
Slicing for UPPAAL
Claus Thrane, Uffe Sørensen and Kim G. Larsen

NWPT’08

Modeling Real-Time Systems

2

!

"#
$%
&'
(
)*
%
#
+
),
-
#
%
.%
/
*

!"#$"#"$$% &'()*+,-(./*01,2.3456$% 7

Train-Gate Crossing (Exercise)

River

Crossing

Stopable
Area

[10,20]

[7,15]

[3,5]

"#
$%
&'
(
)*
%
#
+
),
-
#
%
.%
/
*

!"#$"#"$$% &'()*+,-(./*01,2.3456$% %

Train-Gate Modeling

! 01(.,2)3,2'%4,.5

! 1%#+)2*#) 6272892):;,4,$ *#)<=>6?@A2*4B)9

! C&(*#+23(D,2)3,*&2.%1(.21.%1-+E

! C3,2/(),23(+2*)+2.%1(.2.*+)2F2$G#1)*%#+E

Train(const id_t id)

N trains...
Gate

controller

list enqueue()
dequeue()
front()

Communication via channels.

chan appr[N], stop[N], leave[N];

urgent chan go[N];

"#
$%
&'
(
)*
%
#
+
),
-
#
%
.%
/
*

!"#$"#"$$% &'()*+,-(./*01,2.3456$% 8

Train-Gate Crossing

River

Crossing

Stopable
Area

[10,20]

[7,15]

[3,5]

appr[id]! leave[id]!

stop[id]? go[id]?

Specification Language

"#
$%
&'
(
)*
%
#
+
),
-
#
%
.%
/
*

!"#$"#"$$% &'()*+,-(./*01,2.3456$% !!

Logical Specifications

! H(.*4()*%#2I&%;,&)*,+

! I%++*J.:5 K<> P

! 0($,):2I&%;,&)*,+

! "#D(&*(#)5 L<A2P

! I%+E2"#DE5 K<A2P

! M*D,#,++ I&%;,&)*,+

! KD,#)G(..:5 L<> P

! M,(4+)%5 I2" Q

! N%G#4,42M*D,#,++

! M,(4+2)%2O*)3*#5 P "
") Q

C3,2,P;&,++*%#+22P (#42
Q 'G+)2J,2):;,2+($,>2
side effect free>2(#42
,D(.G(),2)%2(2J%%.,(#E

Q#.:2&,$,&,#1,+2)%2
#),/,&2D(&(J.,+>2
1%#+)(#)+>21.%1-+>2(#42
.%1()*%#+ (&,2(..%O,42
R(#42(&&(:+2%$2)3,+,SE

"#
$%
&'
(
)*
%
#
+
),
-
#
%
.%
/
*

!"#$"#"$$% &'()*+,-(./*01,2.3456$% !"

Logical Specifications

! H(.*4()*%#2I&%;,&)*,+

! I%++*J.:5 K<> P

! 0($,):2I&%;,&)*,+

! "#D(&*(#)5 L<A2P

! I%+E2"#DE5 K<A2P

! M*D,#,++ I&%;,&)*,+

! KD,#)G(..:5 LTU2P

! M,(4+)%5 I2" Q

! N%G#4,42M*D,#,++

! M,(4+2)%2O*)3*#5 P "
") Q

Communicating FSA

3

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

Gate Train

Communicating FSA

3

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

Gate Train

TIME!!

ALUR & DILL

UPPAAL

4

Imperative code

5

clock x1, x2, ,xn;

int[0,5] i1, i2, ,in;

const int delay = 5;

int a[4] = {1,8,7,42};

bool b;

struct{int a; int b;}a = {9, 42};

typedef int[1,7] id_t;

if(...){...}

while(...){...}

for(.;.;.){...}

id_t foo(...)
{
 ...
 return ..
}

6

UPPAAL Model

6

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

UPPAAL Model

6

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

UPPAAL Model

6

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[1]?

x>=3
leave[1]!

nrOfCrosses++

appr[1]!
x=0

x>=7
x=0

go[1]?
x=0

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

UPPAAL Model

Motivation

7

Model-checking Timed Automata is PSPACE-Complete

!"
#$
%&
'
()
$
"
*
(+
,
"
$
-$
.
)

CISS

a

cb

1 2

43

M1 M2

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

M1 x M2

!""#$%&'()*+(%),-

./0%).)+(*"#()#)%#%1#&*$2().,

!""#$%&'()*+(%),-

./0%).)+(*"#()#)%#%1#&*$2().,

CompositionState-space explosion problem

We propose

• Static analysis, specifically slicing can be used
on the “hybrid” modeling language of UPPAAL
- to improve the tool’s performance.

8

9

Slicing
Weiser: “a slice corresponds to the mental abstractions

made by people while debugging programs”

Traditionally used for removing irrelevant
components during debugging and testing

• Slicing for TA w. simple data - Janowska and Janowski
• Used in SPIN and IF (KRONOS) to reduce the syntactic

size of models prior to verification

10

Start

FD

FD FD

FD

AD AD AD

SD

System Dependency Graph
[S. Horwitz, T. Reps, and D. Binkley]

Dependencies

• Control Dependencies - Control Edges
– Control Flow Graph

• Data Dependencies - Data Flow Edges
– Reaching (or Use/Def chains)

11

Control-Flow Graph
• Explicit and Implicit Control-Flow

12

true false

FSA If - statement

Dependency Graphs

13

...
while (a < 42)
{

a = b * c;
if(z > 1)
{

...
}

}

While(a < 42)

if(z>1)

a = b * c;

• Multi Graph - composed of
– Control Graph
– Data Flow Graph

..

.

..

.

Dependency Graphs

13

...
while (a < 42)
{

a = b * c;
if(z > 1)
{

...
}

}

While(a < 42)

if(z>1)

a = b * c;

• Multi Graph - composed of
– Control Graph
– Data Flow Graph

..

.

..

.

Dependency Graphs

13

...
while (a < 42)
{

a = b * c;
if(z > 1)
{

...
}

}

While(a < 42)

if(z>1)

a = b * c;

• Multi Graph - composed of
– Control Graph
– Data Flow Graph

..

.

..

.

Example Function Dependency Graph

14

int x = 0;
int z = 0;

int foo(int a, int b)
{

while(a < 42)
{

a = b * x;
if(z > 1)
{

z--;
}

}
return a;

}

void bar()
{

z = 42;
x = foo(x,z);

}

• Identify place of relevance
• and irrelevant code
• Inter-procedural slicing

[S. Horwitz, T. Reps, and D. Binkley]

Example Function Dependency Graph

14

int x = 0;
int z = 0;

int foo(int a, int b)
{

while(a < 42)
{

a = b * x;
if(z > 1)
{

z--;
}

}
return a;

}

void bar()
{

z = 42;
x = foo(x,z);

}

• Identify place of relevance
• and irrelevant code
• Inter-procedural slicing

[S. Horwitz, T. Reps, and D. Binkley]

Example Function Dependency Graph

14

int x = 0;
int z = 0;

int foo(int a, int b)
{

while(a < 42)
{

a = b * x;
if(z > 1)
{

z--;
}

}
return a;

}

void bar()
{

z = 42;
x = foo(x,z);

}

• Identify place of relevance
• and irrelevant code
• Inter-procedural slicing

[S. Horwitz, T. Reps, and D. Binkley]

15

entry

z = 42;

x = foo(x,z)

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

15

entry

z = 42;

x = foo(x,z)

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

16

Start

FD

FD FD

FD

AD AD AD

SD

System Dependency Graph

16

Start

FD

FD FD

FD

AD AD AD

SD

System Dependency Graph
Isolated computation of
ADGs and FDGs

Slicing Extended TA
• Starts at a point of interest e.g. a location in the

TA
• Search backwards in the SDG (marking pp)

– Computes the fixed-point of dependencies in the
ADG

– Searches backward in the called FDGs
• Delete all un-marked statements.

17

Conservative Automata slicing

18

54 Slicing

l1

l2

l4

l3

l5

l6

l7

(a) Example Automata

l∆
l1

l2

l4

l3

(b) Automata with sink

Figure 4.8: Sink location

Relevant Statements

The set of statements which should be included in the sliced automata may be
computed as the transitive traversal of the nodes in the SDG2 constructed from the
automata. The traversal should of course originate from the set of statements and
guards in the slicing criteria Λϕ(A).

4.4 Slicing Algorithms

In Section 4.5, we introduce the construction of the slices. This construction is based
on a set of relevant locations and a set of relevant statements Λ′(A). This Section
presents two algorithms which will compute Λ′(A). First we will show in Algorithm
1 how one, without considering summary edges, may compute the transitive closure
of the SDG to achieve Λ′(A).

4.4.1 Standard Algorithm

The approach taken in the following algorithm is based on Weisers original approach
for slicing [52]. Although it presents nicely as an intuition, we shall later extend this
approach in such a way that it avoids the calling context problem (Section 4.1.1).

Algorithm 1 Standard Algorithm for computation of relevant statements

G =
⋃

l∈Lr
guard(l) the list of guards g

WL = list of statements initially containing Λϕ(A)

WL = WL ∪ {λ ∈ Λ(A)|∃g ∈ G : λ
sdg
−−→ g}

while WL &= ∅ do
take λ from WL and insert λ into Λ′(A)

add to WL all λ′ ∈ Λ(A) | λ′ sdg
−−→ λ

end while

Algorithm 1 is based on a simple worklist approach where the worklist is initialized
with the slicing criteria and all statements which reaches a guard on an outgoing

2Although it is not within the intended scope of this thesis to present or highlight optimizations,
it is worth pointing out that the task of constructing the SDG need only be undertaken once, only
the simple computation of the set of relevant components must be computed for each verification
task.

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Traversal of imperative code

19

entry

z = 42;

x = foo(x,z)

x z

entry

z = 42;

x = foo(x,z)

a' = x

x = retval

b' = z

z' = z

x' = x

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

a = a' b = b' x = x' z = z'

entry

While(a < 42)

if(z>1)

a = b * x;

z--;

return a;

exit

Bisimulation based Correctness

• Reachability preserving slices (CTL)

20

y: s2 → s′2 ⇒ ∃s′1 : s1 → s′1 ∧ s′1Rϕs′2
z: s1 ! ϕ iff s2 ! ϕ

We write s1 ≡ϕ s2 if s1Rϕs2 for some E!ϕ-Bisimulation Rϕ.

The following result says that whenever two states are related by an E!ϕ-
Bisimulation they agree on the reachability of ϕ.

Lemma 1. If s Rϕ s′ for some E!ϕ-Bisimulation then:

s |= E!ϕ ⇐⇒ s′ |= E!ϕ

The relation introduced in (the following) Definition 7 relates the transition
system S for a timed automata network A and the transition system S′ for the
timed automata network A′ where A′ is a slice constructed from A. In Definition
7 we write Θ to denote the set of locations which can easily be computed never
to satisfy a formula ϕ. Furthermore, we use l∆ to denote a sink location in the
sliced model.

Definition 7. (The ' Relation)
Let s = ((l1, . . . , ln), ω, σ) ∈ S, s′ = ((l′1, . . . , l

′
n), ω′, σ′) ∈ S′ and '⊆ S × S′. We

say that the state s is related to the state s′ (we write s ' s′) iff:

a) ∃i : l′i = l∆ ∧ li ∈ Θ, or
b) ∀i : li = l′i ∧ ω(V ′) = ω′(V ′) ∧ σ(C′) = σ′(C′)

The proof of Lemma 1 confirms that the slicing presented in this article does
in-fact preserve reachability properties.

Theorem 1. The relation '⊆ S×S′ is a E!ϕ-Bisimulation between two struc-
tures M = (S, I) and M ′ = (S′, I ′).

Proofs and lemmas relating to the correctness of the C code are left out;
these may be found in [ST07] along with a detailed description of the lemmas
and theorems above.

5 Experiments and Results

The results presented here are obtained from running our prototype implementa-
tion on the CAN bus model shown in the introduction and the Train-Gate Exam-
ple presented in Section 2. The experiments are conducted using the command-
line tool verifyta, included in the Uppaal distribution, to perform the verification
and monitor the symbolic states explored. Memory consumption were measured
using memtime4.

y: s2 → s′2 ⇒ ∃s′1 : s1 → s′1 ∧ s′1Rϕs′2
z: s1 ! ϕ iff s2 ! ϕ

We write s1 ≡ϕ s2 if s1Rϕs2 for some E!ϕ-Bisimulation Rϕ.

The following result says that whenever two states are related by an E!ϕ-
Bisimulation they agree on the reachability of ϕ.

Lemma 1. If s Rϕ s′ for some E!ϕ-Bisimulation then:

s |= E!ϕ ⇐⇒ s′ |= E!ϕ

The relation introduced in (the following) Definition 7 relates the transition
system S for a timed automata network A and the transition system S′ for the
timed automata network A′ where A′ is a slice constructed from A. In Definition
7 we write Θ to denote the set of locations which can easily be computed never
to satisfy a formula ϕ. Furthermore, we use l∆ to denote a sink location in the
sliced model.

Definition 7. (The ' Relation)
Let s = ((l1, . . . , ln), ω, σ) ∈ S, s′ = ((l′1, . . . , l

′
n), ω′, σ′) ∈ S′ and '⊆ S × S′. We

say that the state s is related to the state s′ (we write s ' s′) iff:

a) ∃i : l′i = l∆ ∧ li ∈ Θ, or
b) ∀i : li = l′i ∧ ω(V ′) = ω′(V ′) ∧ σ(C′) = σ′(C′)

The proof of Lemma 1 confirms that the slicing presented in this article does
in-fact preserve reachability properties.

Theorem 1. The relation '⊆ S×S′ is a E!ϕ-Bisimulation between two struc-
tures M = (S, I) and M ′ = (S′, I ′).

Proofs and lemmas relating to the correctness of the C code are left out;
these may be found in [ST07] along with a detailed description of the lemmas
and theorems above.

5 Experiments and Results

The results presented here are obtained from running our prototype implementa-
tion on the CAN bus model shown in the introduction and the Train-Gate Exam-
ple presented in Section 2. The experiments are conducted using the command-
line tool verifyta, included in the Uppaal distribution, to perform the verification
and monitor the symbolic states explored. Memory consumption were measured
using memtime4.

`

`

Empirical results

21

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

VT = Verification Time, MU = Memory Usage, SS = Symbolic States Explored, NS = Number of Statements, NV = Number of Variables

`

`

Empirical results

21

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

VT = Verification Time, MU = Memory Usage, SS = Symbolic States Explored, NS = Number of Statements, NV = Number of Variables

`

`

Empirical results

21

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

VT = Verification Time, MU = Memory Usage, SS = Symbolic States Explored, NS = Number of Statements, NV = Number of Variables

`

`

Empirical results

21

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

VT = Verification Time, MU = Memory Usage, SS = Symbolic States Explored, NS = Number of Statements, NV = Number of Variables

`

`

Empirical results

21

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 85587630+ 12 6
After Slicing 11.12sec ! 66572KB 786391 6 3
After Fix VT MU SS NS NV
Before Slicing 0.11sec 2862KB 2074 12 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. !verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[]not deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Train1.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS NV
Before Slicing N/A 4GB+ 77636326+ 34 14
After Slicing 0.2sec 2848KB 413 28 10

Train may cross VT MU SS NS NV
Before Slicing 0.11sec 2856KB 14 34 14
After Slicing 0.10sec 2848KB 14 28 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 × 216 states. That is, the reduced state-
space is [state-space]

4×216 . Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

VT = Verification Time, MU = Memory Usage, SS = Symbolic States Explored, NS = Number of Statements, NV = Number of Variables

Conclusion
• Slicing is highly beneficial for UPPAAL

• Conservative - reachability preserving algorithm
– Prototype implementation

• Supports iterative Development / Design

• Side-effect: “encourage” new users

22

Future
• Further Experiments
• Consolidation of Library (production ready code)
• Complete SSA Form Transformation (C-code)
• Integration in UPPAAL
• Integrate value range propagation (on int vars)

• Visualization of slices in UPPAALs GUI
• Research “Manual” Slicing

23

Thank you
• Summary:

– Applied the SDG for imperative code and TA
– Proof that slicing preserves (CTL) reachability
– Prototype implementation

• Generic static analysis library for Uppaal
– Future work (highlights)

• Further empirical studies
• Consolidation of library code

24

