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Quantitative model checking

Model-checking: µ-calculus, CTL, LTL ...

Quantitative Model Checking: TCTL, WCTL, PCTL ...

Quantitative Model Checking

or

Checking of models,

Checking of models with quantities;
e.g. checking time-constraints

Quantitative checking of models;
e.g. measuring the distance between discrete actions.

Quantitative checking of models with quantities.
e.g. measuring the distance between real weighted transitions.
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What is quantitative model-checking?

The quantitative model-checking problem

Given a state s of a structire M, and a logical formulae ϕ

Does ϕ hold at s? i.e. M, s |= ϕ ?
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What is quantitative model-checking?

The quantitative model-checking problem

Given a state s of a structire M, and a logical formulae ϕ

What is the degree ε with which ϕ holds at s?
i.e. compute ε s.t. JϕKM(s) = ε ?
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Why deal with quantitative model-checking?
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Decidability & Expressiveness

Model-checking

Given ϕ and s ∈ S : s |= ϕ ?

Satisfyability

Given ϕ: ∃s ∈ S .s |= ϕ ?

Adequacy

Given s, t ∈ S : s ∼ t iff ∀ϕ.s |= ϕ ⇐⇒ t |= ϕ ?

Characteristic properties

Given s, t ∈ S : t |= ϕs ⇐⇒ s ∼ t ?
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Decidability & Expressiveness

Model-checking

Given ϕ and s ∈ S : JϕK(s) = ε ?

Satisfyability

Given ϕ: ∃s ∈ S .JϕK(s) = 0 ?

Adequacy

Given s, t ∈ S : s ∼ε t iff ∀ϕ.|JϕK(s)− JϕK(t)| ≤ ε ?

Characteristic properties

Given s, t ∈ S : JϕsK(t) = ε ⇐⇒ t ∼ε s?
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Weighted Kripke structure

For a finite set AP of atomic propositions, a weighted Kripke
structure is a quadruple M = (S ,T ,L,w) where

S is a finite set of states,

T ⊆ S × S is a transition relation

L : S → 2AP is the proposition labelling, and

w : T → R≥0 assigns weights to transitions.

s1

s2

s5s4

3

5
11

0 0
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Bisimulation for WKS

Let (S ,T ,L,w) be a WKS on a set AP of atomic propositions. A
relation B ⊆ S × S is a

un

weighted bisimulation relation, provided
that for all (s, t) ∈ B:

L(s) = L(t) and

if s
c−→ s ′, then also t

c−→ t ′ where (s ′, t ′) ∈ B for some t ′ ∈ S ′,

if t
c−→ t ′, also also s

c−→ s ′ where (s ′, t ′) ∈ B for some s ′ ∈ S ;

We say say that s and t are

un

weighted bisimular, written s ∼ t if
(s, t) ∈ B for some unweighted bisimulation B.
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Bridging the Boolean gap

By definition membership og a relation, is true or false; We
provide a family of relations st.

∼ ⊇ · · · ⊇ ∼i ⊇ ∼j ⊇ · · · ⊇ u∼

For i , j ∈ R≥0 and i < j
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Equivalence relations

Definition

Given a set X a binary relation
R ⊆ X × X is an equivalence
relation, if and only if,
∀x , y , z ∈ X , R is

x R x

x R y ⇐⇒ y R x

x R y and y R z then x R z

...or

Given a set X a map
R : X × X → {0, 1} is an
equivalence relation, if and only
if, ∀x , y , z ∈ X , R and:

R(x , x) = 0

R(x , y) = R(y , x)

R(x , y) ≤ R(y , z) + R(y , z)

Where tt = 0 and ff = 1

Boolean

10 / 29

A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic.



Introduction Weighted Kripke Structures Metrics and Distances The WCTL Logic Conclusion

Equivalence relations

Definition

Given a set X a binary relation
R ⊆ X × X is an equivalence
relation, if and only if,
∀x , y , z ∈ X , R is

x R x

x R y ⇐⇒ y R x

x R y and y R z then x R z

...or

Given a set X a map
R : X × X → {0, 1} is an
equivalence relation, if and only
if, ∀x , y , z ∈ X , R and:

R(x , x) = 0

R(x , y) = R(y , x)

R(x , y) ≤ R(y , z) + R(y , z)

Where tt = 0 and ff = 1

Boolean

10 / 29

A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic.



Introduction Weighted Kripke Structures Metrics and Distances The WCTL Logic Conclusion

Metrics

Definition

Given a set X . Then a metric on X is a function d : X ×X → R≥0

which ∀x , y , z ∈ X satisfies:

1 d(x , y) = 0 if and only if x = y

2 d(x , y) = d(y , x)

3 d(x , z) ≤ d(x , y) + d(y , z)
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Distances on sequences of real numbers

For sequences a = (ai ), b = (bi ), we may consider the following
distances:

d�(a, b) = sup
i

{
|ai − bi |

}
d+(a, b) =

∑
i

|ai − bi |

d±(a, b) = sup
i

{∣∣∣ i∑
j=0

aj −
i∑

j=0

bj

∣∣∣} ([HMP’05])
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Quantifying bisimulation

We extend bisimulation, with d�, d+ or d± measurements, as well
as a discounting factor 0 ≤ λ ≤ 1.

Point-wise (bi)simulation

Accumulated (bi)simulation

Max-lead (bi)simulation
(Henzinger et. al, FORMATS’05 to

be poly-timea decidable for timed

automata)

ain the size of the region graph,
which in turn is exponential in the size
of clocks

A bisimulation distance is a
function d : S × S → R≥0 ∪ {∞}
which satisfies the following for
all s1, s2, s3 ∈ S :

d(s1, s1) = 0,

d(s1, s2) + d(s2, s3) ≥ d(s1, s3),

d(s1, s2) = d(s2, s1),

s1 ∼ s2 implies d(s1, s2) = 0

d(s1, s2) 6=∞ implies s1
u∼ s2

13 / 29

A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic.



Introduction Weighted Kripke Structures Metrics and Distances The WCTL Logic Conclusion

Accumulated bisimulation distance

A family of relations R = {Rε ⊆ S × S | ε > 0}

on a WKS
(S ,T ,L,w) is an accumulating bisimulation family provided
that for all (s, t) ∈ Rε ∈ R:

L(s) = L(t) and

for all s
c−→ s ′, also t

d−→ t ′ with |c − d | ≤ ε for some d ∈ R≥0 and

(s ′, t ′) ∈ Rε′ ∈ R with ε′ ≤ ε−|c−d|
λ ,

for all t
c−→ t ′, also s

d−→ s ′ with |c − d | ≤ ε for some d ∈ R≥0 and

(s ′, t ′) ∈ Rε′ ∈ R with ε′ ≤ ε−|c−d|
λ .

We write s
+∼ε t if (s, t) ∈ Rε ∈ R for an accumulating

bisimulation family R.
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Linear and Branching d+-distances
(simulation as equations)

For states s, t ∈ S , the accumulated branching distances is the
minimal fixed points to the following recursive equation:

os, to+ = sup
s

c−→s′

inf
t

d−→t′

|c − d |+ λ · os ′, t ′o+

and the accumulated linear distance is:

|s, t|+ = sup
σ∈P(s)

inf
σ′∈P(t)

∑
i

λi |σ(i)w − σ′(i)w |
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Example

s1

s2

s5s4

3

511

t1

t2 t3

t4 t5

3 4

5 15

For λ = 0.9 AP = {•, •, •} Simulation distances:

|s1, t1|+ =
∑

i

(1 + 4λ)λ3i ≈ 17.0

os1, t1o+ = 1 + 10λ+ λ3os1, t1o+ ≈ 36.9

And w.r.t their accumulating bisimulation distance; s1
+∼37 t1.
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Properties

For all states s, t ∈ S , we have

|s, t|� ≤ os, to� |s, t|+ ≤ os, to+ |s, t|± ≤ os, to±

The distances |·, ·|� and o·, ·o� are topologically inequivalent.
Similarly, |·, ·|+ and o·, ·o+, and also |·, ·|± and o·, ·o±, are
topologically inequivalent.

17 / 29
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Computability for Weighted Timed Automata

Theorem

For discounting factor λ < 1 and |·, ·| any of the three trace
distances, it is undecidable whether |s, t| = 0 for weighted timed
automata.

Theorem

For discounting factor λ < 1, accumulating branching distance
from deterministic to non-deterministic weighted timed
automata is computable.

18 / 29
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Setting the scene for the logic

A simple general syntactic extension of CTL,

The semantics of a formulae ϕ defines a map J·K : S → R≥0 ∪ {∞}.
such that

The state semantics are shared for d� and d+ and d±.
The path semantics are specific the respective distances.

To obtain a correspondence, with the bisimulation distance.

19 / 29
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Weighted CTL

For any of the metrics d� and d+ and d±, we define the syntax:

Definition

For p ∈ AP, Φ generates the set of state formulae, and Ψ, the set
of path formulae, annotated by weights c ∈ R≥0, according to the
following abstract syntax:

Φ ::= p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | EΨ | AΨ

Ψ ::= XcΦ | GcΦ | FcΦ | [Φ1UcΦ2]

The logic WCTL is the set of state formulae, which we denote
Lw (AP) or simply Lw .

20 / 29
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Semantics for state formulae

Let ϕ,ϕ1, ϕ2 be state formulae and ψ a path formula. The
valuation J·K : S → R≥0 ∪ {∞} is defined inductively.

JpK(s) =

{
0 if p ∈ L(s)

∞ otherwise

J¬pK(s) =

{
0 if p ∈ AP \ L(s)

∞ otherwise

Jϕ1 ∨ ϕ2K(s) = inf
{
Jϕ1K(s), Jϕ2K(s)

}
Jϕ1 ∧ ϕ2K(s) = sup

{
Jϕ1K(s), Jϕ2K(s)

}
JEψK(s) = inf

{
JψK(σ) | σ ∈ P(s)

}
JAψK(s) = sup

{
JψK(σ) | σ ∈ P(s)

}

21 / 29
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d+ Path semantics

JϕK(σ) = JϕK(σ(0)s)

JXcϕK(σ) = |c − σ(0)w |+ λJϕK(σ1)

JFcϕK(σ) = inf
k

(∣∣∣k−1∑
j=0

λjσ(j)w − c
∣∣∣+ λkJϕK(σk)

)

JGcϕK(σ) = sup
k

(∣∣∣k−1∑
j=0

λjσ(j)w − c
∣∣∣+ λkJϕK(σk)

)

Jϕ1Ucϕ2K(σ) = inf
k

(∣∣∣k−1∑
j=0

λjJϕ1K(σj)− c
∣∣∣+ λkJϕ2K(σk)

)
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Properties of the logic

Theorem: Adequacy

For states s, t ∈ S , s
+∼εt if and only if

∣∣JϕK(s)− JϕK(t)
∣∣ ≤ ε for all

ϕ ∈ Lw .

Theorem: Expressivity & Characteristic formulae

For each s ∈ S and every γ ∈ R+, there exists a state formula
ϕs
γ ∈ Lw which characterizes s up to accumulating bisimulation

and up to γ, i.e. such that for all s ′ ∈ S , s
+∼ε s ′ if and only if

Jϕs
γK(s ′) ∈ [ε− γ, ε+ γ] for all γ.
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Building Characteristic formulae

HML for infinite state systems [Graf, Sifakis ’86]

Use recursive properties

CTL for finite state systems [Brown, Clarke, Grömberg ’87]

Use the characteristic number c

WCTL for accumulating quantitative checking

For infinite sums, the constant c , is insufficient
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d+ Characteristic formulae

For each s ∈ S and n ∈ N, denote L(s) = {p1, . . . , pk} and
AP \L(s) = {q1, . . . , q`} the formula ϕ(s, n) is defined inductively
as:

ϕ(s, 0) = (p1 ∧ · · · ∧ pk) ∧ (¬q1 ∧ · · · ∧ ¬q`)

ϕ(s, n + 1) =
∧

s
w−→s′

EXwϕ(s ′, n) ∧
∧

w :s
w−→s′

AXw

( ∨
s

w−→s′

ϕ(s ′, n)
)
∧ ϕ(s, 0)

It is easy to see that Jϕ(s, n)K(s) = 0 for all n.

Observe that for each γ > 0, there is n(γ) ∈ N such that ϕ(s, n(γ))
can play the role of ϕs

γ in the theorem.
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Example

s1

s2

s5s4

3

511

t1

t2 t3

t4 t5

3 4

5 15

ϕ(t1, n) = (• ∧ ¬• ∧ ¬•)
∧ EX3ϕ(t2, n − 1) ∧ EX4ϕ(t3, n − 1)

∧ AX3ϕ(t2, n − 1) ∧ AX4ϕ(t3, n − 1)

ϕ(t2, n − 1) = (¬• ∧ • ∧ ¬•)
∧ EX5ϕ(t4, n − 2) ∧ AX5ϕ(t4, n − 2)

ϕ(t3, n − 1) = . . .

ϕ(t4, n − 2) = . . .

ϕ(t5, n − 2) = . . .
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Example (cont.)

For Jϕt1
0.1K(s1) we compute:

≈ 36.809

Jϕ(t1, 56)K(s1) = max



max

{
inf{|3− σ(0)w |+ λJϕ(t2, 55)K(σ1) | σ ∈ P(s1)}
inf{|4− σ(0)w |+ λJϕ(t3, 55)K(σ1) | σ ∈ P(s1)}

max

{
sup{|3− σ(0)w |+ λJϕ(t2, 55)K(σ1) | σ ∈ P(s1)}
sup{|4− σ(0)w |+ λJϕ(t3, 55)K(σ1) | σ ∈ P(s1)}

max{J•K(s1), J¬•K(s1), J¬•K(s1)}

Jϕ(t3, 55)K(σ =s1
3−→ s2

5−→ s5
0−→ s1 · · · ) =

Jϕ(t3, 55)K(s2) = max


inf{|15− σ(0)w |+ λJϕ(t5, 55)K(σ1) | σ ∈ P(s2)}
sup{|15− σ(0)w |+ λJϕ(t5, 54)K(σ1) | σ ∈ P(s2)}
max{J¬•K(s2), J•K(s2), J¬•K(s2)}

. . .

Jϕ(t5, 54)K(s4) = max . . .
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Summary / Status

Outlined a general frame-work for quantitative analysis

including:

trace inclusion / equality
(Bi)simulation

Results on mutually, topologically inequivalence, and

A generalized result on the relationship of (bi)simulation and
language inclusion/equality.

(Decidability of accumulating simulation distance for WTA).

A characterising WCTL logic, with d+ trace semantics. (adequate
and expressive).
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Future work

Duality of operators.

A d� wCTL path semantics.

A d± wCTL path semantics.

Maybe d? wCTL path semantics.

Computability and Complexity (especially lower bounds).

Continuity w.r.t composition.

Game characterizations.

...and more.
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