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True or False?
In formal methods, we typically use

models of systems and their specification,

A binary notion to describe whether models meet their
specification.

A classical example is CCS and equivalencies; bisimulation, weak
bisimulation and language equivalence (∼, ≈ and =L resp.) where model
and specification are either related – or not.
Also reachability and safety tends to be considered true or false.

Finally, when model-checking of logical formulae, properties are satisfied or

not.
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Introducing quantifiable properties in model
– such as weights and time

We ask
Can we use metrics to compare models and specifications, more
liberally? e.g. w.r.t simulation, we would like to know if are
nearly equal, or far from it.

In case of reachability and safety, these have been addressed by
Bouyere et al. in [2] at FORMATS’08 and Fahrenberg and
Larsen in [1] at INFINITY’08
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Motivation

Why is this interesting?

Assuming our ultimate goal is to “push” formal methods of
verification in to main-stream industry, quantitative analysis
supports:

Iterative development

Progress estimation

Estimate benefits of further development
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Example w. weights

Classic simulation clearly wouldn’t relate these. So how should
we compare these? (assuming all are labeled identically)

a

b

c

7

10

1

a1

b1 b2

c1 c2 c3

5 8

12 9

1 1

4

1

Consider edges separately or the total sum over traces?
Using traces (words) or simulations?
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Weighted Timed automata

Introduced by Behrmann et al. [5] and Alur et al. [6] at HSCC’01.

A system with modes: High, Medium, and Low. After 3 time units, the

mode degrades (action d). In Medium or Low mode, the system can be

attended to (action a), which advances it to a higher mode.

R = 2

x ≤ 3

H
R = 5

x ≤ 3

M
R = 9

L

x = 3 x := 0

d

x = 3

d

y ≥ 2 x , y := 0

a P = 2

y ≥ 2 x , y := 0

a P = 1

the following cyclic behaviour provides an infinite run:

(H, 0, 0)
3−→ (H, 3, 3)

d−→ (M, 0, 3)
3−→ (M, 3, 6)

d−→ (L, 3, 6)
1−→

(L, 4, 7)
a−→ (M, 0, 0)

3−→ (M, 3, 3)
a−→ (H, 0, 0) −→ · · ·
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Weighted Transition Systems

Definition (WTS)

A weighted transition system is a triple (S,w , lg) where

S = 〈S , s0, Γ,R〉 is a labeled transition system, with states
S , initial state s0, alphabet Γ, and transitions
R ⊆ S × Γ× S ,
w : R → R≥0 assigns weights to transitions, and
lg : Γ→ R≥0 assigns lengths to labels.

The cost c : R → N is the product of the transition weight w
and length of the label lg – observe the “distance” of the WTS
transitions:

A B

x4 x2

4 · x − 2 · x
x

= 2
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Semantics of WTA as WTS

The semantics of a WTA A is given by a WTS W = (S,w , lg),
where S = (S , (l0, v0), {?} ∪ R≥0,T ) is the (usual) labeled
transition system associated with the underlying TA of A,
lg(?) = 1, lg(δ) = δ for δ ∈ R≥0, and for t ∈ T ,

w(t) =

{
price(e) if t = (l , v)

?−→ (l ′, v ′) and e = l
ψ,?,C−−−→ l ′ ∈ E

rate(l) if t = (l , v)
δ−→ (l , v + δ)

Observe that:

Switch transitions labeled ? are given lengths 1

Delay transitions labeled δ are given length δ.
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Trace equivalence

Trace (or language) equivalence, for WTS, is the comparison of
sets of all traces, such that for states s, t ∈ S :

Tr(s) = Tr(t)

We write s =L t to denote that s and t are un-weighted trace
equivalent.

Next. we use both the standard alphabet and cost values.
Traces which are not un-weighted equivalent. are assigned the
distance ∞.
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Quantifying Trace Distances

Using discounting, to disregard future expenses;

The point-wise trace distance between states s, t ∈ S is:

‖s, t‖• = max


sup

σ∈Tr(s)
inf

σ′∈Tr(t)
{sup

i

λsi (σ)

|c(σ(i))− c(σ′(i))|}

sup
σ∈Tr(t)

inf
σ′∈Tr(s)

{sup
i

λsi (σ)

|c(σ(i))− c(σ′(i))|}

Accumulating trace distance of states s and t is:

‖s, t‖+ = max


sup

σ∈Tr(s)
inf

σ′∈Tr(t)
{
∑

i

λsi (σ)

|c(σ(i))− c(σ′(i))|}

sup
σ∈Tr(t)

inf
σ′∈Tr(s)

{
∑

i

λsi (σ)

|c(σ(i))− c(σ′(i))|}

si (σ) =
∑i

j=0 lg(σ(j)) and 0 < λ < 1
we use the length for discounting the accumulated length...
(future)
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Trace examples

a

b

c

7

10

1

a1

b1 b2

c1 c2

c3

5 8

12 9

1 1

4

1

‖σ, σ′‖• = sup
i
{|c(σ(i))− c(σ′(i))|}

‖σ, σ′‖+ =
∑

i

{|c(σ(i))− c(σ′(i))|}

σ = a
7−→ b

10−→ c
1−→ b

10−→ · · ·

σ1 = a1
5−→ b3

12−→ c1
1−→ b1

12−→ · · ·

σ2 = a1
5−→ b3

9−→ c1
1−→ b1

9−→ · · ·

σ3 = a1
8−→ b2

4−→ c3
1−→ b2

4−→ · · ·

For the finite traces ..

‖σ, σ1‖• = 2 ‖σ, σ2‖• = 2 ‖σ, σ3‖• = 6

‖σ, σ1‖+ = 4 ‖σ, σ2‖+ = 3 ‖σ, σ3‖+ = 7
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Additional trace distance

Observe that we now have 4 (distinct) trace
metrics.

An additional two maximum-lead distances may be defined (w.
an w.o. discounting) such that traces σ and σ′ have distance 2.

σ = a
7−→ b

10−→ c

σ′ = a1
5−→ b3

12−→ c1
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“Standard” (Bi)simulation for WTS

Definition (Weighted Simulation)

A binary relation R ⊆ S × S is a simulation if and only if,
whenever (s, t) ∈ R and α ∈ Γ and c ∈ R≥0 then

if s
α,c−−→ s ′ then t

α,c−−→ t ′ with (s ′, t ′) ∈ R for some t ′ ∈ S

We say that t simulates s and write s 4 t whenever (s, t) ∈ R
for some simulation R.

Define s ∼ t and s ∼uw t as usual.
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Quantifying Simulation

As for language equivalence, we define quantitative simulation
relations, in order to capture branching properties i.e. the
behaviour of system models.

Point-wise (bi)simulation

Accumulated (bi)simulation

Max-lead (bi)simulation (shown in [4] to be poly-time1

decidable for timed automata)

1in the size of the region graph, which in turn is exponential in the size
of clocks



page 15

Introduction

Formalisms

Relations

properties

Logic

Characterisation

Final Remarks

Point-wise (bi)simulation

A family of relations R = {Ṙε ⊆ S × S | ε ≥ 0} is a point-wise
bisimulation family if (s, t) ∈ Ṙε ∈ R and α ∈ Γ imply that

if s
α,c−−→ s ′ then t

α,d−−→ t ′ with |c − d | ≤ ε/lg(α) and
(s ′, t ′) ∈ Ṙε′ ∈ R for some d , t ′ and ε′ ≤ ε

λlg(α) ,

if t
α,c−−→ t ′ then s

α,d−−→ s ′ with |c − d | ≤ ε/lg(α) and
(s ′, t ′) ∈ Ṙε′ ∈ R for some d , t ′ and ε′ ≤ ε

λlg(α) .

We write s ∼̇ε t whenever (s, t) ∈ Ṙε ∈ R for some point-wise
bisimulation family R.
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Accumulated (bi)simulation

A family of relations R = {Rε ⊆ S × S | ε ≥ 0} is an
accumulating bisimulation family if (s, t) ∈ Rε ∈ R and α ∈ Γ
imply that

if s
α,c−−→ s ′ then t

α,d−−→ t ′ with |c − d | ≤ ε/lg(α) and

(s ′, t ′) ∈ Rε′ ∈ R for some d , t ′ and ε′ ≤ ε−|c−d |
λlg(α) ,

if t
α,c−−→ t ′ then s

α,d−−→ s ′ with |c − d | ≤ ε/lg(α) and

(s ′, t ′) ∈ Rε′ ∈ R for some d , t ′ and ε′ ≤ ε−|c−d |
λlg(α) .

We write s
+∼ε t whenever (s, t) ∈ Rε ∈ R for some

accumulating bisimulation family R.
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Properties

We have the following properties for the defined relations:

1 the relation ∼̇ε is:

The largest point-wise bisimulation family.
For all Ṙε and Ṙε′ ∈ ∼̇ε where ε ≤ ε′ then Ṙε ⊆ Ṙε′ and
For ε ≥ 0 : ∼ ⊆ ∼̇ε ⊆ ∼uw

2 r ∼̇ε s ∧ s ∼̇ε′ t =⇒ r ∼̇ε+ε′ t

3 If s ∼̇ε t then ‖s, t‖• ≤ ε
4 the relation

+∼ε is:

The largest accumulating bisimulation family.
For all Rε and Rε′ ∈ +∼ε where ε ≤ ε′ then Rε ⊆ Rε′ and
For ε ≥ 0 : ∼ ⊆ +∼ε ⊆ ∼uw

5 If s
+∼ε t then ‖s, t‖+ ≤ ε
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Weighted HML
Weighted extension of HML with recursion [7]

Definition (Point-wise Logic)

Let X be a set of identifiers. Then the set Lw of formulae over
X is the smallest set of formulae constructed according to the
following abstract syntax:

ϕ ::= tt | 〈α〉cϕ | ϕ ∧ ϕ | [α]cϕ | ϕ ∨ ϕ | X | vX .ϕ (1)

Intuitively 〈α〉c and [α]c denotes the availability of an α
labeled transition with weight c .

The semantics are given as a valuation JϕKE : S → R≥0 ∪ {∞}.
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Characterisation

Theorem (Logical Characterisation)

Given states s and t of a WTS, then

s ∼̇ε t ⇐⇒ |JϕKE (s)− JϕKE (t)| ≤ ε for all ϕ ∈ Lw

For the non-disounted ∼̇ε
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Conclusion

Where are we?
So far, we have identified:

6 relevant trace metrics.

6 relevant simulations (branching metrics).

Established basic properties of the above metrics.

A characterising (point-wise) logic.
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Future work

Logics:

Accumulating logic.

Max-lead logic.

Discounted versions.

Tool support:

Prototype impl.

Metrics:

Computability and Complexity

Continuity w.r.t composition.

Questions, should we:

add a metric on Γ?

compare finite traces of unequal
length?
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Summary

Thank you
<crt@cs.aau.dk>

Extension of LTS to WTS.

Semantics of WTA as
WTS.

Extension of =L to:

Point-wise distance.
Accumulated distance.
Max-lead distance.

Extensions of ∼ to:

Point-wise distance.
Accumulated distance.
Max-lead distance.

Point-wise Weighed-HML
extending HML.

Characterisation theorem.

Future work (highlights):

Decidability of metrics.

Logical characterisations.

Prototype impl.

mailto:crt@cs.aau.dk
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Definition (Weighted Timed Automata)

A weighted timed automaton is a tuple (L, l0, C, I ,E , p, r)
where

L is a finite set of locations, with l0 initial,

C is a finite set of real-valued clocks,

I : L→ Ψ(C) assigns invariants to locations,

E ⊆ L×Ψ(C)× 2C × L is a set of edges,

p : E → N is a edge price function, and

r : L→ N is a location rate function.

The set Ψ(C) of clock constraints is generated by the grammar

ψ ::= x ./ k | x − y ./ k | ψ1 ∧ ψ2 ./ ∈ {≤, <,=,≥, >}

for x , y ∈ C, k ∈ R.
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Semantics for logic

Definition
Given a WLTS W = (S, w , lg) over a LTS S = (S , s0, Γ,R) a
declaration D and an interpretation E , every formula ϕ ∈ Lw

defines a valuation JϕKE : S → R≥0 ∪ {∞}:

JttKE (s) = 0 (R1)

Jϕ1 ∧ ϕ2KE (s) = max{Jϕ1KE (s), Jϕ2KE (s)} (R2)

Jϕ1 ∨ ϕ2KE (s) = min{Jϕ1KE (s), Jϕ2KE (s)} (R3)

J〈α〉cϕKE (s) =

min
{

max
{ |c−d |

lg(α) , JϕKE (s ′)
}
| s α,d−−→ s ′

}
or ∞ whenever s 6 α−→

(R4)

J[α]cϕKE (s) =

max
{

max
{ |c−d |

lg(α) , JϕKE (s ′)
}
| s α,d−−→ s ′

}
or 0 whenever s 6 α−→

(R5)

JX KE = E (X ) (R6)

JvX .ϕKE = sup{ρ ∈ ∆ | ρ = JϕKE [X :=ρ]} (R8)

Where s 6→ denotes the fact that 6 ∃s ′ such that (s, α, s ′) ∈ R.
We will write s |=c ϕ whenever JϕKE (s) = c .
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