The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Quantitative Models and Analysis for Reactive Systems PhD Defence

Claus Rørbæk Thrane

Distributed and Embedded Systems unit, Department of Computer Science, Aalborg University

November 18, 2011

The big picture Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Introduction

- The big picture
- Specifications and Reactive Systems
- Research Hypothesis and Goals

2 Models, Specifications, and Verification

- Timed Automata and Semantics
- Specification Languages: CTL

3 Robustness and Quantitative Analysis

- From equivalences to distances
- Approximating properties of systems
- Approximating Specifications
- Robustness and Implementability

4 Conclusion & Final Remarks

The big picture

Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Understanding systems, and making useful predictions

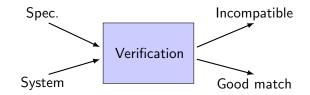
- Errors persist in mission and safety critical systems.
- Failures are expensive or tragic.

The big picture

Reactive Systems Goals

Formal Methods

Timed Systems Specifications


Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Understanding systems, and making useful predictions

- Errors persist in mission and safety critical systems.
- Failures are expensive or tragic.
- Solution: Formal methods
 - Models of systems and requirements
 - Verification: manual or automated.

The big picture

Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Understanding systems, and making useful predictions

- Errors persist in mission and safety critical systems.
- Failures are expensive or tragic.
- Solution: Formal methods
 - Models of systems and requirements
 - Verification: manual or automated.

The big picture

Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Reactive systems

Reactive systems [Pnueli'85] & [Milner '89]
 non-terminating, communicating

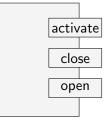
- Control systems.
- Embedded systems.
- Distributed and communicating systems.

Specifications

Introduction

The big picture

Reactive Systems Goals


Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Qualitative

1 If open occurs an activate must have been performed.

2 If open occurs close must follow.

Quantitative

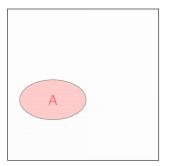
3 open will occur at most 12ms after **activate**.

4 ...

The big picture

Reactive Systems

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

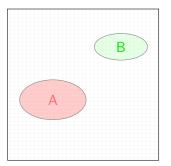
Conclusion

Specifications and Systems

The big picture

Reactive Systems

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

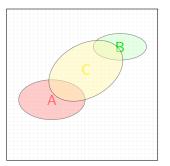
Conclusion

Specifications and Systems

The big picture

Reactive Systems

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

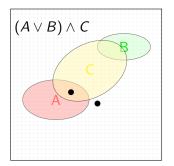
Conclusion

Specifications and Systems

The big picture

Reactive Systems

Formal Method


Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

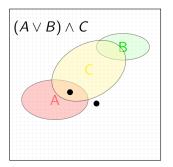
Conclusion

Specifications and Systems

The big picture

Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Specifications and Systems

- What if $(A \lor B) \land C$ is empty?
- How can we choose between systems for a specification?
- Idea: Specifications rate systems e.g. A(s) = 0.7

Thesis

Introduction

The big picture Reactive Systems Goals

Formal

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Research Hypothesis

Using **quantitative techniques** and **game** theoretic approaches, it is possible to leverage the limitations of the Boolean framework for formal verification of reactive systems.

The big pictur Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Introduction

- The big picture
- Specifications and Reactive Systems
- Research Hypothesis and Goals

2 Models, Specifications, and Verification

- Timed Automata and Semantics
- Specification Languages: CTL

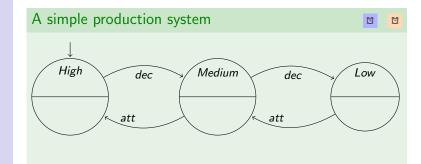
Robustness and Quantitative Analysis

- From equivalences to distances
- Approximating properties of systems
- Approximating Specifications
- Robustness and Implementability

4 Conclusion & Final Remarks

The big pictur Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

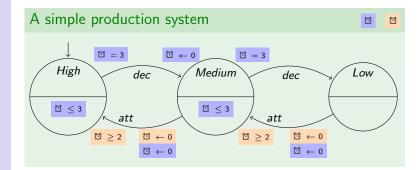
Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

- Timed automaton [Alur and Dill '94]
- Weighted timed automaton [Alur+, Behrmann+ '01]

The big pictu Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

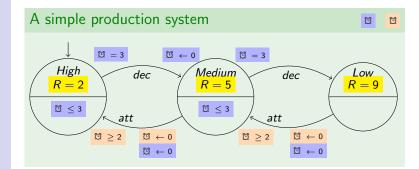
Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

- Timed automaton [Alur and Dill '94]
- Weighted timed automaton [Alur+, Behrmann+ '01]

The big pictu Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitativ Analysis

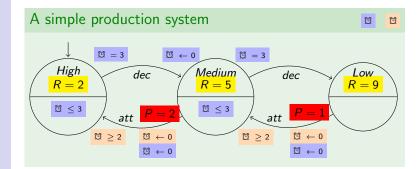
Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

- Timed automaton [Alur and Dill '94]
- Weighted timed automaton [Alur+, Behrmann+ '01]

The big pictu Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitative Analysis

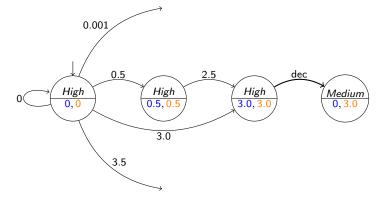
Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

- Timed automaton [Alur and Dill '94]
- Weighted timed automaton [Alur+, Behrmann+ '01]

Semantics

Introduction


The big picture Reactive Systems Goals

Formal Methods

- Timed Systems
- Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Ehrenfeucht-Fraïssé games

- Characterizes Bisimulation [Milner '89]
- A blind Attacker gives us trace equivalence [Hoare '85]
- Time abstract games!

Bisimulation game [Stirling '95]

An Attacker and Defender plays a round from s and t.

- **1** Attacker chooses s or t and a move, e.g. $s \xrightarrow{a} s'$
- 2 Defender proposes a matching move, e.g. $t \xrightarrow{a} t'$, from s or t opposite the attacker.

Another round is played from s' and t' if a match was found.

• $s \not\sim t$ if the attacker can *win*, and $s \sim t$ otherwise.

The big pictur Reactive Systems Goals

Formal Methods

Timed System

Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Specification languages: CTL

Safety properties & invariants

CTL Specifications	[Clarke, Emerson '81]
 AGEX(true) EF(error) AGEF(EX(Medium) ∨ EX(Lor 	Non-termination. Reachability. w)) "invariant choice".
TCTL Specifications	[Alur, Courcoubetis Dill '93]
• $High \lor EF_{[0,4]}High$	If the production level is not H, can it be obtained within 4 time units?

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Properties of CTL [Brown, Clarke, Grümberg '87]

- Adequacy: CTL can distinguish (only) inequivalent systems.
- Expressivity: can express specifications with exactly one solution (up to ~)!

The big pictur Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitative Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Introduction

- The big picture
- Specifications and Reactive Systems
- Research Hypothesis and Goals

Models, Specifications, and Verification

- Timed Automata and Semantics
- Specification Languages: CTL

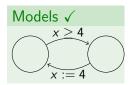
3 Robustness and Quantitative Analysis

- From equivalences to distances
- Approximating properties of systems
- Approximating Specifications
- Robustness and Implementability

4 Conclusion & Final Remarks

The big picture Reactive Systems Goals

Formal Method


Timed Systems Specifications

Quantitative Analysis

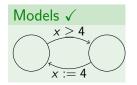
Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Towards Quantitative Analysis

The big picture Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitative Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

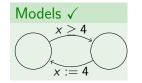
Towards Quantitative Analysis

Specifications \checkmark

$$AF_{[0,4]}High$$

The big picture Reactive Systems Goals

Formal Methods


Timed Systems Specifications

Quantitative Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Towards Quantitative Analysis

Verification

$$[\phi](s) = 3.14$$

 $d(s, t) = 42$

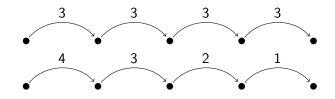
Boolean world	"Quantification"
Trace equivalence \equiv	Linear distance d_L
Bisimilarity \sim	Branching distance <i>d</i> _B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$
Satisfaction $s \models \phi$	$Multi-valued \ \llbracket \phi \rrbracket(s) \in \mathbb{R}$

The big pictur Reactive Systems Goals

Formal Methods

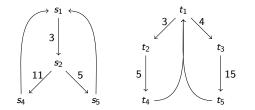
Timed Systems Specifications

Quantitativ Analysis


Distances

Quantitative Specifications Approximating Specifications Robustness

Conclusion


Behavior revisited

- Games are no longer win/loose but have values.
- Players try to optimize the value of the game.

- Point-wise distance
- Hamming distance
- Accumulating (discounted) distance
- Maximum-lead distance

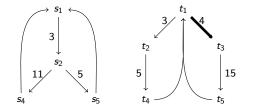
The accumulating distance, discounted by $\lambda=0.9$

$$egin{aligned} &d_L(s_1,t_1) = \sum_i (1+4\lambda)\lambda^{3i} &pprox 17.0 \ &d_B(s_1,t_1) = 1+10\lambda+\lambda^3 d_B(s_1,t_1) &pprox 36.9 \end{aligned}$$

Introduction

The big pictu Reactive Systems Goals

Formal Method


Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

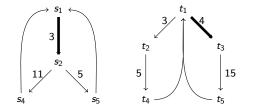
The accumulating distance, discounted by $\lambda=0.9$

$$d_L(s_1, t_1) = \sum_i (1 + 4\lambda)\lambda^{3i}$$
 ≈ 17.0
 $d_B(s_1, t_1) = 1 + 10\lambda + \lambda^3 d_B(s_1, t_1)$ ≈ 36.9

Introduction

The big pictu Reactive Systems Goals

Formal Method


Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

The accumulating distance, discounted by $\lambda=0.9$

$$egin{aligned} &d_L(s_1,t_1) = \sum_i (1+4\lambda)\lambda^{3i} &pprox 17.0 \ &d_B(s_1,t_1) = 1+10\lambda+\lambda^3 d_B(s_1,t_1) &pprox 36.9 \end{aligned}$$

Introduction

The big pictu Reactive Systems Goals

Formal Method

Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

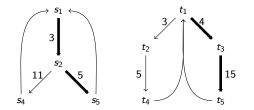
The accumulating distance, discounted by $\lambda=0.9$

$$egin{aligned} &d_L(s_1,t_1) = \sum_i (1+4\lambda)\lambda^{3i} &pprox 17.0 \ &d_B(s_1,t_1) = 1+10\lambda+\lambda^3 d_B(s_1,t_1) &pprox 36.9 \end{aligned}$$

Introduction

The big pictur Reactive Systems Goals

Formal Method


Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

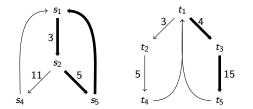
The accumulating distance, discounted by $\lambda=0.9$

$$egin{aligned} &d_L(s_1,t_1) = \sum_i (1+4\lambda)\lambda^{3i} &pprox 17.0 \ &d_B(s_1,t_1) = 1+10\lambda+\lambda^3 d_B(s_1,t_1) &pprox 36.9 \end{aligned}$$

Introduction

The big pictur Reactive Systems Goals

Formal Method


Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

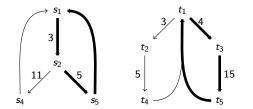
The accumulating distance, discounted by $\lambda=0.9$

$$egin{aligned} & d_L(s_1,t_1) = \sum_i (1+4\lambda)\lambda^{3i} & pprox 17.0 \ & d_B(s_1,t_1) = 1+10\lambda+\lambda^3 d_B(s_1,t_1) & pprox 36.9 \end{aligned}$$

Introduction

The big pictu Reactive Systems Goals

Formal Method


Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

The accumulating distance, discounted by $\lambda=0.9$

$$egin{aligned} &d_L(s_1,t_1) = \sum_i (1+4\lambda)\lambda^{3i} &pprox 17.0 \ &d_B(s_1,t_1) = 1+10\lambda+\lambda^3 d_B(s_1,t_1) &pprox 36.9 \end{aligned}$$

Introduction

The big pictu Reactive Systems Goals

Formal Method

Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications Approximating Specifications Robustness

Conclusion

Measuring the dissimilarity between systems

In paper A

Theorem

Branching distances bound linear distances.

Theorem

For discounting factor $\lambda < 1$, accumulating branching distance from deterministic to non-deterministic weighted timed automata is computable.

In paper B

Theorem

Computing accumulating distance is polynomial-time equivalent to computing the payoff for discounted games.

The big pictur Reactive Systems Goals

Formal Method

Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications

Specification

Conclusion

Interpreting WCTL quantitatively

Syntax & Semantics

$$\Phi ::= p \mid \neg p \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \mathsf{E}\Psi \mid \mathsf{A}\Psi$$
$$\Psi ::= \mathsf{X}_{\boldsymbol{c}}\Phi \mid \mathsf{G}_{\boldsymbol{c}}\Phi \mid \mathsf{F}_{\boldsymbol{c}}\Phi \mid [\Phi_1 \mathsf{U}_{\boldsymbol{c}}\Phi_2]$$

Every ϕ is interpreted $\llbracket \phi \rrbracket$: as a function in $[S \to \mathbb{R}_{\geq 0}]$

Example: $\phi = AG(High \lor EF_2High)$

$$\llbracket \phi \rrbracket(s) = \sup_{\sigma \in P(s), k} \min \begin{cases} \llbracket High \rrbracket(\sigma^k) \\ \inf_{\sigma' \in P(\sigma^k), k'} \sum_{j=0}^k |\sigma'(j)_w - 2| + \llbracket High \rrbracket(\sigma'^{k'}) \end{cases}$$

The big pictur Reactive Systems Goals

Formal Method

Timed Systems Specifications

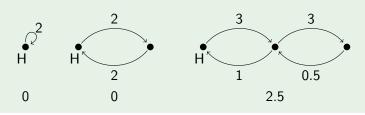
Quantitativ Analysis

Distances

Quantitative Specifications

Approximation Specification Robustness

Conclusion


Interpreting WCTL quantitatively

Syntax & Semantics

$$\begin{split} \Phi &::= p \mid \neg p \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \mathsf{E}\Psi \mid \mathsf{A}\Psi \\ \Psi &::= \mathsf{X}_{\mathbf{c}} \Phi \mid \mathsf{G}_{\mathbf{c}} \Phi \mid \mathsf{F}_{\mathbf{c}} \Phi \mid [\Phi_1 \mathsf{U}_{\mathbf{c}} \Phi_2] \end{split}$$

Every ϕ is interpreted $\llbracket \phi \rrbracket$: as a function in $[S \to \mathbb{R}_{\geq 0}]$

Example: $\phi = AG(High \lor EF_2High)$

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances

Quantitative Specifications

Specification Robustness

Conclusion

Properties of WCTL

In paper D

Quantitative Adequacy [de Alfaro, Faella, Stoelinga'04]

For every S and T $d_B(S, T) \leq \epsilon$ if and only if, for every property ϕ in WCTL $|\llbracket \phi \rrbracket(S) - \llbracket \phi \rrbracket(T)| \leq \epsilon$

Quantitative Expressiveness

For each S, and every $\gamma > 0$, there is a (single) characteristic property ϕ_S^{γ} in WCTL, such that: $[\![\phi_S^{\gamma}]\!](T) \in [\epsilon - \gamma, \epsilon + \gamma]$ if and only if $d_B(S, T) \leq \epsilon$

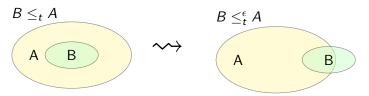
The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications


Approximating Specifications

Robustness

Conclusion

Approximating Specifications: MTS & Quantitative Refinement

Modal Transition Systems [Larsen & Thomsen '88]
 (De)Composition of specifications: A || B and A \\ B

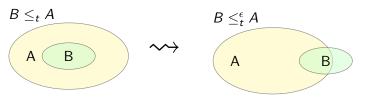
The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitative Analysis

Distances Quantitative Specificatio


Approximating Specifications

Robustness

Conclusion

Approximating Specifications: MTS & Quantitative Refinement

Modal Transition Systems [Larsen & Thomsen '88]
 (De)Composition of specifications: A || B and A \\ B

Results: Paper E

- + EXPTIME-hard to decide $B \leq_t^{\epsilon} A$, given $\epsilon > 0$
- + $B \leq_m^{\epsilon} A$ is decidable in $NP \cap coNP$, given $\epsilon > 0$
- No suitable conjunction operator (\land) is definable.

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications

Robustness

not ok Modeling → Verification → Implementation

- Digital clock suffers from drift and finite precision.
- Digital hardware has finite execution speed.

Dynamical properties [Puri'98]

The effects of physical hardware corresponds to implicitly statically *enlarging* all constraints by some small $\Delta > 0$.

Introduction

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

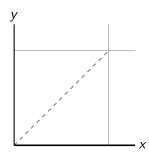
Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications

Robustness

Introduction

The big picture Reactive Systems Goals


Formal Method

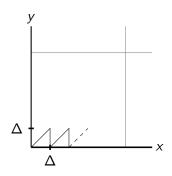
Timed Systems Specifications

Quantitativ Analysis

- Distances Quantitative Specifications Approximating Specifications
- Robustness
- Conclusion

Introduction

The big picture Reactive Systems Goals


Formal Method

Timed Systems Specifications

Quantitativ Analysis

- Distances Quantitative Specifications Approximating Specifications
- Robustness
- Conclusion

Example \mathcal{B}_{Δ}	
$y \leq 0 + \Delta $	<i>y</i> := 0
+ ⁷ b	c X

The Attacker wins the untimed game: b and c are available

Approximat Specificatio Robustness

Quantitative

Timed Systems

Modeling Verification

- Enlargement may induce extra (discrete) behavior
- Hence the formalism lacks **robustness**.

Even if models were *robust* what can we guarantee about the timing of implementations – in the presence of Δ ?

Introduction

The big pictur Reactive Systems Goals

Formal Method

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications

Robustness

The big pictur Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Robustnes

Conclusion

Resolving implementation issues

Safety robustness [Puri'98]

A timed automata A is safety robust w.r.t. locations B if there exist a $\Delta > 0$ such that A_{Δ} is safe for B.

 in paper F we consider a stronger notion, capturing also reactive expectations.

ϵ -robustness

A timed automata \mathcal{A} is ϵ -robust, for $\epsilon > 0$, if there exist a $\Delta > 0$ such that $d_B(\mathcal{A}, \mathcal{A}_{\Delta}) \leq \epsilon$.

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

- Distances Quantitative Specifications Approximating Specifications
- Robustness
- Conclusion

Resolving implementation issues

■ in paper F

Theorem: Implementability of Timed Automata

Let $\mathcal{A} = (\mathcal{L}, \mathcal{C}, \Sigma, \mathit{I}_0, E)$ be a TA, safe w.r.t. $B \subseteq \Sigma$, then:

- it has safety robust implementation with the same clocks and locations, and at most |E| · |Reg(A)| edges.
 For all € > 0, it has a
 - ϵ -robust implementation w.r.t. \sim_0
 - ϵ -sampled and ϵ -robust implementation w.r.t. \approx_{0^+} .
- Meaning all WCTL properties are transferable between the intended design and the implementation.

Robust implementations

Introduction

The big picture Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications

Robustness

Conclusion

Given a timed automaton $\mathcal A,$ construct $\mathcal A'$ such that

• \mathcal{A} has the same behaviour as \mathcal{A}' ,

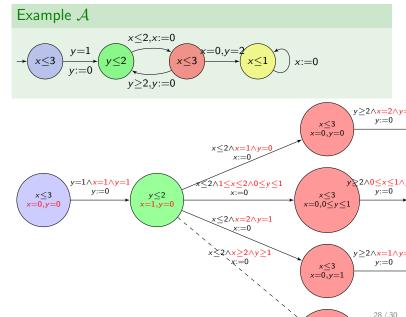
A' is robust, i.e. A' has approximately the same behaviour as A'_Λ for some Δ > 0.

Notice: \mathcal{B}_{Δ} didn't respect the region automaton.

Basic idea: Enforce the region automaton: encoding regions in locations.

Robust implementations

The big picture Reactive Systems Goals


Formal Method

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications

Robustness

The big pictur Reactive Systems Goals

Formal Method

Timed Systems Specifications

Quantitative Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Robustnes

Conclusion

Consequences of (point-wise) ϵ -robustness

Reuse of tools

We need not rebuild existing tools providing automated verification. Rather the **code generation** step, will need to apply our construction.

Reliable fault detectors

A point-wise deviation may provide a upper bound in delays for each step of a communication protocol.

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Conclusion & Final Remarks

- Distances yield meaningful approximations of equality, system properties, and specifications by other specifications.
- Games turn out to be useful in defining distances.

What else?

- Quantitative analysis preserves expressivity, and the hierarchy of equivalences.
- What about other types of qualitative behavior?
- What about measuring Cost, Energy, Radiation?
- What about stochastic and probabilistic systems?

The big pictu Reactive Systems Goals

Formal Methods

Timed Systems Specifications

Quantitativ Analysis

Distances Quantitative Specifications Approximating Specifications Robustness

Conclusion

Conclusion & Final Remarks

- Distances yield meaningful approximations of equality, system properties, and specifications by other specifications.
- Games turn out to be useful in defining distances.

What else?

- Quantitative analysis preserves expressivity, and the hierarchy of equivalences.
- What about other types of qualitative behavior?
- What about measuring Cost, Energy, Radiation?
- What about stochastic and probabilistic systems? Thank you!