Weighted Bisimulation Games

Uli Fahrenberg Kim G. Larsen Claus Thrane

Department of Computer Science Aalborg University Denmark

GASICS, May 12. 2010

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Results				

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Results				

Bisimulation is polynomial time equivalent to safety games.

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Results				

Bisimulation is polynomial time equivalent to safety games.

Theorem

Weignted Bisimulation is polynomial time equivalent to discounted payoff games.

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Results				

Bisimulation is polynomial time equivalent to safety games.

Theorem

Weignted Bisimulation is polynomial time equivalent to discounted payoff games.

Theorem

Weighted Bisimulation is in NP \cap co - NP.

3 Equivalence between bisimulation and games

- Weighted bisimulation and discounted Games
- **5** Conclusion and future work

Weighted Transition System

Definition

A weighted TS: states S, transitions $\rightarrow \subseteq S \times \Sigma \times \mathbb{R} \times S$

(graph or state machine, if you prefer)

Analysis

Logics, language, (bi)simulation.

Defi	nition: Distances	(values in $\mathbb{R}\cup\{\infty\}$)
	point-wise	accumulating
	$d_L^{\bullet}(\sigma,\tau) = \sup_i \lambda^i \sigma_i - \tau_i $	$d_L^+(\sigma, \tau) = \sum_i \lambda^i \sigma_i - \tau_i $

 $\lambda \in [0, 1]$ is a fixed discounting factor.

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Bisimula	tion			

Definition: Bisimulation

A relation $R \subseteq S \times S$ over (S, Σ, \rightarrow) is a bisimulation relation provided that whenever s R t and $\alpha \in \Sigma$, $c \in \mathbb{R}$ then: • $s \xrightarrow{\alpha,c} s'$ implies, for some $t', t \xrightarrow{\alpha,c} t'$ and s' R t', • $t \xrightarrow{\alpha,c} t'$ implies, for some $s', s \xrightarrow{\alpha,c} s'$ and s' R t',

Definition: Bisimulation

o . . .

A relation $R \subseteq S \times S$ over (S, Σ, \rightarrow) is a bisimulation relation provided that whenever s R t and $\alpha \in \Sigma$, $c \in \mathbb{R}$ then:

•
$$s \xrightarrow{\alpha,c} s'$$
 implies, for some t' , $t \xrightarrow{\alpha,c} t'$ and $s' R t'$,

•
$$t \xrightarrow{\alpha,c} t'$$
 implies, for some s' , $s \xrightarrow{\alpha,c} s'$ and $s' R t'$,

Definition: Weighted Bisimulation

A family of relations $\mathbf{R} = \{R_{\epsilon} \subseteq S \times S \mid \epsilon \ge 0\}$ is an (Acc.) bisim. family provided that for all $(s, t) \in R_{\epsilon} \in \mathbf{R}$:

•
$$s \xrightarrow{\alpha,c} s'$$
, implies $t \xrightarrow{\alpha,d} t'$ with $|c - d| \le \epsilon$ for some $d \in \mathbb{R}_{\le 0}$

(Acc.)

Uli Fahrenberg Kim G. Larsen Claus Thrane Complexity of Bisimulation metrics

Definition: Bisimulation

A relation $R \subseteq S \times S$ over (S, Σ, \rightarrow) is a bisimulation relation provided that whenever s R t and $\alpha \in \Sigma$, $c \in \mathbb{R}$ then:

•
$$s \xrightarrow{\alpha,c} s'$$
 implies, for some t' , $t \xrightarrow{\alpha,c} t'$ and $s' R t'$,

•
$$t \xrightarrow{\alpha,c} t'$$
 implies, for some s' , $s \xrightarrow{\alpha,c} s'$ and $s' R t'$,

Definition: Weighted Bisimulation

A family of relations $\mathbf{R} = \{R_{\epsilon} \subseteq S \times S \mid \epsilon \ge 0\}$ is an (Acc.) bisim. family provided that for all $(s, t) \in R_{\epsilon} \in \mathbf{R}$:

(Acc.)

•
$$s \xrightarrow{\alpha,c} s'$$
, implies $t \xrightarrow{\alpha,d} t'$ with $|c - d| \le \epsilon$ for some $d \in \mathbb{R}_{\le 0}$
and $(s', t') \in R'_{\epsilon} \in \mathbb{R}$ with $\epsilon' \lambda \le \epsilon' |c - d|$,

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Example				

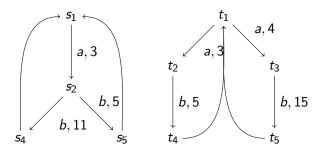


Figure: Example WTS

For which s_1 and t_1 are bisimilar and $s_1 R_{36.9} t_1$

Definition

Given a graph $(V_1 \uplus V_2, E)$ where $E \subseteq V_i \times \Sigma \times V_{i+1 \mod 2}$. A safty game w.r.t a set $B \subseteq V_1$, invites players 1 and 2 to produce positional strategies which avoids indef. (resp. hits once) elements of B.

Definition

Given a graph $(V_1 \uplus V_2, E)$ where $E \subseteq V_i \times \Sigma \times V_{i+1 \mod 2}$. A safty game w.r.t a set $B \subseteq V_1$, invites players 1 and 2 to produce positional strategies which avoids indef. (resp. hits once) elements of B.

Define $W_B \subseteq S_1 \cup S_2$ as the vertices for which player 1 has a winning strategy avoiding B.

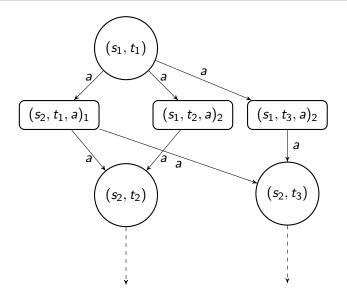
Definition

Given a graph $(V_1 \uplus V_2, E)$ where $E \subseteq V_i \times \Sigma \times V_{i+1 \mod 2}$. A safty game w.r.t a set $B \subseteq V_1$, invites players 1 and 2 to produce positional strategies which avoids indef. (resp. hits once) elements of B.

Define $W_B \subseteq S_1 \cup S_2$ as the vertices for which player 1 has a winning strategy avoiding B.

Definition

A (memory less) positional strategy for player *i* is a map $\sigma: S_i \to Act \times S_{i+1}$, consistent with *E* s.t. $\forall s \in S_i : \sigma(s_i) \in E(s_i)$.



Bisimulation ~>> Safty Game

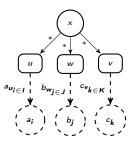
Given (S, Σ, \rightarrow) construct the game $(V_1, V_2, A, \rightarrow)$ such that: • $V_2 = S \times S$ and $V_1 = S \times S \times Act \ \ S \times S \times Act$ • $(s, t) \xrightarrow{\star} (s', t, a)_1$ if $s \xrightarrow{a} s'$ and $(s, t) \xrightarrow{\star} (s, t', a)_2$ if $t \xrightarrow{a} t'$ • $(s, t, a)_1 \xrightarrow{\star} (s, t')$ if $t \xrightarrow{a} t'$ and $(s, t, a)_2 \xrightarrow{\star} (s', t)$ if $s \xrightarrow{a} s'$ Finally $B = \{(s, t, a)_1 \mid t \xrightarrow{a}\} \cup \{(s, t, a)_2 \mid s \xrightarrow{a}\}$

Theorem

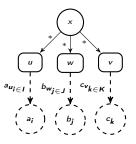
Given states s and t of an LTS, then $s \sim t$ iff $(s, t) \in W_B$ of the corresponding game.

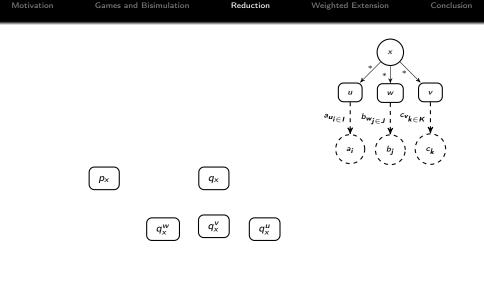
NΛ				
		IV.	tι	n
				п

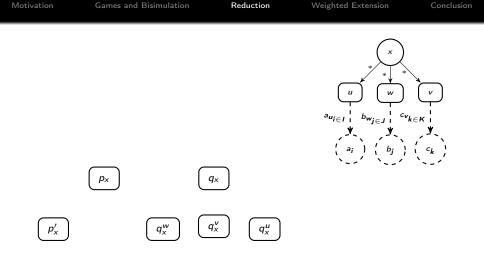
Games and Bisimulation

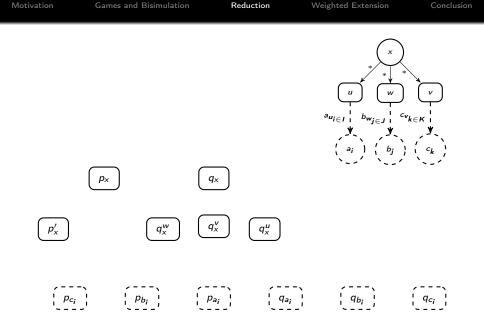


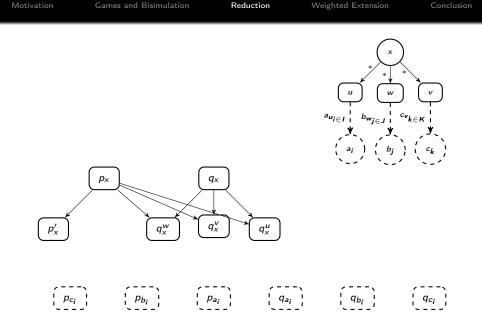
Uli Fahrenberg Kim G. Larsen Claus Thrane Complexity of Bisimulation metrics

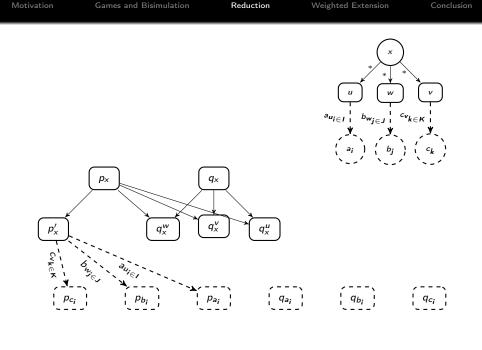


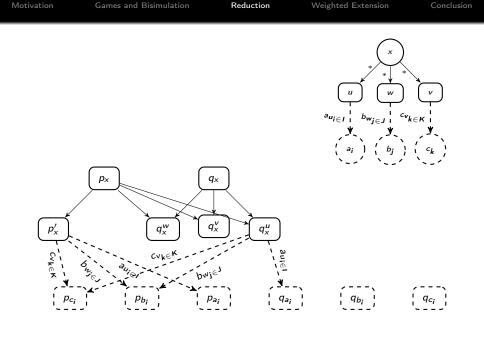


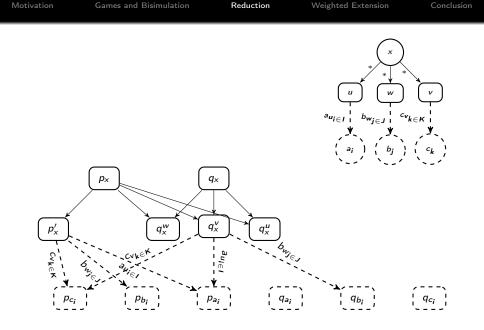


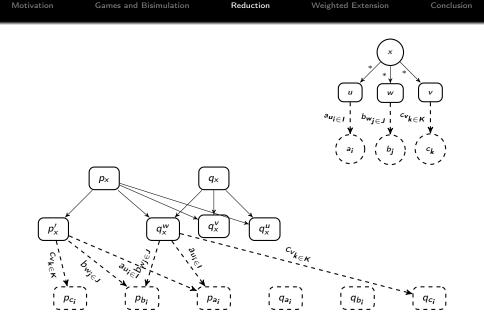












Safty Game ~~> Bisimulation

Given $(V_1, V_2, Act, \rightarrow)$ and $B \subseteq V_1$, construct (S, Σ, \rightarrow) s.t:

• $S = \{p_x, p'_x, q_x \mid x \in V_1\} \cup \{q^u_x \mid x \in V_1, u \in V_2 \land \exists a : x \xrightarrow{a} u\} \cup \{\bot\}$

•
$$\Sigma = \{\tau\} \cup Act \times S_2$$

• \rightarrow contains $p_x \xrightarrow{b} \bot$ if $x \in B$, otherwise if $x \notin B$ • $p_x \xrightarrow{\tau} p'_x$ whenever $x \in S_1$ • $p_x \xrightarrow{\tau} q^u_x$ whenever $x \in S_1 \land \exists \beta.x \xrightarrow{\beta}_1 u$ • $p'_x \xrightarrow{\alpha_u} p_a$ whenever $\exists \beta.x \xrightarrow{\beta}_1 u \land u \xrightarrow{\alpha}_2 a$. • $q_x \xrightarrow{\tau} q^u_x$ whenever $\exists \beta.x \xrightarrow{\beta}_1 u \land u \xrightarrow{\alpha}_2 a$. • $q'_x \xrightarrow{\alpha_u} q_a$ whenever $\exists \beta.x \xrightarrow{\beta}_1 u \land u \xrightarrow{\alpha}_2 a$ • $q''_x \xrightarrow{\alpha_v} p_b$ whenever $\exists \beta.x \xrightarrow{\beta}_1 v \land v \xrightarrow{\alpha}_2 b$ for $(u \neq v)$

Given vertices x and u of a game G, and states p_x , q_x , p'_x , q^u_x in the corresponding LTS constructed from G as above, it holds that:

- $p_x \sim q_x$ iff $x \in W_B$
- $p'_x \sim q^u_x$ iff $u \in W_B$

$$\leftarrow E \triangleq \{(p_x, q_x) \mid x \in W_B\} \cup \{(p'_x, q^u_x) \mid u \in W_B \land \exists b.x \xrightarrow{\beta} 1 u\}$$

is a bisimulation.
$$\Rightarrow W \triangleq \{x \mid p_x \sim q_x\} \cup \{u \mid p'_x \sim q^u_x\} \text{ is a post fixed-point of transformer:}$$

$$W(A) = \{x \in S_1 \mid x \notin B \land \exists \beta \exists u \in A : x \xrightarrow{\beta} 1 u\} \cup$$

$$\{u \in S_2 \mid \forall \beta \forall x : u \xrightarrow{\beta} 2 x \implies x \in A\}$$

Discouted Games

Definition

Given a graph $(V_1 \uplus V_2, E)$ where $E \subseteq V_i \times \Sigma \times V_{i+1 \mod 2}$ and $W : E \to \mathbb{R}$. A discounted payoff game invites players 1 and 2 to produce positional strategies, maximixing (resp. minimizing) the accumulated (discounted) pay-off resulting from the infinite run induced by the respective strategies.

The value vector \vec{x}

Zwick, Paterson

$$x_{i} = \begin{cases} \max_{x_{i} \xrightarrow{\alpha, c} x_{j}} \{c + \lambda x_{j}\} & s_{j} \in V_{1} \\ \min_{x_{i} \xrightarrow{\alpha, c} x_{j}} \{c + \lambda x_{j}\} & s_{j} \in V_{2} \end{cases}$$

(Acc.)

Definition: Weighted Bisimulation

A family of relations $\mathbf{R} = \{R_{\epsilon} \subseteq S \times S \mid \epsilon \ge 0\}$ is an (Acc.) bisim. family provided that for all $(s, t) \in R_{\epsilon} \in \mathbf{R}$:

• $s \xrightarrow{\alpha,c} s'$, implies $t \xrightarrow{\alpha,d} t'$ with $|c - d| \le \epsilon$ for some $d \in \mathbb{R}_{\le 0}$ and $(s', t') \in R'_{\epsilon} \in \mathbb{R}$ with $\epsilon' \lambda \le \epsilon' |c - d|$,

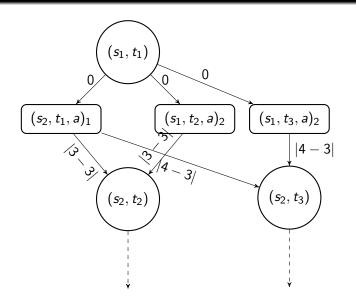
• . . .

Definition: Branching distances are minimal fixed points

$$d_B^+(s,t) = \sup \begin{cases} \sup_{\substack{s \to s' \ t \to t'}} \inf_{\substack{s \to s' \ t \to t'}} |x - y| + \lambda d_B^+(s',t') \\ \sup_{\substack{t \to t' \ s \to s'}} \inf_{\substack{s \to s'}} |x - y| + \lambda d_B^+(s',t') \end{cases}$$

Thrane, Fahrenberg, Larsen

 $d_B^+(s,t) = \min\{\epsilon \mid s \ R_\epsilon \ t\}$

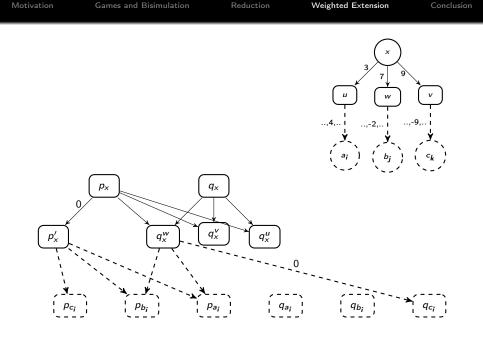


Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion

Givens states s and t of a LTS, and vertex $x_{(s,t)}$ of the discounted game constructed as above.

$$d_B^+(s,t) = x_{(s,t)}$$

where d_B^+ is computed for d.f. λ and the game for $\sqrt{\lambda}$.



Given a game vertex x, and the states p_x , q_x of the LTS constructed as above, then:

$$\vec{x}_x = d^+_B(p_x, q_x)$$

Motivation	Games and Bisimulation	Reduction	Weighted Extension	Conclusion
Conclusion	า			

- Mean-payoff bisimulation.
- Point-wise bisimulation.
- maximum-lead bisimulation.