

Slicing for UPPAAL

Claus Thrane, Uffe Sørensen and Kim G. Larsen

NWPT'08

Modeling Real-Time Systems

Communicating FSA

Gate

Train

Communicating FSA

Gate

Train

UPPAAL

	\varTheta 🔿 🔿 /Users/us/D	Oocuments/Studie/Universite	t/Dat 6/Instantiated Uppaal M	lodels/train-gate.xml
		q R Q > X		
		Editor	Simulator Verifier	
	Drag out	Name: Train1	Parameters:	
	 Project Declarations N Train1 Train2 Train2 	prf)fCrosses++	
	▶ ﷺ Train3 ▶ ﷺ Train4 ▶ ﷺ Train5 ▶ ﷺ Gate	app	afe O	Cross x<=5
	UPPSALA UNIVERSITET	Apj	x > = 10 x = 0	x > = 7 x = 0 Start
UPP	<pre>list[los++] = element;</pre>	×<	=20 x<=10 stop[1]? Stop	(1)? 0
Scall Marth Sale	<pre>len (list[i] = list[i + 1]; i++;</pre>		stop	4 • •
Copyright 1995-2006 by Uppsala University and Aalbo More Information at http://www.uppaal.com	rg University. All rights reserved.			

Imperative code

Motivation

Model-checking Timed Automata is PSPACE-Complete

State-space explosion problem

M1 x M2

We propose

Static analysis, specifically slicing can be used on the "hybrid" modeling language of UPPAAL
to improve the tool's performance.

Slicing

Weiser: "a slice corresponds to the mental abstractions made by people while debugging programs"

Traditionally used for removing irrelevant components during debugging and testing

- Slicing for TA w. simple data Janowska and Janowski
- Used in SPIN and IF (KRONOS) to reduce the syntactic size of models prior to verification

System Dependency Graph

[S. Horwitz, T. Reps, and D. Binkley]

Dependencies

Control Dependencies - Control Edges Control Flow Graph Data Dependencies - Data Flow Edges

Reaching (or Use/Def chains)

Control-Flow Graph • Explicit and Implicit Control-Flow

12

Dependency Graphs Multi Graph - composed of Control Graph Data Flow Graph

Dependency Graphs Multi Graph - composed of Control Graph Data Flow Graph

Dependency Graphs Multi Graph - composed of Control Graph Data Flow Graph

while (a < 42)a = b * c;if(z > 1). . .

Example Function Dependency Graph

- Identify place of relevance
- and irrelevant code
- Inter-procedural slicing [S. Horwitz, T. Reps, and D. Binkley]

int x = 0: int z = 0: int foo(int a, int b) while (a < 42)a = b * x;if(z > 1)Z--; return a; void bar() z = 42: x = foo(x,z);}

Example Function Dependency Graph

- Identify place of relevance
- and irrelevant code
- Inter-procedural slicing [S. Horwitz, T. Reps, and D. Binkley]

int x = 0: int z = 0: int foo(int a, int b) while (a < 42)a = b * x;if(z > 1)Z--; return a; void bar() z = 42: x = foo(x,z);

Example Function Dependency Graph

- Identify place of relevance
- and irrelevant code
- Inter-procedural slicing [S. Horwitz, T. Reps, and D. Binkley]

System Dependency Graph

System Dependency Graph

Slicing Extended TA

- Starts at a point of interest e.g. a location in the TA
- Search backwards in the SDG (marking pp)
 - Computes the fixed-point of dependencies in the ADG
 - Searches backward in the called FDGs
- Delete all un-marked statements.

Conservative Automata slicing

Bisimulation based Correctness

• Reachability preserving slices (CTL)

Lemma 1. If s R_{φ} s' for some $E \diamond \varphi$ -Bisimulation then:

 $s\models E \diamondsuit \varphi \iff s'\models E \diamondsuit \varphi$

Theorem 1. The relation $\simeq \subseteq S \times S'$ is a $E \diamond \varphi$ -Bisimulation between two structures $M = (S, \mathcal{I})$ and $M' = (S', \mathcal{I}')$.

	Mapper Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	85587630 +	12	6	
After Slicing	11.12sec *	66572KB	786391	6	3	
After Fix	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2862KB	2074	12	6	
After Slicing	0.10sec	2852KB	199	6	3	

	Train-Gate Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	77636326 +	34	14	
After Slicing	$0.2 \mathrm{sec}$	2848KB	413	28	10	
Train may cross	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2856KB	14	34	14	
After Slicing	0.10sec	2848KB	14	28	10	

	Mapper Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	85587630 +	12	6	
After Slicing	11.12sec *	66572KB	786391	6	3	
After Fix	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2862KB	2074	12	6	
After Slicing	0.10sec	2852KB	199	6	3	

	Train-Gate Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	77636326 +	34	14	
After Slicing	$0.2 \mathrm{sec}$	2848KB	413	28	10	
Train may cross	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2856KB	14	34	14	
After Slicing	0.10sec	2848KB	14	28	10	

	Mapper Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	85587630 +	12	6	
After Slicing	11.12sec *	66572KB	786391	6	3	
After Fix	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2862KB	2074	12	6	
After Slicing	0.10sec	2852KB	199	6	3	

	Train-Gate Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	77636326 +	34	14	
After Slicing	0.2sec	2848KB	413	28	10	
Train may cross	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2856KB	14	34	14	
After Slicing	0.10sec	2848KB	14	28	10	

	Mapper Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	85587630 +	12	6	
After Slicing	11.12sec *	66572KB	786391	6	3	
After Fix	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2862KB	2074	12	6	
After Slicing	0.10sec	2852KB	199	6	3	

	Train-Gate Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	77636326 +	34	14	
After Slicing	$0.2 \mathrm{sec}$	2848KB	413	28	10	
Train may cross	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2856KB	14	34	14	
After Slicing	0.10sec	2848KB	14	28	10	

	Mapper Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	85587630 +	12	6	
After Slicing	11.12sec *	66572KB	786391	6	3	
After Fix	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2862KB	2074	12	6	
After Slicing	0.10sec	2852KB	199	6	3	

	Train-Gate Example					
Deadlock free	VT	MU	SS	NS	NV	
Before Slicing	N/A	4GB+	77636326 +	34	14	
After Slicing	$0.2 \mathrm{sec}$	2848KB	413	28	10	
Train may cross	VT	MU	SS	NS	NV	
Before Slicing	0.11sec	2856KB	14	34	14	
After Slicing	0.10sec	2848KB	14	28	10	

Conclusion

- Slicing is highly beneficial for UPPAAL
- Conservative reachability preserving algorithm
 Prototype implementation
- Supports iterative Development / Design
- Side-effect: "encourage" new users

Future

- Further Experiments
- Consolidation of Library (production ready code)
- Complete SSA Form Transformation (C-code)
- Integration in UPPAAL
- Integrate value range propagation (on int vars)
- Visualization of slices in UPPAALs GUI
- Research "Manual" Slicing

Thank you

- Summary:
 - Applied the SDG for imperative code and TA
 - Proof that slicing preserves (CTL) reachability
 - Prototype implementation
 - Generic static analysis library for Uppaal
 - Future work (highlights)
 - Further empirical studies
 - Consolidation of library code