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What is quantitative model-checking?

The quantitative model-checking problem

Given a state s of a structire M, and a logical formulae ¢

@ Does ¢ hold at s? i.e. M;s=¢ ?

4/ 29



Weighted Kripke Structures Metrics and Distances The WCTL Logic Conclusion

What is quantitative model-checking?

The quantitative model-checking problem

Given a state s of a structire M, and a logical formulae ¢

@ What is the degree ¢ with which ¢ holds at s?
i.e. compute ¢ s.t. [o]m(s)=¢?
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Why deal with quantitative model-checking?
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Decidability & Expressiveness

Model-checking
GivenpandseS:skE=¢?

Satisfyability
Given p: 3s€ Ssk=¢ 7

Adequacy
Givens,t€S: s~ tiffVoskEyp < tEp?

Characteristic properties
Givens,t€S:tEgs < s~t7?
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Weighted Kripke structure

For a finite set AP of atomic propositions, a weighted Kripke
structure is a quadruple M = (S, T, L, w) where

@ S is a finite set of states,
@ T C S x Sis a transition relation
@ £ : S — 247 is the proposition labelling, and

@ w : T — R>q assigns weights to transitions.
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Bisimulation for WKS

Let (S, T,L,w) be a WKS on a set AP of atomic propositions. A
relation B C S x Sisa  weighted bisimulation relation, provided
that for all (s, t) € B:

@ L(s)=L(t) and
@ if s = &, then also t 5 t’ where (s/,t') € B for some t' € S/,
@ if t 5 t/, also also s = s’ where (s, t') € B for some s’ € S;

We say say that s and t are  weighted bisimular, written s ~ t if
(s,t) € B for some unweighted bisimulation B.
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Let (S, T,L,w) be a WKS on a set AP of atomic propositions. A
relation B C S x S is a unweighted bisimulation relation, provided
that for all (s, t) € B:

@ L(s)=L(t) and
@ if s — &/, then also t — t’ where (s, t") € B for some t' € §',

@ if t — t/, also also s — s’ where (s',t’) € B for some s’ € S;

We say say that s and t are unweighted bisimular, written s & t if
(s, t) € B for some unweighted bisimulation B.
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Bridging the Boolean gap

By definition membership og a relation, is true or false; We
provide a family of relations st.

~ DD N D~

I
I
2=

Fori,j € R>pand i <
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. -
Equivalence relations

Definition ...or
Given a set X a binary relation Given a set X a map
R C X x X is an equivalence R:XxX —{0,1} is an
relation, if and only if, equivalence relation, if and only
Vx,y,z€ X, Ris if, Vx,y,z € X, R and:

@ xR x ® R(x,x)=0

@ R(x,y) = R(y,x)
° R(Xay) S R(%Z) + R(y,Z)
Wherett =0 and ff =1

@ xRy < yRx

@ xRyand yRzthenxRz
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Equivalence relations

Definition - Or

Given a set X a map

R: X x X —{0,1} is an
equivalence relation, if and only
if, Vx,y,z € X, R and:

@ R(x,x)=0

® R(x,y) = R(y,x)

® R(x,y) < R(y,z) + R(y,2)
Wherett =0 and ff =1

Given a set X a binary relation
R C X x X is an equivalence
relation, if and only if,
Vx,y,z€ X, R is

@ xR x
@ xRy < yRx

@ xRyand yRzthenxRz

Boolean
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Metrics

Definition
Given a set X. Then a metric on X is a function d : X x X — R>g
which Vx, y, z € X satisfies:

Q d(x,y)=0ifandonlyif x =y
Q d(x,y) =d(y,x)
Q d(x,z) < d(x,y) +d(y,2)
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Distances on sequences of real numbers

For sequences a = (a;), b = (b;), we may consider the following
distances:

d.(a, b) = sup {lai — bil}

d.(a, b) = Z la; — bj

di(a, b) :sqp{‘zi: aj —Zi:bj)} (HMP05])
' j=0 j=0
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Quantifying bisimulation

We extend bisimulation, with d,, d; or di measurements, as well
as a discounting factor 0 < A < 1.

o o _ A bisimulation distance is a
@ Point-wise (bi)simulation function d : § x § — Rso U {oo}
@ Accumulated (bi)simulation which satisfies the following for

o . all s1,:,s3 € S:
@ Max-lead (bi)simulation

(Henzinger et. al, FORMATS'05 to @ d(s1,51) =0,
be poly-time? decidable for timed ° d(Sl, 52) + d(52’ 53) > d(Sl, 53)’
automata)

] d(51,52) = d(52751)v

?in the size of the region graph,
which in turn is exponential in the size
of clocks

@ 51 ~ s implies d(s1,5,) =0

@ d(s1,52) # oo implies 51 ~ s,
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Accumulated bisimulation distance

A family of relations R={R. C S x S |e >0}

(=] = = =
A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic
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Accumulated bisimulation distance

A family of relations R={R. C S x S |e >0} on a WKS
(S, T,L,w) is an accumulating bisimulation family provided
that for all (s, t) € R. € R:

@ L(s)=L(t) and

o foralls S s, also t % ¢/ with |c — d| <& for some d € R>( and
(s',t') € Rer € R with &/ < =129l

@ forallt S t/, also s 4, s with |c — d| < e for some d € R> and
(s',t') € Res € R with &/ < ==I<=dl.

We write s ~. t if (s,t) € R. € R for an accumulating
bisimulation family R.
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Linear and Branching d.-distances

(simulation as equations)

For states s, t € S, the accumulated branching distances is the
minimal fixed points to the following recursive equation:

s, 8, = sup mf lc—d]+ X8ty

s—>s! t—>t’

and the accumulated linear distance is:

s, tly = sup inf > No(i)w — o’ ()l

o€P(s) a’eP(t)
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Example
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Example
S1
3|
s
VRN
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For A\=0.9 AP = {e, e e} Simulation distances:

And w.r.t their accumulating bisimulation distance; s; a7ty

s, t1]4 = > (144NN ~17.0

1

151, tily = 14+ 10X\ + Asy, tidy ~ 36.9

Conclusion
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.
Properties

@ For all states s,t € S, we have

|5a t|. <lis, |57t|+ <s, ty ‘svt‘ﬂ: < s, ty

@ The distances |-, -|. and -, -, are topologically inequivalent.
Similarly, |-, |+ and ¢, 2, and also |-, -|+ and ¥, -1, are
topologically inequivalent.

17/ 29
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Computability for Weighted Timed Automata

Theorem

For discounting factor A\ < 1 and |-,-| any of the three trace
distances, it is undecidable whether |s, t| = 0 for weighted timed
automata.

Theorem

For discounting factor A < 1, accumulating branching distance
from deterministic to non-deterministic weighted timed
automata is computable.

18 /29
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Setting the scene for the logic

@ A simple general syntactic extension of CTL,

@ The semantics of a formulae ¢ defines a map [-] : S — Rx>q U {o0}.
such that

@ The state semantics are shared for d. and d; and d+.
@ The path semantics are specific the respective distances.

@ To obtain a correspondence, with the bisimulation distance.

19 /29
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-
Weighted CTL

For any of the metrics d, and dy and dy, we define the syntax:

Definition

For p € AP, ® generates the set of state formulae, and W, the set
of path formulae, annotated by weights ¢ € R, according to the
following abstract syntax:

¢:::p|—|p|¢1/\¢2|¢1\/¢2|E\U|A\U
V= X0 | Ge® | Fed | [P1U D]

The logic WCTL is the set of state formulae, which we denote
Ly (AP) or simply L.

20 / 29
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Semantics for state formulae

Let ©, p1, @2 be state formulae and 1) a path formula. The
valuation [-] : S — Rx>o U {oo} is defined inductively.

[ol(s) = {o if peL(s)

oo otherwise

~J0 if pe AP\ L(s)
[=pl(s) = {oo otherwise
[o1 V @2l(s) = inf {[1](s). [w2](s) }
[o1 A @2l(s) = sup {[w1](s), [2](s)}
[E¥1(s) = inf {[¥](0) | o € P(s)}
[A](s) = sup {[¢](0) | o € P(s)}

21 /29
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d. Path semantics

[#](o) = [¢l(a(0)s)
[Xeel(e) = | = o(0)w| + Al#l (o)

[Feel(o (]Z WaG) = c| + X el
=0

k—1 '
[Geel(o) = sup (|32 Mo ~ ¢ + Mol
K\
k—1

[oUesallo) = inf (| ¥lalo)) - + Mealie"))

Jj=0

Conclusion

22 /29
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Properties of the logic

Theorem: Adequacy

For states s,t € S, s~.t if and only if [[¢](s) — [¢](t)| < & for all
pELy.

Theorem: Expressivity & Characteristic formulae

For each s € S and every v € R, there exists a state formula
©5, € Ly which characterizes s up to accumulating bisimulation
and up to v, i.e. such that for all s’ € S, s & s’ if and only if
[31(s") € [e = v,e + 7] for all 5.
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Building Characteristic formulae

HML for infinite state systems  [Graf, Sifakis '86]

Use recursive properties

CTL for finite state systems  [Brown, Clarke, Grémberg '87]
Use the characteristic number ¢

WCTL for accumulating quantitative checking
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Building Characteristic formulae

HML for infinite state systems  [Graf, Sifakis '86]
Use recursive properties

CTL for finite state systems  [Brown, Clarke, Grémberg '87]
Use the characteristic number ¢

WCTL for accumulating quantitative checking

For infinite sums, the constant c, is insufficient
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d. Characteristic formulae

For each s € S and n € N, denote L(s) = {p1,...,pk} and
AP\ L(s) = {q1,...,q¢} the formula (s, n) is defined inductively
as:

©(5,0) = (p1 A~ Apr) A(—=q1 A+ A —gp)

o(s,n+1) /\ EXwe(s', n) /\ AX,, ( \/ w(s',n))/\w(s,O)

w
s/ Wis—s/ s—rs’
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d. Characteristic formulae

For each s € S and n € N, denote L(s) = {p1,...,pk} and
AP\ L(s) = {q1,...,q¢} the formula (s, n) is defined inductively
as:

©(5,0) = (p1 A~ Apr) A(—=q1 A+ A —gp)

o(s,n+1) /\ EXwe(s', n) /\ AX,, ( \/ w(s',n))/ﬂp(s,O)

s~ wis—ss! s—rs/
@ It is easy to see that [p(s, n)](s) = 0 for all n.

@ Observe that for each v > 0, there is n(y) € N such that ¢(s, n(v))
can play the role of 3 in the theorem.
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Example
s1
% ot1,n) = (o A —0 A —e)
5 AN EX3g0(t2,n— 1)/\ EX4cp(t3,n— 1)

y % /\AX3g0(t2,n— 1) /\AX4g0(t3,n— 1)

s S5 o(tr,n—1) = (—e N e —e)
ftlﬁ A EXso(ta, n —2) A AXsp(ta, n — 2)
2 t3
5J J15
ts ts
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Example (cont.)

For [pg](s1) we compute:

o I3 = 0 (0] + Alp(12,55)[(07) | o € P(s1)}
inf{|4 — (0)w| + Al¢(t3,55)](c") | o € P(s1)}
lp(t1,56)](s1) =maxq  Jsup{]3 =0 (0)u| + Al(t2,55)(c) | o € P(s1)}

sup{|4 — o(0)w| + Al(t3,55)[(c") | o € P(s1)}
max{[e](s1), [e](s1), [~e](s1)}
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Example (cont.)

For [pg](s1) we compute:
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[o(t3,55)[(0 =51 > 5o > 55 > 5p--+) =
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Example (cont.)

For [pg](s1) we compute:

oy JINFI3 = 7(0)u] + Alp(t2,55))(07) | o € P(s1)}

inf{|4 — (0)w| + Al¢(t3,55)](c") | o € P(s1)}

lp(t1,56)](s1) =maxq  Jsup{]3 =0 (0)u| + Al(t2,55)(c) | o € P(s1)}
sup{|4 — o(0)w| + Al(t3,55)](c) | o € P(s1)}

max{[e](s1), [-e](s1), [~](s1)}

[o(t3,55)[(0 =51 > 5o > 55 > 5p--+) =

inf{|15 — o(0)w| + A[e(ts,55)](c) | o € P(s2)}
lo(t3,55)](s2) =max { sup{|15 — o(0)w| + A[p(ts,54)](c) | o € P(s2)}
max{[-e](s2), [¢](s2), [~](s2)}
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Example (cont.)

For [pg](s1) we compute: ~ 36.809
_ [inf{13— 0(0)u] + Ale(£2,55)](0") | o € P(s1)}
inf{|4 — (0)w| + Al¢(t3,55)](c") | o € P(s1)}
lp(t1,56)](s1) =maxq  Jsup{]3 =0 (0)u| + Al(t2,55)(c) | o € P(s1)}
sup{|4 — o(0)w| + ALe(t5,55)](0") | o € P(s1)}

max{[e](s1), [-e](s1), [~](s1)}

[o(t3,55)[(0 =51 > 5o > 55 > 5p--+) =

inf{|15 — o(0)w| + A[e(ts,55)](c) | o € P(s2)}
lo(t3,55)](s2) =max { sup{|15 — o(0)w| + A[p(ts,54)](c) | o € P(s2)}
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Summary / Status

Outlined a general frame-work for quantitative analysis

including:

@ trace inclusion / equality
o (Bi)simulation

@ Results on mutually, topologically inequivalence, and

@ A generalized result on the relationship of (bi)simulation and
language inclusion/equality.

(Decidability of accumulating simulation distance for WTA).

A characterising WCTL logic, with d; trace semantics. (adequate
and expressive).
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Future work

Duality of operators.

A d wCTL path semantics.

A di wCTL path semantics.
@ Maybe d» wCTL path semantics.

Computability and Complexity (especially lower bounds).

Continuity w.r.t composition.
@ Game characterizations.

@ ...and more.
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