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From specification to design and implementation.

Property & model languages (including relevant operations)

Verification and refinement procedures

Spec Design Impl

Big Design Up Front
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From specification to design and implementation.

Property & model languages (including relevant operations)

Verification and refinement procedures

+ approximation of environmental information. Especially for real-time
systems using off-the-self hardware.

Spec(1)

Design(1) Impl

Spec(2)

Design(2)

Spec(3)

Design(3)

Environment

Modeling Verication Implementation

not ok
ok
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Timed Automata

Finite automata + Clocks. [Alur and Dill 1994]

Clocks grow continuously, all at the same rate. They are used to
(de)activate the transitions of the automaton and can be reset when
taking a transition.

Example A

q0start q1 error

a: x ≤ 2 / x := 0

b: y ≥ 2 / y := 0

c: x = 0&y ≥ 2

Timed I/O Automata assumes Act = Acti ⊕ Acto
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Semantics

The semantics of TA

Given a TA A, the the semantics of A is a (timed) transition system JAK
over discrete actions and R≥0.

A trace from JAK

(q0, (x = 0, y = 0))
1.7−−→ (q0, (x = 1.7, y = 1.7))

a−→ (q1, (x = 0, y = 1.7))
0.5−−→ (q1, (x = 0.5, y = 2.2))

b−→ (q0, (x = 0.5, y = 0)) . . .

The semantics of timed automata makes unrealistic assumptions:

Systems have instant reaction time,
a−→ 0.00001−−−−→ b−→.

clocks are infinitely precise. “x ≤ k”.
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Interpreting TAs as they would be executed!

Our environment may induce (minor) perturbations in behavior, since:

Digital clock suffers from drift and finite precision.

Digital hardware has finite execution speed.

Realistic semantics is considered: e.g. the Almost-Asap [Raskin et.al.] or

Enlarged semantics: JA∆K
For a TA A, we relax all constraints into: x ≤ k+∆ and x ≥ k−∆. for
arbitrarily small ∆ > 0.

in case of I/O invariants and output is enlarged and input is restricted.

Sampling semantics JAK
1
k

Project JAK to 1
kN for a given positive number k.
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Exact semantics versus Enlarged semantics

Example [Puri’98: Dynamical properties of timed automata]

x≤3 y≤2 x≤3 x≤1

y=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0,y=2
x :=0

x

y
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Specification and Verification with Tools support

Useful analysis implemented in e.g. Uppaal and ECDAR

refinement relation: S ≤ T
(defined by an alternating timed simulation).

satisfaction relation: I sat S iff I ≤ S
parallel composition operator: S ‖ T
conjunction operator: S ∧ T
quotient operator: S  T

and

Timed CTL model-checking: A |= φ

and more ...
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Model-checking for perturbed systems

Safety.

Linear properties.

Branching properties.

Implementation verification and Refinement

Classical model-checking

Given A and a property P, does A satisfy P? If it does, we write A |= P.

Robust model-checking

Given A and a property P, does JAKδ satisfy P for some δ > 0?
If it does, we write A |≡ P and say that A robustly satisfies P.
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Our problem

Modeling Verication Implementation

not ok
ok

Question: does the classical approach suffice? Does A |= P imply A |≡ P?
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Our problem

Modeling Verification Implementation

not ok

ok

Question: does the classical approach suffice? Does A |= P imply A |≡ P?
No! There exists automata A such that Reach(JAK) ( Reach(JAKδ)
for any δ > 0. (previous slide).
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Our problem

Modeling Verification Implementation

not ok

ok

Question: does the classical approach suffice? Does A |= P imply A |≡ P?
No! There exists automata A such that Reach(JAK) ( Reach(JAKδ)
for any δ > 0. (previous slide).

So now what?

Give up?

Consider only timed automata, which are already robust?

Can we impose robustness?
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Given a Spec/Design A

Approximate: Strengthen
the model. Such that all be-
havior is (almost) good.

Exact: Synthesize an imple-
mentation, forcing good be-
havior.
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Preserving behavior

Equivalent sets of reachable locations

Language inclusion/equivalence

Simulation and Refinement (alternating simulation)

Bisimulation

.. and so on

We are looking to relate behaviors

Given a timed (I/O) automaton A:

JAK R JA∆K
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Notions considered

It’s application specific! Given ∆ > 0, a timed automaton A is

safety-robust [Puri’98]

if A has the same set of reachable locations as A∆

∆-robust consistent

if there exists and implementation I s.t. I∆ ≤ A

timed-action (strong timed) bisimulaton-robust

if A ≈ε A∆ (resp. A ∼ε A∆) for some ε > 0

All of these have very natural game characterizations!
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Refinement (≤)

And implementation I is deterministic, input-enabled, and is output
urgency and allows independent progress.

A specification

y ≤ 6

coin?
y = 0

cof!
y ≥ 4

tea!

coin?

tea!
y ≥ 2

Machine

coin coff tea

An impl

y ≤ 5

y ≤ 10

coin?
y = 0

cof!
y ≥ 5

coin?

tea!
y ≥ 10
y = 0

Machine

coin coff tea
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Background: Robust model-checking

Robust model-checking algorithms for:
- Reachability properties,

[Puri’98], [De Wulf, Doyen, Markey, Raskin ’04].
- LTL properties,

[Bouyer, Markey, Reynier ’06].
- a fragment of MTL

[Bouyer, Markey, Reynier ’08].
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Finding robust implementations: Robust timed games

A TIOA A defines a timed game. Let f be a strategy for output:

we build a TIOA Af , that represents the syntactic outcome of f

dAf eo∆ is the perturbation of the outcome for player o.

∆-robust strategy

f is a ∆-robust winning strategy for a condition W iff

Runs(dAf eo∆) ⊆W
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Solving robust timed games

A syntactic transformation:

A A∆
rob

Theorem

If

∃f , winning strategy in the robust game (A∆
rob,W ),

then

∃f ′, ∆-robust winning strategy in the game (A,W ).

and f ′ can be obtained from f .
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Robust consistency game

Safety objective: Output must avoid the set of inconsistent states errS∆

Solve the game (S,WSo(errS∆)):

1 determine a robust strategy f ,

2 build from f an implementation If .

Theorem

If is a robust implementation of S
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Composition of robust implementations

Independent implementation is also possible in the robust case:

Property

If

I sat∆ S and J sat∆ T ,

then

I ‖ J sat∆ S ‖ T .
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Using Approximation

Given a timed automaton A, construct A′ such that

JAK has the same behaviour as JA′K,
A′ is robust, i.e. JA′K has approximately the same behaviour as
JA′Kδ, for some δ > 0.

Notice that in the former example, JAKδ doesn’t respect the region
automaton.

x

y

(a) JAK

x

y

(b) JAKδ

Basic idea: Enforce the region automaton: encoding regions in locations + strengthening guards to make behaviour compatible

with the region automaton.



Addressing the robustness problem Model Transformations 24 / 27

Automaton made robust

Example A

x≤3 y≤2 x≤3 x≤1
y=1

y :=0

x≤2,x :=0

y≥2,y :=0

x=0,y=2
x :=0

x≤3
x=0,y=0

y≤2
x=1,y=0

x≤3
x=0,y=0

x≤3
x=0,0≤y≤1

x≤3
x=0,y=1

x≤3
x=0,1≤y≤2

y≤2
x=2,y=0

y≤2
0≤x≤1,y=0

y≤2
x=1,y=0

y=1∧x=1∧y=1
y :=0

x≤2∧x=1∧y=0
x :=0

x≤2∧1≤x≤2∧0≤y≤1
x :=0

x≤2∧x=2∧y=1
x :=0

x≤2∧x≥2∧y≥1
x :=0

y≥2∧x=2∧y=2
y :=0

y≥2∧0≤x≤1∧y=2
y :=0

y≥2∧x=1∧y=2
y :=0



Addressing the robustness problem Model Transformations 25 / 27

Arbitrary close approximations

Given A and granularity η, our construction gives a mixed1 timed
automaton Ãη.

Theorem

For any A,

JAK ≈ε JAηK for all ε > 0,

JAηK ≈η+2δ JAηKδ, for any δ > 0.

- JÃηK preserves all timed branching properties.

- J(̃Aη)∆K satisfies almost the same timed branching properties (in TCTL)

1that uses both open and closed guards such as x ≥ 0 and x < 2
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Additional properties

JÃK is big, but not too big.

≈ε is sufficient.

≈ε is stronger that safety and untimed CTL.

We can do the same for the sampled semantics.
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Conclusion

Two approaches to the robustness question.

If an robust implementation exist, we can compute it.
Otherwise, we can always find a approximation of the spec, in which
any implementation is robust.

There is a lot of tool support which can be reused!
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