
Robustness for Timed Automata

Claus Thrane
crt@cs.aau.dk

MT-LAB/Aalborg University

Copenhagen October 24, 2011

2 / 27

This talk is based on the contribution from

Bouyer, Larsen, Markey, Sankur, and Thrane.
Timed automata can always be made implementable.
In Proceedings of CONCUR, 2011.

Larsen, Legay, Traonouez, and Wasowski.
Robust Specification of Real-time Components.
In Proceedings of FORMATS, 2011.

3 / 27

Outline

1 The big picture
Timed Automata
Specifications
Our problem

2 Defining Robustness

3 Addressing the robustness problem
Robust analysis and model-checking
Robust synthesis
Model Transformations

4 Conclusion

The big picture 4 / 27

From specification to design and implementation.

Property & model languages (including relevant operations)

Verification and refinement procedures

Spec Design Impl

Big Design Up Front

The big picture 4 / 27

From specification to design and implementation.

Property & model languages (including relevant operations)

Verification and refinement procedures

+ approximation of environmental information. Especially for real-time
systems using off-the-self hardware.

Spec(1)

Design(1) Impl

Spec(2)

Design(2)

Spec(3)

Design(3)

Environment

Modeling Verication Implementation

not ok
ok

The big picture Timed Automata 5 / 27

Timed Automata

Finite automata + Clocks. [Alur and Dill 1994]

Clocks grow continuously, all at the same rate. They are used to
(de)activate the transitions of the automaton and can be reset when
taking a transition.

Example A

q0start q1 error

a: x ≤ 2 / x := 0

b: y ≥ 2 / y := 0

c: x = 0&y ≥ 2

Timed I/O Automata assumes Act = Acti ⊕ Acto

The big picture Timed Automata 6 / 27

Semantics

The semantics of TA

Given a TA A, the the semantics of A is a (timed) transition system JAK
over discrete actions and R≥0.

A trace from JAK

(q0, (x = 0, y = 0))
1.7−−→ (q0, (x = 1.7, y = 1.7))

a−→ (q1, (x = 0, y = 1.7))
0.5−−→ (q1, (x = 0.5, y = 2.2))

b−→ (q0, (x = 0.5, y = 0)) . . .

The semantics of timed automata makes unrealistic assumptions:

Systems have instant reaction time,
a−→ 0.00001−−−−→ b−→.

clocks are infinitely precise. “x ≤ k”.

The big picture Timed Automata 6 / 27

Semantics

The semantics of TA

Given a TA A, the the semantics of A is a (timed) transition system JAK
over discrete actions and R≥0.

A trace from JAK

(q0, (x = 0, y = 0))
1.7−−→ (q0, (x = 1.7, y = 1.7))

a−→ (q1, (x = 0, y = 1.7))
0.5−−→ (q1, (x = 0.5, y = 2.2))

b−→ (q0, (x = 0.5, y = 0)) . . .

The semantics of timed automata makes unrealistic assumptions:

Systems have instant reaction time,
a−→ 0.00001−−−−→ b−→.

clocks are infinitely precise. “x ≤ k”.

The big picture Timed Automata 6 / 27

Semantics

The semantics of TA

Given a TA A, the the semantics of A is a (timed) transition system JAK
over discrete actions and R≥0.

A trace from JAK

(q0, (x = 0, y = 0))
1.7−−→ (q0, (x = 1.7, y = 1.7))

a−→ (q1, (x = 0, y = 1.7))
0.5−−→ (q1, (x = 0.5, y = 2.2))

b−→ (q0, (x = 0.5, y = 0)) . . .

The semantics of timed automata makes unrealistic assumptions:

Systems have instant reaction time,
a−→ 0.00001−−−−→ b−→.

clocks are infinitely precise. “x ≤ k”.

The big picture Timed Automata 7 / 27

Interpreting TAs as they would be executed!

Our environment may induce (minor) perturbations in behavior, since:

Digital clock suffers from drift and finite precision.

Digital hardware has finite execution speed.

Realistic semantics is considered: e.g. the Almost-Asap [Raskin et.al.] or

Enlarged semantics: JA∆K
For a TA A, we relax all constraints into: x ≤ k+∆ and x ≥ k−∆. for
arbitrarily small ∆ > 0.

in case of I/O invariants and output is enlarged and input is restricted.

Sampling semantics JAK
1
k

Project JAK to 1
kN for a given positive number k.

The big picture Timed Automata 7 / 27

Interpreting TAs as they would be executed!

Our environment may induce (minor) perturbations in behavior, since:

Digital clock suffers from drift and finite precision.

Digital hardware has finite execution speed.

Realistic semantics is considered: e.g. the Almost-Asap [Raskin et.al.] or

Enlarged semantics: JA∆K
For a TA A, we relax all constraints into: x ≤ k+∆ and x ≥ k−∆. for
arbitrarily small ∆ > 0.

in case of I/O invariants and output is enlarged and input is restricted.

Sampling semantics JAK
1
k

Project JAK to 1
kN for a given positive number k.

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Timed Automata 8 / 27

Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

1−∆≤y≤η+∆

y :=0

x≤2+∆, x :=0

y≥2−∆, y :=0

x≤∆
2−∆≤y≤2+∆

x :=0

x

y

The big picture Specifications 9 / 27

Specification and Verification with Tools support

Useful analysis implemented in e.g. Uppaal and ECDAR

refinement relation: S ≤ T
(defined by an alternating timed simulation).

satisfaction relation: I sat S iff I ≤ S
parallel composition operator: S ‖ T
conjunction operator: S ∧ T
quotient operator: S T

and

Timed CTL model-checking: A |= φ

and more ...

The big picture Specifications 10 / 27

Model-checking for perturbed systems

Safety.

Linear properties.

Branching properties.

Implementation verification and Refinement

Classical model-checking

Given A and a property P, does A satisfy P? If it does, we write A |= P.

Robust model-checking

Given A and a property P, does JAKδ satisfy P for some δ > 0?
If it does, we write A |≡ P and say that A robustly satisfies P.

The big picture Our problem 11 / 27

Our problem

Modeling Verication Implementation

not ok
ok

Question: does the classical approach suffice? Does A |= P imply A |≡ P?

The big picture Our problem 11 / 27

Our problem

Modeling Verification Implementation

not ok

ok

Question: does the classical approach suffice? Does A |= P imply A |≡ P?
No! There exists automata A such that Reach(JAK) (Reach(JAKδ)
for any δ > 0. (previous slide).

The big picture Our problem 11 / 27

Our problem

Modeling Verification Implementation

not ok

ok

Question: does the classical approach suffice? Does A |= P imply A |≡ P?
No! There exists automata A such that Reach(JAK) (Reach(JAKδ)
for any δ > 0. (previous slide).

So now what?

Give up?

Consider only timed automata, which are already robust?

Can we impose robustness?

The big picture Our problem 12 / 27

Given a Spec/Design A

Approximate: Strengthen
the model. Such that all be-
havior is (almost) good.

Exact: Synthesize an imple-
mentation, forcing good be-
havior.

Defining Robustness 13 / 27

1 The big picture
Timed Automata
Specifications
Our problem

2 Defining Robustness

3 Addressing the robustness problem
Robust analysis and model-checking
Robust synthesis
Model Transformations

4 Conclusion

Defining Robustness 14 / 27

Preserving behavior

Equivalent sets of reachable locations

Language inclusion/equivalence

Simulation and Refinement (alternating simulation)

Bisimulation

.. and so on

We are looking to relate behaviors

Given a timed (I/O) automaton A:

JAK R JA∆K

Defining Robustness 15 / 27

Notions considered

It’s application specific! Given ∆ > 0, a timed automaton A is

safety-robust [Puri’98]

if A has the same set of reachable locations as A∆

∆-robust consistent

if there exists and implementation I s.t. I∆ ≤ A

timed-action (strong timed) bisimulaton-robust

if A ≈ε A∆ (resp. A ∼ε A∆) for some ε > 0

All of these have very natural game characterizations!

Defining Robustness 16 / 27

Refinement (≤)

And implementation I is deterministic, input-enabled, and is output
urgency and allows independent progress.

A specification

y ≤ 6

coin?
y = 0

cof!
y ≥ 4

tea!

coin?

tea!
y ≥ 2

Machine

coin coff tea

An impl

y ≤ 5

y ≤ 10

coin?
y = 0

cof!
y ≥ 5

coin?

tea!
y ≥ 10
y = 0

Machine

coin coff tea

Addressing the robustness problem 17 / 27

1 The big picture
Timed Automata
Specifications
Our problem

2 Defining Robustness

3 Addressing the robustness problem
Robust analysis and model-checking
Robust synthesis
Model Transformations

4 Conclusion

Addressing the robustness problem Robust analysis and model-checking 18 / 27

Background: Robust model-checking

Robust model-checking algorithms for:
- Reachability properties,

[Puri’98], [De Wulf, Doyen, Markey, Raskin ’04].
- LTL properties,

[Bouyer, Markey, Reynier ’06].
- a fragment of MTL

[Bouyer, Markey, Reynier ’08].

Addressing the robustness problem Robust synthesis 19 / 27

Finding robust implementations: Robust timed games

A TIOA A defines a timed game. Let f be a strategy for output:

we build a TIOA Af , that represents the syntactic outcome of f

dAf eo∆ is the perturbation of the outcome for player o.

∆-robust strategy

f is a ∆-robust winning strategy for a condition W iff

Runs(dAf eo∆) ⊆W

Addressing the robustness problem Robust synthesis 20 / 27

Solving robust timed games

A syntactic transformation:

A A∆
rob

Theorem

If

∃f , winning strategy in the robust game (A∆
rob,W),

then

∃f ′, ∆-robust winning strategy in the game (A,W).

and f ′ can be obtained from f .

Addressing the robustness problem Robust synthesis 21 / 27

Robust consistency game

Safety objective: Output must avoid the set of inconsistent states errS∆

Solve the game (S,WSo(errS∆)):

1 determine a robust strategy f ,

2 build from f an implementation If .

Theorem

If is a robust implementation of S

Addressing the robustness problem Robust synthesis 22 / 27

Composition of robust implementations

Independent implementation is also possible in the robust case:

Property

If

I sat∆ S and J sat∆ T ,

then

I ‖ J sat∆ S ‖ T .

Addressing the robustness problem Model Transformations 23 / 27

Using Approximation

Given a timed automaton A, construct A′ such that

JAK has the same behaviour as JA′K,
A′ is robust, i.e. JA′K has approximately the same behaviour as
JA′Kδ, for some δ > 0.

Notice that in the former example, JAKδ doesn’t respect the region
automaton.

x

y

(a) JAK

x

y

(b) JAKδ

Basic idea: Enforce the region automaton: encoding regions in locations + strengthening guards to make behaviour compatible

with the region automaton.

Addressing the robustness problem Model Transformations 24 / 27

Automaton made robust

Example A

x≤3 y≤2 x≤3 x≤1
y=1

y :=0

x≤2,x :=0

y≥2,y :=0

x=0,y=2
x :=0

x≤3
x=0,y=0

y≤2
x=1,y=0

x≤3
x=0,y=0

x≤3
x=0,0≤y≤1

x≤3
x=0,y=1

x≤3
x=0,1≤y≤2

y≤2
x=2,y=0

y≤2
0≤x≤1,y=0

y≤2
x=1,y=0

y=1∧x=1∧y=1
y :=0

x≤2∧x=1∧y=0
x :=0

x≤2∧1≤x≤2∧0≤y≤1
x :=0

x≤2∧x=2∧y=1
x :=0

x≤2∧x≥2∧y≥1
x :=0

y≥2∧x=2∧y=2
y :=0

y≥2∧0≤x≤1∧y=2
y :=0

y≥2∧x=1∧y=2
y :=0

Addressing the robustness problem Model Transformations 25 / 27

Arbitrary close approximations

Given A and granularity η, our construction gives a mixed1 timed
automaton Ãη.

Theorem

For any A,

JAK ≈ε JAηK for all ε > 0,

JAηK ≈η+2δ JAηKδ, for any δ > 0.

- JÃηK preserves all timed branching properties.

- J(̃Aη)∆K satisfies almost the same timed branching properties (in TCTL)

1that uses both open and closed guards such as x ≥ 0 and x < 2

Addressing the robustness problem Model Transformations 26 / 27

Additional properties

JÃK is big, but not too big.

≈ε is sufficient.

≈ε is stronger that safety and untimed CTL.

We can do the same for the sampled semantics.

Conclusion 27 / 27

Conclusion

Two approaches to the robustness question.

If an robust implementation exist, we can compute it.
Otherwise, we can always find a approximation of the spec, in which
any implementation is robust.

There is a lot of tool support which can be reused!

	The big picture
	Timed Automata
	Specifications
	Our problem

	Defining Robustness
	Addressing the robustness problem
	Robust analysis and model-checking
	Robust synthesis
	Model Transformations

	Conclusion

