Quantitative Simulations of Weighted Transition Systems

Claus Thrane Uli Fahrenberg Kim G. Larsen
Dept. Computer Science
Aalborg university

20th Nordic Workshop on Programming Theory Tallinn, Estonia, 19-21 November 2008

True or False?

In formal methods, we typically use

- models of systems and their specification,
- A binary notion to describe whether models meet their specification.

A classical example is CCS and equivalencies; bisimulation, weak bisimulation and language equivalence $(\sim, \approx$ and $=\llcorner$ resp.) where model and specification are either related - or not.
Also reachability and safety tends to be considered true or false.
Finally, when model-checking of logical formulae, properties are satisfied or not.

Introducing quantifiable properties in model - such as weights and time

We ask
Can we use metrics to compare models and specifications, more liberally? e.g. w.r.t simulation, we would like to know if are nearly equal, or far from it.

In case of reachability and safety, these have been addressed by Bouyere et al. in [2] at FORMATS'08 and Fahrenberg and Larsen in [1] at INFINITY'08

Motivation

Why is this interesting?

Assuming our ultimate goal is to "push" formal methods of verification in to main-stream industry, quantitative analysis supports:

- Iterative development

■ Progress estimation
■ Estimate benefits of further development

Example w. weights

Classic simulation clearly wouldn't relate these. So how should we compare these? (assuming all are labeled identically)

Example w. weights

Classic simulation clearly wouldn't relate these. So how should we compare these? (assuming all are labeled identically)

■ Consider edges separately or the total sum over traces?
■ Using traces (words) or simulations?

Weighted Timed automata

Introduced by Behrmann et al. [5] and Alur et al. [6] at HSCC'01. A system with modes: High, Medium, and Low. After 3 time units, the mode degrades (action d). In Medium or Low mode, the system can be attended to (action a), which advances it to a higher mode.

the following cyclic behaviour provides an infinite run:

$$
\begin{aligned}
(H, 0,0) & \xrightarrow{3}(H, 3,3)
\end{aligned} \xrightarrow{d}(M, 0,3) \xrightarrow{3}(M, 3,6) \xrightarrow{d}(L, 3,6) \xrightarrow{1}, ~(L, 4,7) \xrightarrow{a}(M, 0,0) \xrightarrow{3}(M, 3,3) \xrightarrow{a}(H, 0,0) \rightarrow \cdots .
$$

Weighted Transition Systems

Definition (WTS)

A weighted transition system is a triple $(\mathcal{S}, w, l g)$ where

- $\mathcal{S}=\left\langle S, s_{0}, \Gamma, R\right\rangle$ is a labeled transition system, with states S, initial state s_{0}, alphabet Γ, and transitions $R \subseteq S \times \Gamma \times S$,
- $w: R \rightarrow \mathbb{R}_{\geq 0}$ assigns weights to transitions, and
- $\lg : \Gamma \rightarrow \mathbb{R}_{\geq 0}$ assigns lengths to labels.

The cost $\mathrm{c}: R \rightarrow \mathbb{N}$ is the product of the transition weight w and length of the label $I g$ - observe the "distance" of the WTS transitions:

Weighted Transition Systems

Definition (WTS)

A weighted transition system is a triple $(\mathcal{S}, w, l g)$ where

- $\mathcal{S}=\left\langle S, s_{0}, \Gamma, R\right\rangle$ is a labeled transition system, with states S, initial state s_{0}, alphabet Γ, and transitions $R \subseteq S \times \Gamma \times S$,
- $w: R \rightarrow \mathbb{R}_{\geq 0}$ assigns weights to transitions, and
- $\lg : \Gamma \rightarrow \mathbb{R}_{\geq 0}$ assigns lengths to labels.

The cost $\mathrm{c}: R \rightarrow \mathbb{N}$ is the product of the transition weight w and length of the label $I g$ - observe the "distance" of the WTS transitions:

$$
4 \cdot x-2 \cdot x
$$

Weighted Transition Systems

Definition (WTS)

A weighted transition system is a triple $(\mathcal{S}, w, l g)$ where

- $\mathcal{S}=\left\langle S, s_{0}, \Gamma, R\right\rangle$ is a labeled transition system, with states S, initial state s_{0}, alphabet Γ, and transitions $R \subseteq S \times \Gamma \times S$,
- $w: R \rightarrow \mathbb{R}_{\geq 0}$ assigns weights to transitions, and
- $\lg : \Gamma \rightarrow \mathbb{R}_{\geq 0}$ assigns lengths to labels.

The cost $\mathrm{c}: R \rightarrow \mathbb{N}$ is the product of the transition weight w and length of the label $I g$ - observe the "distance" of the WTS transitions:

$$
\frac{4 \cdot x-2 \cdot x}{x}=2
$$

Semantics of WTA as WTS

The semantics of a WTA \mathcal{A} is given by a $\mathrm{WTS} \mathbf{W}=(\mathcal{S}, w, \lg)$, where $\mathcal{S}=\left(S,\left(I_{0}, v_{0}\right),\{\star\} \cup \mathbb{R}_{\geq 0}, T\right)$ is the (usual) labeled transition system associated with the underlying TA of \mathcal{A}, $\lg (\star)=1, \lg (\delta)=\delta$ for $\delta \in \mathbb{R}_{\geq 0}$, and for $t \in T$,
$w(t)= \begin{cases}\operatorname{price}(e) & \text { if } t=(I, v) \xrightarrow{\star}\left(I^{\prime}, v^{\prime}\right) \text { and } e=I \xrightarrow{\psi, \star, C} I^{\prime} \in E \\ \operatorname{rate}(I) & \text { if } t=(I, v) \xrightarrow{\delta}(I, v+\delta)\end{cases}$

Semantics of WTA as WTS

The semantics of a WTA \mathcal{A} is given by a $\mathrm{WTS} \mathbf{W}=(\mathcal{S}, w, \lg)$, where $\mathcal{S}=\left(S,\left(I_{0}, v_{0}\right),\{\star\} \cup \mathbb{R}_{\geq 0}, T\right)$ is the (usual) labeled transition system associated with the underlying TA of \mathcal{A}, $\lg (\star)=1, \lg (\delta)=\delta$ for $\delta \in \mathbb{R}_{\geq 0}$, and for $t \in T$,
$w(t)= \begin{cases}\operatorname{price}(e) & \text { if } t=(I, v) \xrightarrow{\star}\left(I^{\prime}, v^{\prime}\right) \text { and } e=I \xrightarrow{\psi, \star, C} I^{\prime} \in E \\ \operatorname{rate}(I) & \text { if } t=(I, v) \xrightarrow{\delta}(I, v+\delta)\end{cases}$

Observe that:

- Switch transitions labeled \star are given lengths 1
- Delay transitions labeled δ are given length δ.

Trace equivalence

Trace (or language) equivalence, for WTS, is the comparison of sets of all traces, such that for states $s, t \in S$:

$$
\operatorname{Tr}(s)=\operatorname{Tr}(t)
$$

We write $s=_{L} t$ to denote that s and t are un-weighted trace equivalent.

Next. we use both the standard alphabet and cost values. Traces which are not un-weighted equivalent. are assigned the distance ∞.

Quantifying Trace Distances

The point-wise trace distance between states $s, t \in S$ is:

$$
\|s, t\| \bullet=\max \left\{\begin{array}{lll}
\sup _{\sigma \in \operatorname{Tr}(s)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(t)}\left\{\sup _{i}\right. & \left.\left|c(\sigma(i))-c\left(\sigma^{\prime}(i)\right)\right|\right\} \\
\sup _{\sigma \in \operatorname{Tr}(t)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(s)}\left\{\sup _{i}\right. & \left.\left|c(\sigma(i))-c\left(\sigma^{\prime}(i)\right)\right|\right\}
\end{array}\right.
$$

Quantifying Trace Distances

Using discounting, to disregard future expenses; The point-wise trace distance between states $s, t \in S$ is:

$$
\|s, t\| \bullet=\max \left\{\begin{array}{l}
\sup _{\sigma \in \operatorname{Tr}(s)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(t)}\left\{\sup _{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\} \\
\sup _{\sigma \in \operatorname{Tr}(t)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(s)}\left\{\sup _{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}
\end{array}\right.
$$

$s_{i}(\sigma)=\sum_{j=0}^{i} \lg (\sigma(j))$ and $0<\lambda<1$
we use the length for discounting the accumulated length...
(future)

Quantifying Trace Distances

Using discounting, to disregard future expenses;
The point-wise trace distance between states $s, t \in S$ is:
$\|s, t\|_{\bullet}=\max \left\{\begin{array}{l}\sup _{\sigma \in \operatorname{Tr}(s)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(t)}\left\{\sup _{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\} \\ \sup _{\sigma \in \operatorname{Tr}(t)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(s)}\left\{\sup _{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}\end{array}\right.$
Accumulating trace distance of states s and t is:
$\|s, t\|_{+}=\max \begin{cases}\sup _{\sigma \in \operatorname{Tr}(s)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(t)}\left\{\sum_{i}\right. & \left.\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\} \\ \sup _{\sigma \in \operatorname{Tr}(t)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(s)}\left\{\sum_{i}\right. & \left.\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}\end{cases}$
$s_{i}(\sigma)=\sum_{j=0}^{i} \lg (\sigma(j))$ and $0<\lambda<1$
we use the length for discounting the accumulated length... (future)

Quantifying Trace Distances

Using discounting, to disregard future expenses;
The point-wise trace distance between states $s, t \in S$ is:
$\|s, t\|_{\bullet}=\max \left\{\begin{array}{l}\sup _{\sigma \in \operatorname{Tr}(s)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(t)}\left\{\sup _{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\} \\ \sup _{\sigma \in \operatorname{Tr}(t)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(s)}\left\{\sup _{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}\end{array}\right.$
Accumulating trace distance of states s and t is:
$\|s, t\|_{+}=\max \left\{\begin{array}{l}\sup _{\sigma \in \operatorname{Tr}(s)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(t)}\left\{\sum_{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\} \\ \sup _{\sigma \in \operatorname{Tr}(t)} \inf _{\sigma^{\prime} \in \operatorname{Tr}(s)}\left\{\sum_{i} \lambda^{s_{i}(\sigma)}\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}\end{array}\right.$
$s_{i}(\sigma)=\sum_{j=0}^{i} \lg (\sigma(j))$ and $0<\lambda<1$
we use the length for discounting the accumulated length...
(future)

Trace examples

$\left\|\sigma, \sigma^{\prime}\right\| \bullet \sup _{i}\left\{c(\sigma(i))-c\left(\sigma^{\prime}(i)\right) \mid\right\}$
$\left\|\sigma, \sigma^{\prime}\right\|_{+}=\sum_{i}\left\{\left|c(\sigma(i))-c\left(\sigma^{\prime}(i)\right)\right|\right\}$

Trace examples

Introduction Formalisms

Relations

$$
\begin{aligned}
\sigma & =a \xrightarrow{7} b \xrightarrow{10} c \stackrel{1}{\rightarrow} b \\
\sigma_{1} & =a_{1} \xrightarrow{5} b_{3} \xrightarrow{12} c_{1} \xrightarrow{1} b_{1} \\
\sigma_{2} & =a_{1} \xrightarrow{5} b_{3} \xrightarrow{9} c_{1} \xrightarrow{1} b_{1} \\
\sigma_{3} & =a_{1} \xrightarrow{8} b_{2} \xrightarrow{4} c_{3} \xrightarrow{1} b_{2}
\end{aligned}
$$

$$
\left\|\sigma, \sigma^{\prime}\right\|_{\bullet}=\sup \left\{\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}
$$

$$
\left\|\sigma, \sigma^{\prime}\right\|_{+}=\sum_{i}\left\{\left|c(\sigma(i))-c\left(\sigma^{\prime}(i)\right)\right|\right\}
$$

For the finite traces ..

Trace examples

Introduction Formalisms

Relations

 properties LogicCharacterisation

$$
\begin{aligned}
\sigma & =a \xrightarrow{7} b \xrightarrow{10} c \stackrel{1}{\rightarrow} b \\
\sigma_{1} & =a_{1} \xrightarrow{5} b_{3} \xrightarrow{12} c_{1} \xrightarrow{1} b_{1} \\
\sigma_{2} & =a_{1} \xrightarrow{5} b_{3} \xrightarrow{9} c_{1} \xrightarrow{1} b_{1} \\
\sigma_{3} & =a_{1} \xrightarrow{8} b_{2} \xrightarrow{4} c_{3} \xrightarrow{1} b_{2}
\end{aligned}
$$

$$
\left\|\sigma, \sigma^{\prime}\right\|_{\bullet}=\sup _{i}\left\{\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}
$$

$$
\left\|\sigma, \sigma^{\prime}\right\|_{+}=\sum_{i}\left\{\left|\mathrm{c}(\sigma(i))-\mathrm{c}\left(\sigma^{\prime}(i)\right)\right|\right\}
$$

For the finite traces ..

$$
\begin{array}{lll}
\left\|\sigma, \sigma_{1}\right\|_{\bullet}=2 & \left\|\sigma, \sigma_{2}\right\|_{\bullet}=2 & \left\|\sigma, \sigma_{3}\right\|_{\bullet}=6 \\
\left\|\sigma, \sigma_{1}\right\|_{+}=4 & \left\|\sigma, \sigma_{2}\right\|_{+}=3 & \left\|\sigma, \sigma_{3}\right\|_{+}=7
\end{array}
$$

Additional trace distance

Observe that we now have 4 (distinct) trace metrics.

An additional two maximum-lead distances may be defined (w. an w.o. discounting) such that traces σ and σ^{\prime} have distance 2 .

$$
\begin{aligned}
\sigma & =a \xrightarrow{7} b \xrightarrow{10} c \\
\sigma^{\prime} & =a_{1} \xrightarrow{5} b_{3} \xrightarrow{12} c_{1}
\end{aligned}
$$

"Standard" (Bi)simulation for WTS

Definition (Weighted Simulation)
A binary relation $\mathcal{R} \subseteq S \times S$ is a simulation if and only if, whenever $(s, t) \in \mathcal{R}$ and $\alpha \in \Gamma$ and $c \in \mathbb{R}_{\geq 0}$ then

■ if $s \xrightarrow{\alpha, c} s^{\prime}$ then $t \xrightarrow{\alpha, c} t^{\prime}$ with $\left(s^{\prime}, t^{\prime}\right) \in \mathcal{R}$ for some $t^{\prime} \in S$ We say that t simulates s and write $s \preccurlyeq t$ whenever $(s, t) \in \mathcal{R}$ for some simulation \mathcal{R}.

"Standard" (Bi)simulation for WTS

Definition (Weighted Simulation)
A binary relation $\mathcal{R} \subseteq S \times S$ is a simulation if and only if, whenever $(s, t) \in \mathcal{R}$ and $\alpha \in \Gamma$ and $c \in \mathbb{R}_{\geq 0}$ then

■ if $s \xrightarrow{\alpha, c} s^{\prime}$ then $t \xrightarrow{\alpha, c} t^{\prime}$ with $\left(s^{\prime}, t^{\prime}\right) \in \mathcal{R}$ for some $t^{\prime} \in S$ We say that t simulates s and write $s \preccurlyeq t$ whenever $(s, t) \in \mathcal{R}$ for some simulation \mathcal{R}.

Define $s \sim t$ and $s \sim_{u w} t$ as usual.

Quantifying Simulation

As for language equivalence, we define quantitative simulation relations, in order to capture branching properties i.e. the behaviour of system models.

- Point-wise (bi)simulation
- Accumulated (bi)simulation

■ Max-lead (bi)simulation (shown in [4] to be poly-time ${ }^{1}$ decidable for timed automata)
${ }^{1}$ in the size of the region graph, which in turn is exponential in the size of clocks

Point-wise (bi)simulation

A family of relations $\mathbf{R}=\left\{\dot{\mathcal{R}}_{\varepsilon} \subseteq S \times S \mid \varepsilon \geq 0\right\}$ is a point-wise bisimulation family if $(s, t) \in \dot{\mathcal{R}}_{\varepsilon} \in \mathbf{R}$ and $\alpha \in \Gamma$ imply that

■ if $s \xrightarrow{\alpha, c} s^{\prime}$ then $t \xrightarrow{\alpha, d} t^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon}{\lambda^{I g(\alpha)}}$,

- if $t \xrightarrow{\alpha, c} t^{\prime}$ then $s \xrightarrow{\alpha, d} s^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon}{\lambda^{I g(\alpha)}}$.
We write $s \dot{\sim}_{\varepsilon} t$ whenever $(s, t) \in \dot{\mathcal{R}}_{\varepsilon} \in \mathbf{R}$ for some point-wise bisimulation family \mathbf{R}.

Point-wise (bi)simulation

A family of relations $\mathbf{R}=\left\{\dot{\mathcal{R}}_{\varepsilon} \subseteq S \times S \mid \varepsilon \geq 0\right\}$ is a point-wise bisimulation family if $(s, t) \in \dot{\mathcal{R}}_{\varepsilon} \in \mathbf{R}$ and $\alpha \in \Gamma$ imply that

■ if $s \xrightarrow{\alpha, c} s^{\prime}$ then $t \xrightarrow{\alpha, d} t^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon}{\lambda^{\lg (\alpha)}}$,

- if $t \xrightarrow{\alpha, c} t^{\prime}$ then $s \xrightarrow{\alpha, d} s^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon}{\lambda^{I g}(\alpha)}$.
We write $s \dot{\sim}_{\varepsilon} t$ whenever $(s, t) \in \dot{\mathcal{R}}_{\varepsilon} \in \mathbf{R}$ for some point-wise bisimulation family \mathbf{R}.

Accumulated (bi)simulation

A family of relations $\mathbf{R}=\left\{\mathcal{R}_{\varepsilon} \subseteq S \times S \mid \varepsilon \geq 0\right\}$ is an accumulating bisimulation family if $(s, t) \in \mathcal{R}_{\varepsilon} \in \mathbf{R}$ and $\alpha \in \Gamma$ imply that

■ if $s \xrightarrow{\alpha, c} s^{\prime}$ then $t \xrightarrow{\alpha, d} t^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \mathcal{R}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon-|c-d|}{\lambda^{I g(\alpha)}}$,

- if $t \xrightarrow{\alpha, c} t^{\prime}$ then $s \xrightarrow{\alpha, d} s^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \mathcal{R}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon-|c-d|}{\lambda^{\prime g(\alpha)}}$.
We write $s \stackrel{ \pm}{\sim}_{\varepsilon} t$ whenever $(s, t) \in \mathcal{R}_{\varepsilon} \in \mathbf{R}$ for some accumulating bisimulation family \mathbf{R}.

Accumulated (bi)simulation

A family of relations $\mathbf{R}=\left\{\mathcal{R}_{\varepsilon} \subseteq S \times S \mid \varepsilon \geq 0\right\}$ is an accumulating bisimulation family if $(s, t) \in \mathcal{R}_{\varepsilon} \in \mathbf{R}$ and $\alpha \in \Gamma$ imply that

■ if $s \xrightarrow{\alpha, c} s^{\prime}$ then $t \xrightarrow{\alpha, d} t^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \mathcal{R}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon-|c-d|}{\lambda^{\prime g(\alpha)}}$,
■ if $t \xrightarrow{\alpha, c} t^{\prime}$ then $s \xrightarrow{\alpha, d} s^{\prime}$ with $|c-d| \leq \varepsilon / \lg (\alpha)$ and $\left(s^{\prime}, t^{\prime}\right) \in \mathcal{R}_{\varepsilon^{\prime}} \in \mathbf{R}$ for some d, t^{\prime} and $\varepsilon^{\prime} \leq \frac{\varepsilon-|c-d|}{\lambda^{\prime g(\alpha)}}$.
We write $s \stackrel{ \pm}{\sim}_{\varepsilon} t$ whenever $(s, t) \in \mathcal{R}_{\varepsilon} \in \mathbf{R}$ for some accumulating bisimulation family \mathbf{R}.

Properties

We have the following properties for the defined relations:
1 the relation $\dot{\sim}_{\varepsilon}$ is:

- The largest point-wise bisimulation family.
- For all $\dot{\mathcal{R}}_{\varepsilon}$ and $\dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \dot{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\dot{\mathcal{R}}_{\varepsilon} \subseteq \dot{\mathcal{R}}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0: \sim \subseteq \dot{\sim}_{\varepsilon} \subseteq \sim_{u w}$
$2 r \dot{\sim}_{\varepsilon} s \wedge s \dot{\sim}_{\varepsilon^{\prime}} t \Longrightarrow r \dot{\sim}_{\varepsilon+\varepsilon^{\prime}} t$
3 If $s \dot{\sim}_{\varepsilon} t$ then $\|s, t\|_{\bullet} \leq \varepsilon$
(4) the relation $\stackrel{ \pm}{\sim}_{\sim}^{\sim}$ is:
- The largest accumulating bisimulation family.

(5) If $s{\underset{\sim}{\sim}}_{\varepsilon} t$ then $\|s, t\|_{+} \leq \varepsilon$

Properties

We have the following properties for the defined relations:
11 the relation $\dot{\sim}_{\varepsilon}$ is:

- The largest point-wise bisimulation family.
- For all $\dot{\mathcal{R}}_{\varepsilon}$ and $\dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \dot{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\dot{\mathcal{R}}_{\varepsilon} \subseteq \dot{\mathcal{R}}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0: \sim \subseteq \dot{\sim}_{\varepsilon} \subseteq \sim_{u w}$
$2 r \dot{\sim}_{\varepsilon} s \wedge s \dot{\sim}_{\varepsilon^{\prime}} t \Longrightarrow r \dot{\sim}_{\varepsilon+\varepsilon^{\prime}} t$
3 If $s \dot{\sim}_{\varepsilon} t$ then $\|s, t\|_{\bullet} \leq \varepsilon$
(4) the relation ${\underset{\sim}{\sim}}_{\varepsilon}$ is:
- The largest accumulating bisimulation family.

5 If $s \stackrel{\perp}{\sim}_{\varepsilon} t$ then $\|s, t\|_{+} \leq \varepsilon$

Properties

We have the following properties for the defined relations:
11 the relation $\dot{\sim}_{\varepsilon}$ is:

- The largest point-wise bisimulation family.
- For all $\dot{\mathcal{R}}_{\varepsilon}$ and $\dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \dot{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\dot{\mathcal{R}}_{\varepsilon} \subseteq \dot{\mathcal{R}}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0: \sim \subseteq \dot{\sim}_{\varepsilon} \subseteq \sim_{u w}$
$\boxed{ } \boldsymbol{2} \dot{\sim}_{\varepsilon} s \wedge s \dot{\sim}_{\varepsilon^{\prime}} t \Longrightarrow r \dot{\sim}_{\varepsilon+\varepsilon^{\prime}} t$
3 If $s \dot{\sim}_{\varepsilon} t$ then $\|s, t\| \bullet \leq \varepsilon$
© the relation $\mathcal{\sim}_{\varepsilon}$ is:
- The largest accumulating bisimulation family.
- For all $\mathcal{R}_{\varepsilon}$ and $\mathcal{R}_{\varepsilon^{\prime}} \in \sim_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then \mathcal{R}
\square
55 If $s \stackrel{ \pm}{\sim}_{\varepsilon} t$ then $\|s, t\|_{+} \leq \varepsilon$

Properties

We have the following properties for the defined relations:
11 the relation $\dot{\sim}_{\varepsilon}$ is:

- The largest point-wise bisimulation family.
- For all $\dot{\mathcal{R}}_{\varepsilon}$ and $\dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \dot{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\dot{\mathcal{R}}_{\varepsilon} \subseteq \dot{\mathcal{R}}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0: \sim \subseteq \dot{\sim}_{\varepsilon} \subseteq \sim_{u w}$
$\boxed{\square} \dot{\sim}_{\varepsilon} s \wedge s \dot{\sim}_{\varepsilon^{\prime}} t \Longrightarrow r \dot{\sim}_{\varepsilon+\varepsilon^{\prime}} t$
3 If $s \dot{\sim}_{\varepsilon} t$ then $\|s, t\|_{\bullet} \leq \varepsilon$
4 the relation $\stackrel{\sim}{\sim}_{\varepsilon}$ is:
- The largest accumulating bisimulation family.
- For all $\mathcal{R}_{\varepsilon}$ and $\mathcal{R}_{\varepsilon^{\prime}} \in \mathcal{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\mathcal{R}_{\varepsilon} \subseteq \mathcal{R}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0$: $\sim \subseteq \sim_{\varepsilon} \subseteq \sim_{u w}$

5 If $s{\underset{\sim}{\sim}}_{\varepsilon} t$ then $\|s, t\|_{+} \leq \varepsilon$

Properties

We have the following properties for the defined relations:
1 the relation $\dot{\sim}_{\varepsilon}$ is:

- The largest point-wise bisimulation family.
- For all $\dot{\mathcal{R}}_{\varepsilon}$ and $\dot{\mathcal{R}}_{\varepsilon^{\prime}} \in \dot{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\dot{\mathcal{R}}_{\varepsilon} \subseteq \dot{\mathcal{R}}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0: \sim \subseteq \dot{\sim}_{\varepsilon} \subseteq \sim_{u w}$
$2 r \dot{\sim}_{\varepsilon} s \wedge s \dot{\sim}_{\varepsilon^{\prime}} t \Longrightarrow r \dot{\sim}_{\varepsilon+\varepsilon^{\prime}} t$
3 If $s \dot{\sim}_{\varepsilon} t$ then $\|s, t\| \bullet \leq \varepsilon$
4 the relation $\stackrel{ \pm}{\sim}_{\varepsilon}$ is:
- The largest accumulating bisimulation family.
- For all $\mathcal{R}_{\varepsilon}$ and $\mathcal{R}_{\varepsilon^{\prime}} \in \mathcal{\sim}_{\varepsilon}$ where $\varepsilon \leq \varepsilon^{\prime}$ then $\mathcal{R}_{\varepsilon} \subseteq \mathcal{R}_{\varepsilon^{\prime}}$ and
- For $\varepsilon \geq 0: \sim \subseteq \sim_{\varepsilon} \subseteq \sim_{u w}$

5 If $s \stackrel{+}{\sim}_{\varepsilon} t$ then $\|s, t\|_{+} \leq \varepsilon$

Weighted HML

Weighted extension of HML with recursion [7]
Definition (Point-wise Logic)
Let \mathcal{X} be a set of identifiers. Then the set \mathcal{L}_{w} of formulae over \mathcal{X} is the smallest set of formulae constructed according to the following abstract syntax:

$$
\begin{equation*}
\varphi::=\mathbf{t}\left|\langle\alpha\rangle_{c} \varphi\right| \varphi \wedge \varphi\left|[\alpha]_{c} \varphi\right| \varphi \vee \varphi|X| v X . \varphi \tag{1}
\end{equation*}
$$

Intuitively $\langle\alpha\rangle_{c}$ and $[\alpha]_{c}$ denotes the availability of an α labeled transition with weight c.

Weighted extension of HML with recursion [7]
Definition (Point-wise Logic)
Let \mathcal{X} be a set of identifiers. Then the set \mathcal{L}_{w} of formulae over \mathcal{X} is the smallest set of formulae constructed according to the following abstract syntax:

$$
\begin{equation*}
\varphi::=\mathbf{t}\left|\langle\alpha\rangle_{c} \varphi\right| \varphi \wedge \varphi\left|[\alpha]_{c} \varphi\right| \varphi \vee \varphi|X| v X . \varphi \tag{1}
\end{equation*}
$$

Intuitively $\langle\alpha\rangle_{c}$ and $[\alpha]_{c}$ denotes the availability of an α labeled transition with weight c.

Weighted HML

Weighted extension of HML with recursion [7]
Definition (Point-wise Logic)
Let \mathcal{X} be a set of identifiers. Then the set \mathcal{L}_{w} of formulae over \mathcal{X} is the smallest set of formulae constructed according to the following abstract syntax:

$$
\begin{equation*}
\varphi::=\mathbf{t}\left|\langle\alpha\rangle_{c} \varphi\right| \varphi \wedge \varphi\left|[\alpha]_{c} \varphi\right| \varphi \vee \varphi|X| v X . \varphi \tag{1}
\end{equation*}
$$

Intuitively $\langle\alpha\rangle_{c}$ and $[\alpha]_{c}$ denotes the availability of an α labeled transition with weight c.

The semantics are given as a valuation $\llbracket \varphi \rrbracket_{\mathscr{E}}: S \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$.

Characterisation

Introduction

Theorem (Logical Characterisation)
Given states s and t of a WTS, then

$$
s \dot{\sim}_{\varepsilon} t \Longleftrightarrow\left|\llbracket \varphi \rrbracket_{\mathscr{E}}(s)-\llbracket \varphi \rrbracket_{\mathscr{E}}(t)\right| \leq \varepsilon \text { for all } \varphi \in \mathcal{L}_{w}
$$

For the non-disounted $\dot{\sim}_{\varepsilon}$

Conclusion

Where are we?

So far, we have identified:

- 6 relevant trace metrics.

■ 6 relevant simulations (branching metrics).

- Established basic properties of the above metrics.
- A characterising (point-wise) logic.

Future work

Logics:

- Accumulating logic.

■ Max-lead logic.
■ Discounted versions.

Tool support:

- Prototype impl.

Metrics:

- Computability and Complexity
- Continuity w.r.t composition.

Questions, should we:
■ add a metric on 「?

- compare finite traces of unequal length?

Summary

Thank you

crt@cs.aau.dk

- Extension of LTS to WTS.
- Semantics of WTA as WTS.
- Extension of $=\angle$ to:
- Point-wise distance.
- Accumulated distance.
- Max-lead distance.
- Extensions of \sim to:
- Point-wise distance.
- Accumulated distance.
- Max-lead distance.

■ Point-wise Weighed-HML extending HML.
■ Characterisation theorem.

Future work (highlights):
■ Decidability of metrics.
■ Logical characterisations.

- Prototype impl.

Definition (Weighted Timed Automata)

A weighted timed automaton is a tuple $\left(L, I_{0}, \mathcal{C}, I, E, p, r\right)$ where

■ L is a finite set of locations, with I_{0} initial,

- \mathcal{C} is a finite set of real-valued clocks,

■ I: $L \rightarrow \Psi(\mathcal{C})$ assigns invariants to locations,

- $E \subseteq L \times \Psi(\mathcal{C}) \times 2^{\mathcal{C}} \times L$ is a set of edges,
- $p: E \rightarrow \mathbb{N}$ is a edge price function, and
- $r: L \rightarrow \mathbb{N}$ is a location rate function.

The set $\Psi(\mathcal{C})$ of clock constraints is generated by the grammar

$$
\psi::=x \bowtie k|x-y \bowtie k| \psi_{1} \wedge \psi_{2} \quad \bowtie \in\{\leq,<,=, \geq,>\}
$$

for $x, y \in \mathcal{C}, k \in \mathbb{R}$.

Semantics for logic

Definition
Given a WLTS W $=(\mathcal{S}, w, \lg)$ over a $\operatorname{LTS} \mathcal{S}=\left(S, s_{0}, \Gamma, R\right)$ a declaration \mathscr{D} and an interpretation \mathscr{E}, every formula $\varphi \in \mathcal{L}_{w}$ defines a valuation $\llbracket \varphi \rrbracket_{\mathscr{E}}: S \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$:

$$
\begin{align*}
& \llbracket \mathbf{t} \rrbracket_{\mathscr{E}}(s) \quad=0 \tag{R1}\\
& \llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket_{\mathscr{E}}(s)=\max \left\{\llbracket \varphi_{1} \rrbracket_{\mathscr{E}}(s), \llbracket \varphi_{2} \rrbracket_{\mathscr{E}}(s)\right\} \tag{R2}\\
& \llbracket \varphi_{1} \vee \varphi_{2} \rrbracket_{\mathscr{E}}(s)=\min \left\{\llbracket \varphi_{1} \rrbracket_{\mathscr{E}}(s), \llbracket \varphi_{2} \rrbracket_{\mathscr{E}}(s)\right\} \tag{R3}\\
& \llbracket\langle\alpha\rangle_{c} \varphi \rrbracket_{\mathscr{E}}(s)=\left\{\begin{array}{l}
\min \left\{\left.\max \left\{\frac{|c-d|}{\mid g(\alpha)}, \llbracket \varphi \rrbracket_{\mathscr{E}}\left(s^{\prime}\right)\right\} \right\rvert\, s \xrightarrow{\alpha, d} s^{\prime}\right\} \\
\text { or } \infty \text { whenever } s \nrightarrow
\end{array}\right. \tag{R4}\\
& \llbracket[\alpha]_{c} \varphi \rrbracket_{\mathscr{E}}(s)=\left\{\begin{array}{l}
\max \left\{\operatorname { m a x } \left\{\frac{|c-d|}{\left.\left.\operatorname{lg(\alpha)}, \llbracket \varphi \rrbracket_{\mathscr{E}}\left(s^{\prime}\right)\right\} \mid s \xrightarrow{\alpha, d} s^{\prime}\right\}}\right.\right. \\
\text { or } 0 \text { whenever } s \nrightarrow
\end{array}\right. \tag{R5}\\
& \llbracket X \rrbracket_{\mathscr{E}} \quad=\mathscr{E}(X) \tag{R6}\\
& \llbracket v X . \varphi \rrbracket_{\mathscr{E}} \quad=\sup \left\{\rho \in \Delta \mid \rho=\llbracket \varphi \rrbracket_{\mathscr{E}}\{X:=\rho]\right\} \tag{R8}
\end{align*}
$$

Where $s \nrightarrow$ denotes the fact that $\nexists s^{\prime}$ such that $\left(s, \alpha, s^{\prime}\right) \in R$.
We will write $s \models_{c} \varphi$ whenever $\llbracket \varphi \rrbracket_{\mathscr{E}}(s)=c$.

