesso p ocesso



General purpose processorsGeneral-purpose processors
• Programmable device used in aProgrammable device used in a 

variety of applications
– Also known as “microprocessor” Register

file

DatapathController

Control 
logic and

• Features
– Program memory
– General datapath with large register file IR PC

file

General
ALU

logic and 
State 

register

– General datapath with large register file 
and general ALU

• User benefits

IR PC ALU

Program 
memory

Data

– Low time-to-market and NRE costs
– High flexibility

• “Pentium” the most well known but

memory

Assembly 
code for:

memory

• Pentium  the most well-known, but 
there are hundreds of others

total = 0
for i =1 to …



Single purpose processorsSingle-purpose processors
Digital circuit designed to execute• Digital circuit designed to execute 
exactly one program
– a k a coprocessor accelerator or

DatapathController

Control 
logic

index

a.k.a. coprocessor, accelerator or 
peripheral

– JPEG codec
State 

register

total

+

• Features
– Contains only the components needed to 

execute a single program

Data
memory

execute a single program
– No program memory

• BenefitsBenefits
– Fast
– Low power
– Small size



Application-specific 
processors

Programmable processor optimized for D t thC t ll• Programmable processor optimized for 
a particular class of applications 
having common characteristics

Registers

DatapathController

Control 
logic and 

St thaving common characteristics
– Compromise between general-purpose 

and single-purpose processors IR PC

Custom
ALU

State 
register

– EG microController, DSP

• Features
P

Program 
memory

Data
memory

– Program memory
– Optimized datapath
– Special functional units

Assembly 
code for:

total 0Special functional units

• Benefits
– Some flexibility, good performance, size 

total = 0
for i =1 to …

y, g p ,
and power



IC technologyIC technology
Th t f IC t h l i• Three types of IC technologies
– Full-custom/VLSI
– Semi-custom ASIC (Application Specific 

Integrated Circuitteg ated C cu t
– PLD (Programmable Logic Device)



Full custom/VLSIFull-custom/VLSI
All l ti i d f b dd d t ’• All layers are optimized for an embedded system’s 
particular digital implementation
– Placing transistors
– Sizing transistors
– Routing wires

• Benefits
– Excellent performance, small size, low power

• Drawbacks
– High NRE cost (e.g., $300k), long time-to-market
– NRE=Non Recurring Engineering (design)NRE Non Recurring Engineering (design)



Semi customSemi-custom

• Lower layers are fully or partially built
– Designers are left with routing of wires and g g

maybe placing some blocks
• Benefits• Benefits

– Good performance, good size, less NRE cost 
th f ll t i l t ti ( hthan a full-custom implementation (perhaps 
$10k to $100k)

• Drawbacks
– Still require weeks to months to developStill require weeks to months to develop



PLD (Programmable Logic 
Device)

• All layers already exist
– Designers can purchase an IC
– Connections on the IC are 

either created or destroyed to implement desired 
f ti litfunctionality

– Field-Programmable Gate Array (FPGA) very popular
• Benefits

– Low NRE costs, almost instant IC availability
• Drawbacks

– Bigger, expensive (perhaps $30 per unit), power gg p (p p p ) p
hungry, slower



The co design ladderThe co-design ladder
In the past: S ( C )• In the past:
– Hardware and software 

design technologies were 
Compilers

(1960's,1970's)

Behavioral synthesis
(1990's)

Sequential program code (e.g., C, VHDL)

g g
very different

– Recent maturation of 
synthesis enables a

Assembly instructions
Register transfers

Assemblers, linkers

RT synthesis
(1980's, 1990's)

Logic equations / FSM'ssynthesis enables a 
unified view of hardware 
and software Machine instructions

(1950's, 1960's)
Logic synthesis
(1970's, 1980's)

Logic gates

Logic equations / FSM s

• Hardware/software 
“codesign” ImplementationMicroprocessor plus 

program bits: “software”
VLSI, ASIC, or PLD 

implementation: 
“h d ”“hardware”The choice of hardware versus software for a particular function is simply a tradeoff 

among various design metrics, like performance, power, size, NRE cost, and especially 
flexibility; there is no fundamental difference between what hardware or software can 

implement

48

implement.



Independence of processor 
and IC technologies

Basic tradeoff• Basic tradeoff
– General vs. custom
– With respect to processor technology or IC technologyWith respect to processor technology or IC technology
– The two technologies are independent

G l Si lGeneral-
purpose

processor
ASIP

Single-
purpose

processor
General,

providing improved:
Customized, 

providing improved:

Power efficiency
Performance

Size

Flexibility
Maintainability

NRE cost

Semi-customPLD Full-custom

Cost (high volume)Time- to-prototype
Time-to-market

Cost (low volume)

49
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NXT HW Block DiagramNXT HW Block Diagram
A l 32 bi ARM• Atmel 32 bit ARM

• 48 MHz
• 256 KB Flash
• 64 KB RAM

• 8 bit AVR (ATmega48)
• 4KB FLASH
• 512 B RAM
• 8 MHz



Output PortsOutput Ports



Pulse width modulatorPulse width modulator
• Generates pulses with

clk

pwm_o

Generates pulses with 
specific high/low times

• Duty cycle: % time high

25% duty cycle – average pwm_o is 1.25V

pwm o

– Square wave: 50% duty 
cycle

• Common use: control 

clk

pwm_o

50% duty cycle – average pwm o is 2 5V

average voltage to electric 
device
– Simpler than DC-DC 50% duty cycle average pwm_o is 2.5V.

pwm_o

Simpler than DC DC 
converter or digital-analog 
converter

– DC motor speed dimmer clk

75% duty cycle – average pwm_o is 3.75V. 

– DC motor speed, dimmer 
lights

• Another use: encode 
d i

53

commands, receiver uses 
timer to decode Period ~16 clock tics



Controlling a DC motor with a 
PWM

% of Maximum
clk_div counter

( 0 – 254)

8-bit 
comparator

controls 
how fast the 

counter 
increments counter < 

l hi hpwm o

clk Input Voltage % of Maximum
Voltage Applied RPM of DC Motor

0 0 0

2.5 50 1840

cycle_high

comparator cycle_high,
pwm_o = 1
counter >= 
cycle_high, 
pwm_o = 0

pwm_o
3.75 75 6900

5.0 100 9200

Relationship between applied voltage and 
speed of the DC Motor

void main(void){ The PWM alone cannot drive 
the DC motor, a possible way

Internal Structure of PWM
speed of the DC Motor

5V
/* controls period */

PWMP = 0xff;    
/* controls duty cycle */

PWM1 = 0x7f; 

the DC motor, a possible way 
to implement a driver is shown 

below using an MJE3055T 
NPN transistor.

5V DC 
MOTOR

From 
process

while(1){};
}

B

A

MOTORprocess
or

54



Input PortsInput Ports

• 10 bit AD, 333 Hz (By AVR processor)10 bit AD, 333 Hz (By AVR processor)
• Dig I/O (I2C bus communication -9600bit/s)
• Port 4  - RS484 (921.6 Kbit/s)



Input SensorsInput Sensors

• Passive
– Light, Touch, Sound, Tempg , , , p

• Digital
Ult S i– UltraSonic

– I2C 
• => Port configuration depends on sensor



Serial protocols: I2CSerial protocols: I2C
I2C (Inter IC)• I2C (Inter-IC)
– Two-wire serial bus protocol developed by Philips Semiconductors 

nearly 20 years agoy y g
– Enables peripheral ICs to communicate using simple 

communication hardware
D t t f t t 100 kbit / d 7 bit dd i ibl– Data transfer rates up to 100 kbits/s and 7-bit addressing possible 
in normal mode

– 3.4 Mbits/s and 10-bit addressing in fast-modeg
– Common devices capable of interfacing to I2C bus:

• EPROMS, Flash, and some RAM memory, real-time clocks, watchdog 
timers and microcontrollerstimers, and microcontrollers



I2C bus structureI2C bus structure
SCL
SDA

Micro-
controller
(master)

EEPROM
(servant)

Temp. 
Sensor
(servant)

LCD-
controller
(servant) < 400 pF( ) ( ) ( )

Addr=0x01     Addr=0x02        Addr=0x03

SDA SDA SDA SDA

SCL SCL SCL SCL

Start condition Sending 0 Sending 1 Stop condition

D

From 
Servant

From 
receiver

C
S
T

A
R
T

A
6

A
5

A
0

R/
w

A
C
K

D
8

D
7

D
0

A
C
K

S
T

O
P

Typical read/write cycleTypical read/write cycle



BlueTooth (classII)BlueTooth (classII)

• Serial Port Profile



DisplayDisplay

• 100x64  pixel
• ARM 7 via SPI (2MHZ)ARM 7 via SPI (2MHZ)
• Double Buffering in Firmware



OtherOther 

• Sound (PWM by ARM7)
• USBUSB
• Buttons 
• JTAG debug (not mounted) for ARM&AVR



AVR < > ARMAVR <-> ARM

• AVR
– Power management
– PWM modulation for engines
– AD conversion for analogue input portsg p p
– Buttons

• Exchanged info via internal i2c every 2 ms• Exchanged info via internal i2c every 2 ms
ARM to AVR AVR to ARM



B i S liBasic Sampling

Brian Nielsen
bnielsen@cs.aau.dk

Based on Chapter 3:
"The Scientist and Engineer's Guide to Digital SignalThe Scientist and Engineer s Guide to Digital Signal 

Processing, copyright ©1997-1998 by Steven W. Smith. 
For more information visit the book's website at: 

www.DSPguide.com"



AD and DCAD and DC



AD ConversionAD Conversion

Quantization: number of levels
Sampling Frequency: samples/secp g q y p



Quantization ErrorQuantization Error



PrecisionPrecision
• Q= EFSR / N (if linear)

– Q is resolution in volts per step (volts per output code),
– EFSR is the full scale voltage range = VH − VL,
– M is the ADC's resolution in bits
– N is the number of steps (output codes):

N = 2M

• E.G.
– Q=(10-0)/212  V/code = 2.44 mV/codeQ ( )



AliasingAliasing



Sampling TheoremSampling Theorem

• To reconstruct the frequency content of a 
measured signal accurately, the sample g y, p
rate must be more than twice the highest 
frequency contained in the measuredfrequency contained in the measured 
signal

• Nyquist Frequency (half sampling 
f )frequency)



AD/ DCAD/ DC



Low pass filtersLow-pass filters

• Sharpness
• Attenuation• Attenuation
• Ripple / Over-undershoot


