Robustness for Timed Automata

Claus Thrane crt@cs.aau.dk

MT-LAB/Aalborg University

Copenhagen October 24, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

This talk is based on the contribution from

🍉 Bouyer, Larsen, Markey, Sankur, and Thrane. Timed automata can always be made implementable. In Proceedings of CONCUR, 2011.

📎 Larsen, Legay, Traonouez, and Wasowski. Robust Specification of Real-time Components. In Proceedings of FORMATS, 2011.

Outline

- The big picture
 - Timed Automata
 - Specifications
 - Our problem

2 Defining Robustness

- 3 Addressing the robustness problem
 - Robust analysis and model-checking
 - Robust synthesis
 - Model Transformations

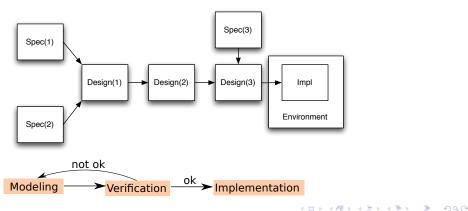
From specification to design and implementation.

- Property & model languages (including relevant operations)
- Verification and refinement procedures

Big Design Up Front

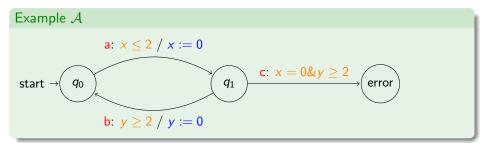
From specification to design and implementation.

- Property & model languages (including relevant operations)
- Verification and refinement procedures
- + approximation of environmental information. Especially for real-time systems using off-the-self hardware.



Timed Automata

- Finite automata + Clocks. [Alur and Dill 1994]
- Clocks grow continuously, all at the same rate. They are used to (de)activate the transitions of the automaton and can be reset when taking a transition.



Timed I/O Automata assumes $Act = Act_i \oplus Act_o$

Semantics

The semantics of TA

Given a TA \mathcal{A} , the **the semantics** of \mathcal{A} is a (timed) transition system $\llbracket \mathcal{A} \rrbracket$ over *discrete actions* and $\mathbb{R}_{\geq 0}$.

A trace from $\llbracket \mathcal{A} rbracket$

$$\begin{array}{c} (q_0, (x = 0, y = 0)) \xrightarrow{1.7} (q_0, (x = 1.7, y = 1.7)) \xrightarrow{a} (q_1, (x = 0, y = 1.7)) \\ \xrightarrow{0.5} (q_1, (x = 0.5, y = 2.2)) \xrightarrow{b} (q_0, (x = 0.5, y = 0)) \dots \end{array}$$

The semantics of timed automata makes unrealistic assumptions:

- Systems have instant reaction time,
- clocks are infinitely precise. $x \leq k''$.

$$\xrightarrow{a} \xrightarrow{0.00001} \xrightarrow{b}$$
.

Semantics

The semantics of TA

Given a TA \mathcal{A} , the **the semantics** of \mathcal{A} is a (timed) transition system $\llbracket \mathcal{A} \rrbracket$ over *discrete actions* and $\mathbb{R}_{\geq 0}$.

A trace from $[\![\mathcal{A}]\!]$

$$(q_0, (x = 0, y = 0)) \xrightarrow{1.7} (q_0, (x = 1.7, y = 1.7)) \xrightarrow{a} (q_1, (x = 0, y = 1.7))$$

$$\xrightarrow{0.5} (q_1, (x = 0.5, y = 2.2)) \xrightarrow{b} (q_0, (x = 0.5, y = 0)) \dots$$

The semantics of timed automata makes unrealistic assumptions:

- Systems have instant reaction time,
- clocks are infinitely precise. $x \leq k''$.

$$\xrightarrow{a} 0.00001 \xrightarrow{b} .$$

Semantics

The semantics of TA

Given a TA \mathcal{A} , the **the semantics** of \mathcal{A} is a (timed) transition system $\llbracket \mathcal{A} \rrbracket$ over *discrete actions* and $\mathbb{R}_{\geq 0}$.

A trace from $\llbracket \mathcal{A} rbrace$

$$\begin{array}{c} (q_0, (x = 0, y = 0)) \xrightarrow{1.7} (q_0, (x = 1.7, y = 1.7)) \xrightarrow{a} (q_1, (x = 0, y = 1.7)) \\ \xrightarrow{0.5} (q_1, (x = 0.5, y = 2.2)) \xrightarrow{b} (q_0, (x = 0.5, y = 0)) \dots \end{array}$$

The semantics of timed automata makes unrealistic assumptions:

- Systems have instant reaction time,
- clocks are infinitely precise. $x \leq k''$.

$$\xrightarrow{a} \xrightarrow{0.00001} \xrightarrow{b}$$
.

Interpreting TAs as they would be executed!

Our environment may induce (minor) perturbations in behavior, since:

- Digital clock suffers from drift and finite precision.
- Digital hardware has finite execution speed.

Realistic semantics is considered: e.g. the Almost-Asap [Raskin et.al.] or

Enlarged semantics: $\llbracket A_{\Delta} \rrbracket$

For a TA A, we relax all constraints into: $x \le k + \Delta$ and $x \ge k - \Delta$. for arbitrarily small $\Delta > 0$.

in case of I/O invariants and output is enlarged and input is restricted.

Sampling semantics $\llbracket \mathcal{A} \rrbracket^{\frac{1}{k}}$

Project $[\mathcal{A}]$ to $\frac{1}{k}\mathbb{N}$ for a given positive number k.

Interpreting TAs as they would be executed!

Our environment may induce (minor) perturbations in behavior, since:

- Digital clock suffers from drift and finite precision.
- Digital hardware has finite execution speed.

Realistic semantics is considered: e.g. the Almost-ASAP [Raskin et.al.] or

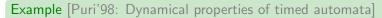
Enlarged semantics: $\llbracket \mathcal{A}_{\Delta} \rrbracket$

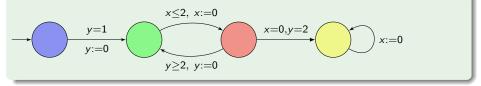
For a TA A, we relax all constraints into: $x \le k + \Delta$ and $x \ge k - \Delta$. for arbitrarily small $\Delta > 0$.

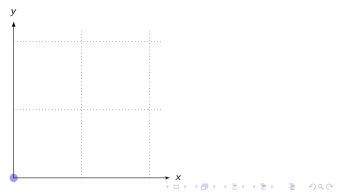
in case of I/O invariants and output is enlarged and input is restricted.

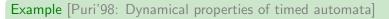
Sampling semantics $\llbracket \mathcal{A} \rrbracket^{\frac{1}{k}}$

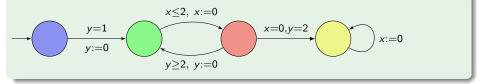
Project $\llbracket \mathcal{A} \rrbracket$ to $\frac{1}{k} \mathbb{N}$ for a given positive number k.

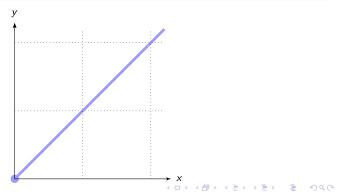


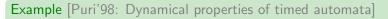


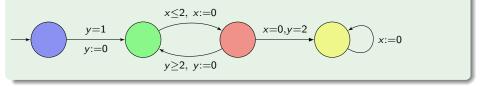


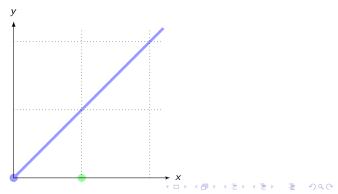


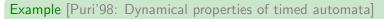


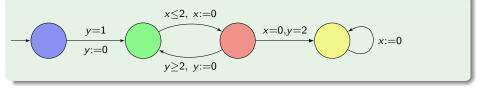


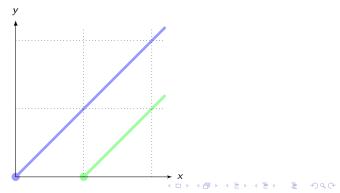


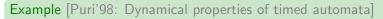


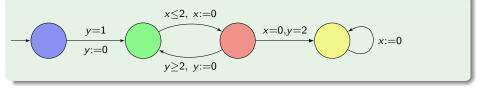


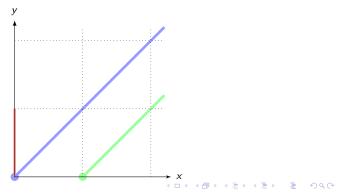


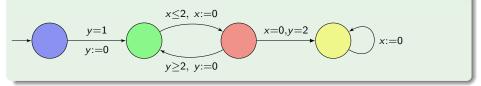


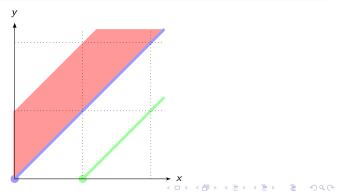


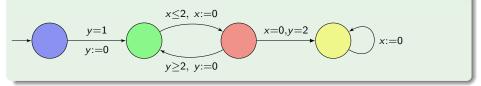


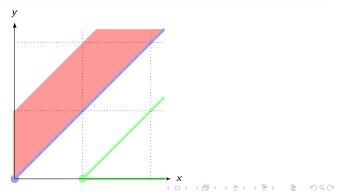


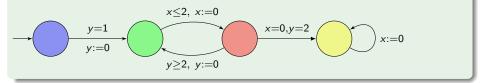


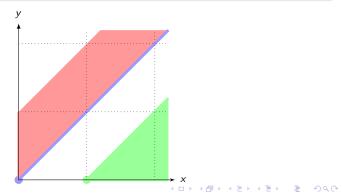


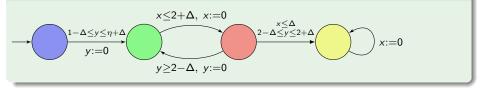


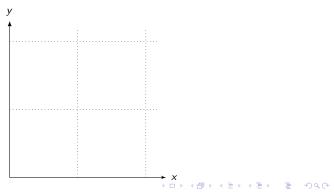


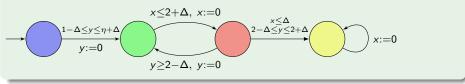


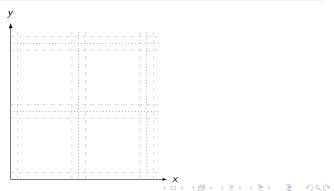


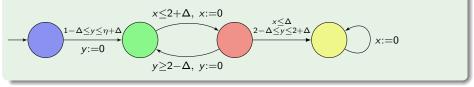


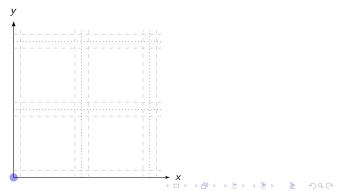


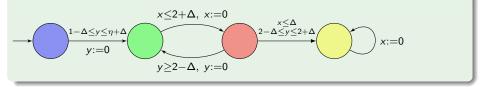


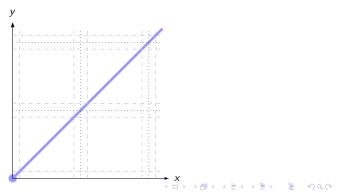


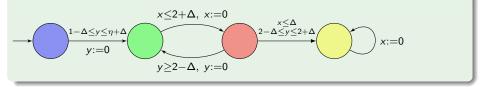


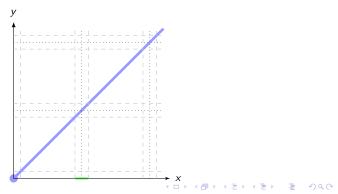


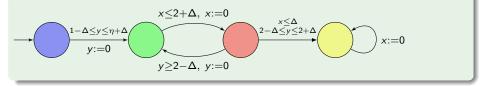


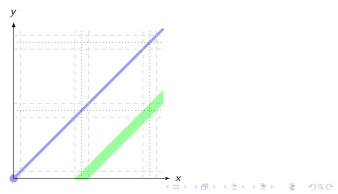


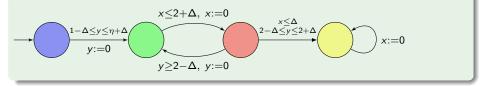


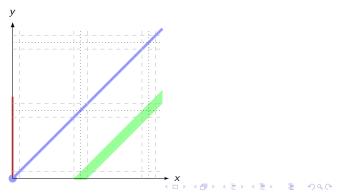


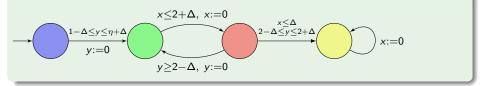


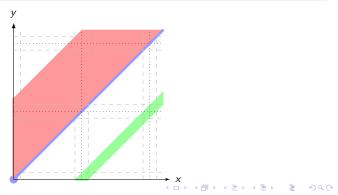


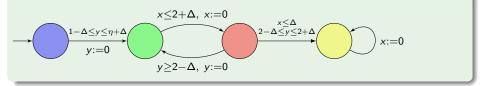


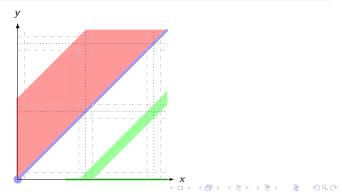


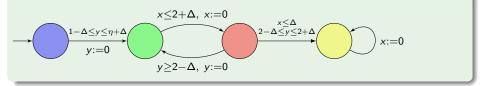


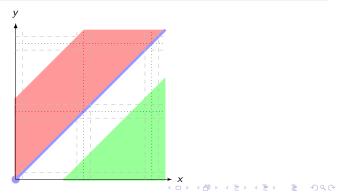


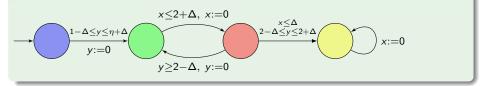


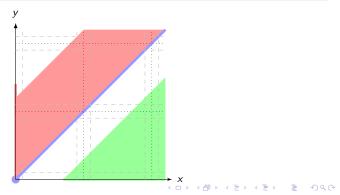


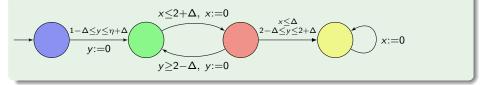


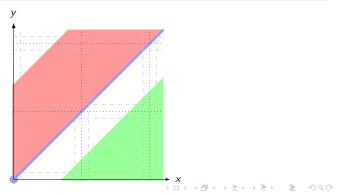


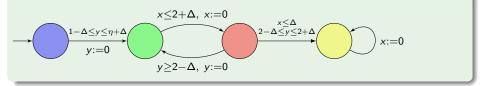


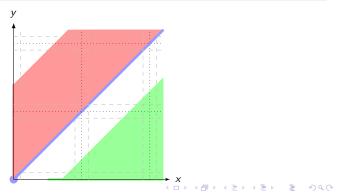


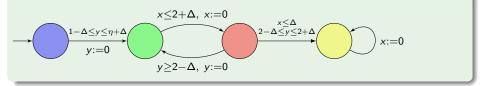


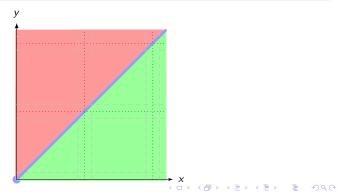


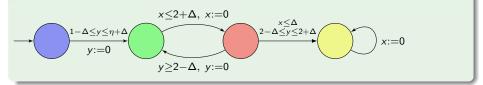


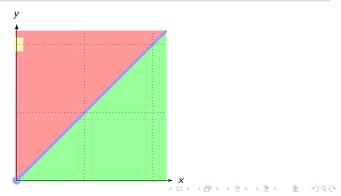












Specification and Verification with Tools support

Useful analysis implemented in e.g. Uppaal and ECDAR

- refinement relation: $S \leq T$ (defined by an alternating timed simulation).
- satisfaction relation: \mathcal{I} sat \mathcal{S} iff $\mathcal{I} \leq \mathcal{S}$
- parallel composition operator: $\mathcal{S} \parallel \mathcal{T}$
- conjunction operator: $\mathcal{S} \wedge \mathcal{T}$
- quotient operator: $\mathcal{S} \setminus \mathcal{T}$

and

• Timed CTL model-checking: $\mathcal{A} \models \phi$

and more ...

Model-checking for perturbed systems

- Safety.
- Linear properties.
- Branching properties.
- Implementation verification and Refinement

Classical model-checking

Given A and a property P, does A satisfy P? If it does, we write $A \models P$.

Robust model-checking

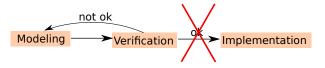
Given \mathcal{A} and a property P, does $\llbracket \mathcal{A} \rrbracket_{\delta}$ satisfy P for some $\delta > 0$? If it does, we write $\mathcal{A} \models P$ and say that \mathcal{A} robustly satisfies P.

Question: does the classical approach suffice? Does $\mathcal{A} \models P$ imply $\mathcal{A} \models P$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question: does the classical approach suffice? Does $\mathcal{A} \models P$ imply $\mathcal{A} \models P$? **No!** There exists automata \mathcal{A} such that $\operatorname{REACH}(\llbracket \mathcal{A} \rrbracket) \subsetneq \operatorname{REACH}(\llbracket \mathcal{A} \rrbracket_{\delta})$ for any $\delta > 0$. (previous slide).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

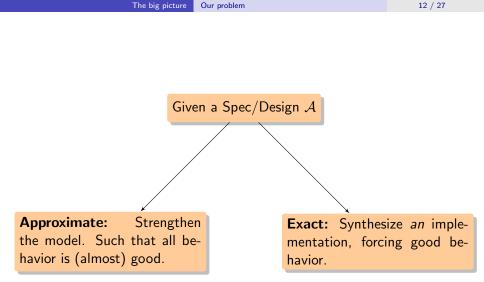


Question: does the classical approach suffice? Does $\mathcal{A} \models P$ imply $\mathcal{A} \models P$? **No!** There exists automata \mathcal{A} such that $\operatorname{REACH}(\llbracket \mathcal{A} \rrbracket) \subsetneq \operatorname{REACH}(\llbracket \mathcal{A} \rrbracket_{\delta})$ for any $\delta > 0$. (previous slide).

So now what?

- Give up?
- Consider only timed automata, which are already robust?
- Can we impose robustness?

11 / 27



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Timed Automata
- Specifications
- Our problem

Defining Robustness

- 3 Addressing the robustness problem
 - Robust analysis and model-checking
 - Robust synthesis
 - Model Transformations

Conclusion

Preserving behavior

- Equivalent sets of reachable locations
- Language inclusion/equivalence
- Simulation and Refinement (alternating simulation)
- Bisimulation
- .. and so on

We are looking to relate behaviors

```
Given a timed (I/O) automaton \mathcal{A}:
```

 $[\![\mathcal{A}]\!] \mathrel{\mathcal{R}} [\![\mathcal{A}_{\Delta}]\!]$

Notions considered

It's application specific! Given $\Delta>$ 0, a timed automaton ${\cal A}$ is

safety-robust [Puri'98]

if ${\mathcal A}$ has the same set of reachable locations as ${\mathcal A}_\Delta$

Δ -robust consistent

if there exists and implementation $\mathcal I$ s.t. $\mathcal I_\Delta \leq \mathcal A$

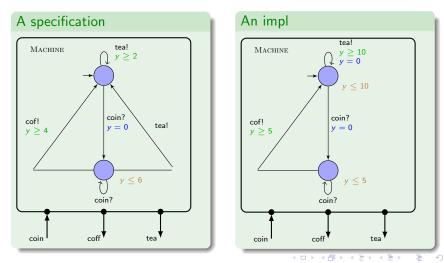
timed-action (strong timed) bisimulaton-robust

 $\text{if } \mathcal{A} \approx_{\epsilon} \mathcal{A}_{\Delta} \ (\text{resp. } \mathcal{A} \sim_{\epsilon} \mathcal{A}_{\Delta}) \text{ for some } \epsilon > 0 \\$

All of these have very natural game characterizations!

Refinement (\leq)

And implementation ${\cal I}$ is deterministic, input-enabled, and is output urgency and allows independent progress.



- Timed Automata
- Specifications
- Our problem

2 Defining Robustness

3 Addressing the robustness problem

- Robust analysis and model-checking
- Robust synthesis
- Model Transformations

Conclusion

Background: Robust model-checking

Robust model-checking algorithms for:

- Reachability properties, [Puri'98], [De Wulf, Doyen, Markey, Raskin '04].

- LTL properties,

[Bouyer, Markey, Reynier '06].

- a fragment of MTL

[Bouyer, Markey, Reynier '08].

Finding robust implementations: Robust timed games

A TIOA \mathcal{A} defines a timed game. Let f be a strategy for output:

- we build a TIOA \mathcal{A}_{f} , that represents the syntactic outcome of f
- $\lceil \mathcal{A}_f \rceil^o_\Delta$ is the perturbation of the outcome for player *o*.

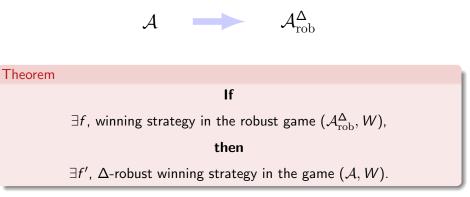
 Δ -robust strategy

f is a Δ -robust winning strategy for a condition W iff

 $\mathsf{Runs}(\lceil \mathcal{A}_f \rceil^o_\Delta) \subseteq W$

Solving robust timed games

A syntactic transformation:



and f' can be obtained from f.

Robust consistency game

Safety objective: Output must avoid the set of inconsistent states err_{Δ}^{S}

Solve the game $(S, WS^{o}(err_{\Delta}^{S}))$:

- determine a robust strategy f,
- 2 build from f an implementation \mathcal{I}_f .

Theorem

$\mathcal{I}_{\textit{f}}$ is a robust implementation of $\mathcal S$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Composition of robust implementations

Independent implementation is also possible in the robust case:

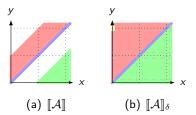
Property	h
If	I
${\mathcal I} \operatorname{sat}_\Delta {\mathcal S}$ and ${\mathcal J} \operatorname{sat}_\Delta {\mathcal T}$,	l
then	I
$\mathcal{I} \parallel \mathcal{J} \operatorname{sat}_{\Delta} \mathcal{S} \parallel \mathcal{T}.$	J

Using Approximation

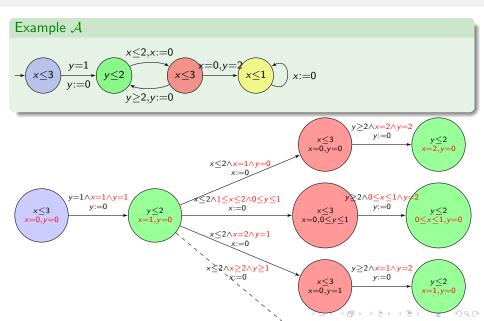
Given a timed automaton $\mathcal A,$ construct $\mathcal A'$ such that

- $\llbracket \mathcal{A} \rrbracket$ has the same behaviour as $\llbracket \mathcal{A}' \rrbracket$,
- \mathcal{A}' is robust, i.e. $[\![\mathcal{A}']\!]$ has approximately the same behaviour as $[\![\mathcal{A}']\!]_{\delta}$, for some $\delta > 0$.

Notice that in the former example, $[\![\mathcal{A}]\!]_{\delta}$ doesn't respect the region automaton.



Automaton made robust



Arbitrary close approximations

Given \mathcal{A} and granularity η , our construction gives a **mixed**¹ timed automaton $\widetilde{\mathcal{A}}_{\eta}$.

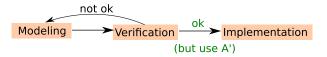
Theorem

For any $\mathcal{A}_{\text{\tiny r}}$

•
$$\llbracket \mathcal{A} \rrbracket \approx_{\epsilon} \llbracket \overline{\mathcal{A}_{\eta}} \rrbracket$$
 for all $\epsilon > 0$,

•
$$\llbracket \overline{\mathcal{A}_{\eta}} \rrbracket \approx_{\eta+2\delta} \llbracket \overline{\mathcal{A}_{\eta}} \rrbracket_{\delta}$$
, for any $\delta > 0$.

- $[\widetilde{\mathcal{A}_{\eta}}]$ preserves all timed branching properties.
- $\llbracket (\widetilde{\mathcal{A}_{\eta}})_{\Delta} \rrbracket$ satisfies **almost** the same timed branching properties (in TCTL)



Additional properties

- $[\![\widetilde{\mathcal{A}}]\!]$ is big, but not too big.
- \approx_{ϵ} is sufficient.
- \approx_{ϵ} is *stronger* that safety and untimed CTL.
- We can do the same for the sampled semantics.

26 / 27

Conclusion

- Two approaches to the robustness question.
 - If an robust implementation exist, we can compute it.
 - Otherwise, we can always find a approximation of the *spec*, in which any implementation is robust.

27 / 27

• There is a lot of tool support which can be reused!