UMIACS-TR-89-63 July, 1989
CS-TR-2275

Incremental Implementation Model for Relational
Databases with Transaction Time 1
Christian S. Jenseni
Department of Computer Science
University of Maryland
Leo Mark and Nick Roussopoulos

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

The database literature contains numerous contributions to the understanding of
time in relational database systems. In the past, the focus has been on data model is-
sues and only recently has efficient implementation been addressed. We present an
implementation model for the standard relational data model extended with transaction
time. The implementation model exploits techniques of views materialization, incre-
mental computation, and deferred update. It is more flexible that previously presented
partitioned storage models. A new and interesting class of detailed queries on change
behavior of the database is supported.

1 Supported by NSF grant number IRI-8719458 and AFOSR grant number AFOSR—-89-0303.
} Additional support provided by Aalborg University, Denmark.

1 Introduction

There seems to be general agreement in the database community that efficient and user-friendly
time support is needed.

Three orthogonal concepts of time, transaction time, logical time, and user-defined time have
been described, see [SA85]. Transaction time is time in the input subsystem of the database system
and is therefore application independent. In contrast, logical time is time in the part of reality
modeled in the database, and user-defined time is an uninterpreted time domain. The orthogonality
of these domains allows us to consider them one at a time. A database supporting only transaction
time is termed a static rollback database: Once entered, data are logically never deleted, and it is
possible to rollback or time-slice the database in order to see a previous state. For surveys and
further references to work on time extended relational data models, see {SA85] and [BADW82]; for
a comparison of some of the best documented temporal data models, see [Sno87].

As a sharp contrast to the extensive amount of work on data models, there has only been done
little work on the efficient implementation of temporal databases [SA88]. The main efforts have
been in the investigation of partitioned storage strategies, where the fundamental assumption is
that fast retrieval is needed for current data while a gracefully degrading performance is allowed for
retrievals of older data; see [SA88] [SL89] for presentations and references. Our storage strategy is far
more flexible than partitioned storage strategies. While partitioned strategies only support recent
data efficiently the model of this paper is able to support efficient access ;:o arbitrary time-slices
of arbitrary relations. Another approach [SK86], suggests grid files as a means of implementation.
First, they assume an ordering on time and surrogate domains; we find an ordering on surrogates
unnatural. Second, no indices on other attribute domains are allowed which again is unsatisfactory
to us. For an overview of and further references to efforts relevant to storage of temporal databases,
see [McK88].

Our main design objective is to make a small and yet powerfull extension of the standard rela-
tional model. Consequently, we choose to time stamp tuples as opposed to attribute values, thus
remaining within 1. NF. Also, relations that have a time dimension and thus are three dimensional
are required to be time-sliced into normal, “flat” relations before they can be manipulated in the
relational algebra. This assures that the standard operators work without modification in the ex-
tended model, and it eases implementation. In our efforts to make the extension both semantically
and syntactically transparent to users using only the standard features of the model, we introduce
for each base relation a backlog relation that records the change history of the corresponding base
relation. Furthermore appropriate default syntax has been provided for. The backlogs, when used

directly in queries, allow for the retrieval of more detailed information about the change history of

2

their relations than do any other models at present known to the authors. Updates to relations
are entered as time stamped change requests into the backlogs. Propagation to the corresponding
relations can use update strategies ranging from eager to lazy. When a query is computed, an access
path consisting of intermediate views and a final view is generated. The access paths can be stored
as either index caches or materialized data. An index cache for a view is a collection of pointers
pointing to the tuples of the views or base relations the view is derived from. The model allows
for dynamic control of redundancy. Finally, the computation, and recomputation, of views is done
incrementally or decrementally from already computed and stored views.

The view concept is central in the implementation model. During the past ten years much work
has centered on the exploitation of views for various purposes. The idea of materializing access paths
is presented in [Rou82b] and [Rou82a] where the standard relational data model is the framework.
The ADMS4 system [RK86] utilizes lazy evaluation and incremental update based on access paths
stored as index caches [Rou89]. The implementation model of the present paper can be seen as
a natural extension of this work. It it based on a time extended data model. We permit choices
between update strategies ranging from lazy to eager; we allow for choosing between storing and not
storing access paths, and when storing them we allow choices on how they are stored. Work on how
to efficiently maintain views stored as materialized data can be found in [TB88] [BLT86} [BCL86].
This work focus on how to detect irrelevant and (conditionally) autonomously computable updates.
Other related work can be found in [Han] [Cam81] [DB78] [AL80] [0S89].

The contents of the remaining sections of the paper are:

Section 2, Data Structures of the Implementation Model, describes the different kinds
of relations that make up the data structures of the implementation model. First the backlog is
introduced. Then base relations are presented. Storage of fixed and time dependent time-slices
of base relations is discussed, and the presentation is generalized to wiews. The last concept, the
differential file, is presented and the section is concluded with a summary.

Section 3, Query Evaluation and Redundancy Control, consists of two parts. In the first,
the function of a query evaluation subsystem is described. The decisions to be made by the system in
order to efficiently evaluate queries are briefly outlined. In the second part, a number of simplifying
assumptions are applied to the general case, and-it is described how the system.incrementa]ly or
decrementally evaluates queries in the simplified setting.

Section 4, Sample Queries, shows how sample queries are evaluated in the model presented in
the .previous two sections. Special focus is put on the helpfulness of backlogs in answering queries
on change history of relations.

The last section contains the Conclusion and Future Research.

2 Data Structures of the Implementation Model

In this section we present the basic concepts of the storage model. We present the different kinds
of relations in the model, i.e. backlog, base relation, view, backlog view, differential file. We charac-
terize these relation types according to traditional understandings of base relations and views, and

according to persistence and time dependence.

2.1 Backlogs

A backlog, Bg, for a relation, R, is a relation that contains the complete history of change requests
to relation R.

The schema of relation R and its corresponding backlog is shown in figure 1.

Relation name Br
Attribute name | Domain name
Id SURROGATE
Relation name R Op {Ins, Del, Mod}
Attribute name | Domain name Time TTIME
A D, Ay D,
As D, A, D,
An Dn An D,

Figure 1: Schema for the relation R and its backlog, Bem,.

The tuples of backlogs are termed change requesis because a backlog contains change requests to
its corresponding base relation. As shown, Br contains three attributes in addition to the attributes
of R. Id is defined over a domain of logical, system generated unique identifiers, i.e. surrogates.
The values of Id represent the individual change requests, they can be referenced but not read by
users/application programs. The attribute Op is defined over the enumerated domain of operation
types, and values of Op indicate whether an insertion (Ins), a deletion (Del) or a modification (Mod)
is requested. Finally, the attribute Time is defined over the domain of transaction time stamps,
TTIME. The value of a time stamp is the time when the transaction - resulting in the request to be
stamped - is ready to commit. Thus we assume the existence of a system clock correctly reflecting

real time.

The database management system (DBMS) automatically generates a backlog for each base
relation (i.e. user-defined and schema relations). A backlog, Bg, of change requests is illustrated in

figure 2.

Br Time

Change requests

Figure 2: A backlog, Br, consisting of change requests. For illustrative purposes we assume that

change requests are ordered by increasing time stamp values from left to right.

Also the DBMS maintains the backlog relations. Figure 3 shows the effect on backlogs of op-
eration requests on their corresponding relations. When an insertion into R is requested the tuple
to be inserted is entered into Bp. When a deletion is requested key information is entered into the
backlog and in the case of modification both key information and new values are inserted into the

backlog.

The Effect of Requested Operations on Backlogs

Requested operation on R: Effect on Bg:
insert R(tuple) insert Br(id, Ins, time, tuple)
delete R(k) insert Br(id, Del, time, k)
modify R(k, new value) |insert Bgr(id, Mod, time, k, new value)

Figure 3: System controlled insertions into a backlog.

ExaMPLE: We introduce a sample database to illustrate the concept of backlog and other concepts
to be presented in the sequel. The database consists of one user-defined relation, Emp, with three
attributes. Figure 4 shows the schema of Emp and its backlog, Bgmp. Note that relation Emp
is used as a domain for the “Tuple” attribute. This is only a conyenient shorthand, not a nested

attribute (cf. figure 1).

Relation name Bemp
Relation name Emp Attribute name | Domain name
Atiribute name | Key | Domain name 1d SURROGATE
Id nil [SURROGATE Op {Ins, Del, Mod}
Name K, | STRING(20) Time TTIME
Salary nil INT Tuple Emp

Figure 4: Schema for the user-defined relation, Emp, and its backlog, Bemp.

2.2 Base Relations

As a consequence of the introduction of time stamps, a base relation is now a function of time. To

retrieve a base relation it must first be time-sliced. Let R be any base relation, then the following

are examples of time-slices of R:

R(tinit) = Rinit
R(t;) ' R7attime .7, to > tinie
R ¥ Rrwow)

When the database is initialized, it has no history and it is in an initial state, possibly with
every relation equal to the empty set. If R is parameterized with an expression that evaluates to a
time value, the result is the state of R as it was at that point in time. It has no meaning to use a
time from before the database was initialized and after the present time. If R is used without any
parameters this indicates that the wanted relation is the current R. Note, that this feature helps

provide transparency to the naive user. We also introduce the special variable NOW which assumes

the time when the query is executed.

Time-slices of base relations can be either stored or recomputed when needed. There are two

ways of storing base relations:

e index cache

e materialized data

Firstly, a base relation can be stored as an indez cache (or just cache for short). A cache is

a pointer array, where the entries contain pointers to the associated backlog. The name of this

structure is due to the observation that it inherits both characteristics from caches and indexes.
Like a cache it avoids search - all it has to do is to fetch the data pointed to. Like an index, it
stores pointers to actual data records, and is buffered into main memory and is read in its entirety
[Rou89). Secondly, a relation can be stored as actual materialized data. The coexistence between

caches and materialized data is shown in figure 5.

Br

(X

R(050189) R(NOW)
Figure 5: Several differently stored time-slices of a base relation can exist at the same time.

The choice between materializing data or creating a cache reflects a trade-off between replication

of data and speed, just as does the choice between creating a cache or nothing at all.

o

Time-slices of base relations can be
e fired

e time dependent

If the expression, F, of a time-sliced relation, R(E), contains the variable NOW, then R is
time dependent. Otherwise, it is fixed. While fixed time-slices never get outdated, time dependent
time-slices do. Thus, stored time dependent relations must be updatable. Update strategies ranging
from eager to lazy can be adopted. In an eager approach change requests inserted into backlogs

_are immediately reflected into the corresponding time-slices. In a lazy approach change requests

inserted into backlogs at update-time are not reflected in time-slices until at retrieval-time.

ExaMPLE: Figure 6 shows the extension of Emp at two points in time. The extension of the

corresponding backlog is shown in figure 7.

Emp(NOW - 20 days) Emp

~Id Name | Salary Id Name | Salary
“surrogate” | Mark |90 000 “surrogate” | Smith |30 000
“surrogate” | Brown | 32 000 “surrogate” | Brown | 32 000
“surrogate” | Jensen |10 000 “surrogate” | Jensen | 11 000

Figure 6: Time-slices of a relation, where NOW = 4:00 pm, May 1. 1989.

BeEmp

Id Op Time Idgmp Name | Salary
“surrogate” | Mod | 0420891238 | “surrogate” | Brown | 42 000
“surrogate” | Ins [0408891034 | “surrogate” | Brown | 32 000
“surrogate” | Ins | 0402891456 | “surrogate” | Mark |90 000
“surrogate” | Mod | 0420891245 | “surrogate” | Brown | 32 000
“surrogate” | Ins [0331891131 | “surrogate” | Jensen | 10 000
“surrogate” | Del | 0415891209 | “surrogate” | Mark | 90 000
“surrogate” | Ins | 0419890902 | “surrogate” | Smith | 30 000
“surrogate” | Mod | 0501891555 | “surrogate” | Jensen | 11 000

Figure 7: The backlog corresponding to the time-slices in the previous figure. Note that the last
three columns together constitute tuples of R and were referenced as a single attribute “Tuple” in

the description of the schema of the backlog.

2.3 Views on Base Relations and Backlogs

In the previous subsection we only considered base relations. In this subsection we generalize to
views. Views can be created from other views, base relations or backlogs. What was said about base

relations in the previous subsection is true for views as well:
e Views can be stored as index caches or as materialized data.

e Views are either time dependent or fixed.

Some explanation and qualification is, however, needed. Cached views have references to the
relations and views they are derived from and consist of pointers to these. Views can only be cached

if the relations they are derived from are stored. Time dependent views stored as materialized data

only need references to the relations and views they are derived from to facilitate update. Views
of this kind also require the relations and views they are derived from to be stored. Finally, fixed
views stored as data need no references to the relations and views they are derived from since they
never get outdated. Consequently they can be stored independently of whether the relations and
views they are derived from are stored or not.

A view is time dependent if at least one of the relations and views it is derived from is time

dependent. Otherwise it it fixed. Figure 8 illustrates a view.

Br

R(NO (NOW) M S(050139)

Bs

$(05018

Figure 8: An example of a cached view derived from a materialized and a cached relation. The

derived relation is time dependent because the materialized view is time dependent.

Traditional views are ultimately derived directly and solely from time-sliced base relations. If a
view ultimately is derived directly, i.e. not via a time-sliced base relation, from at least one backlog,

then we term it a backlog view. Backlog views are time-sliced as are base relations and views. We

define:

Br(t:) & OTime<t, BR
Bp & Br(NOW)

Backlog view time-slices involving NOW are time dependent, and, as above, so are backlog views

derived from views involving NOW. For an example, see figure 9.

EXAMPLE: We can use Bem, to retrieve all the employees that, during the last month, had variations

in their salaries. This is easily done with the following query:

" ONOW-30 days < Time < NOW A Op = Mod BEmp

Bgr

T

Figure 9: Views can be derived directly from backlogs.

The exact meaning of the query will be made clear in section 4. The result of the query is given

in figure 10.

ONOW —30 days < Time < NOW A Op = ModBEmp

1d Op

Time Idgmp Name | Salary

“surrogate”

Mod

0420891238

“surrogate”

Brown

42 000

“surrogate”

Mod

0420891245

“surrogate”

Brown

32 000

“surrogate”

Mod

0501891555

“surrogate”

Jensen

11 000

Figure 10: A backlog query and its result . NOW = May 11. 1989.

2.4 Daifferential files

Stored, time dependent relations (base relations, views, and backlog views) in general get outdated
as time passes and the database is updated. Updates result in insertions of change-requests into
the backlogs in the database. Such change-requests have to be reflected in the relations when they
are retrieved. If a base relation is to be retrieved, then the relevant change requests since the last

retrieval are a set of tuples in the associated backlog; this set of tuples is referred to as a differential

10

file. The differential file of a view is derived from the differential files of the relations and views,
the view is derived from and it contains the change requests relevant for updateing the view. While
differential files of relations directly derived from backlogs are physically stored, differential files of

all other relations (views) are purely conceptual constructs. See figure 11 and 12.

Br §R

Bs

S(05018

Figure 11: The differential file of a view is derived from the differential files of the relations it is

derived from.

Moot

Figure 12: A “sliding window” backlog view.

EXAMPLE: Suppose that we compute the time-slice R(NOW — 6) at time ¢ = 10. The time-slice
(assuming it is a view cache) will consist of pointers to the change-requests that indicate the valid
tuples at time t = 4, i.e. it will be pointers to change requests issued before ¢ = 4. If we look at
this time-slice at ¢ = 15, then the change requests after ¢ = 4 and before ¢t = 9 will constitute the

differential file of R(NOW — 6), because now we need to display the valid tuples at ¢ = 9. While

11

fixed views do not get outdated, time dependent views in general get outdated. a

2.5 Summary of Data Structures

It is common practice to distinguish between views and base relations. In this section we have pre-
sented several kinds of relations. To get a better understanding of these, let us look at the generally
accepted characterizations of views and base relations. Two dimensions are used to distinguish tHese.
The first is the question of physical storage. Traditionally, base relations are stored while views are
computed or virtual. The second is the question of logical derivability. Base relations are not deriv-
able from other relations, while views are. See figure 13 where generally accepted characterizations

of base relation and view are summarized [Dat86] [Ul182] [Cod79].

Traditional relation concepts

Concept Description

base relation | Actual data are stored in the database. The relation physically
exists, in the sense that there exists records in storage that directly
represent the relation. The Emp relation is an example. A base
relation cannot be derived from other relations. A base relation
definition is part of the schema.

view A view is characterized as a virtual, derived or computed relation.
It is not physically stored, but looks to the user retrieving info from
the database as if it is. A view definition is part of a subschema.

Figure 13: The usual definitions of relation types.

We have given the relation concepts new meaning. Every base relation has a backlog. All data
of such relations are stored in the relations backlogs in the form of change requests. This makes
backlogs act as base relations and base relations act as views, derived from backlogs. The new

meanings are described in figure 14. In the sequel, we will use the definitions presented there.

We can summarize the concepts presented in this section as illustrated in figure 15.

We distinguish between backlog views, traditional views and base relations. The only difference
between views and base relations are that the former are derived indirectly from backlogs while the
latter are derived directly. A view is valid only at a single point in time: The time-value specified
when it was produced using the query language. Backlogs have an associated lifespan: From the

time when the corresponding base relation was created till the current time - if they still exist - or

12

Redefined relation concepts

Concept Description

backlog | Backlogs are the relations that now function as base relations in the
sense that they are stored and that all other relations (ultimately)
are derived from these.

base relation | Base relations are not necessarily stored, and they are derived (di-
rectly) from backlogs. Thus the base relation Emp is derivable from
BEmp and is not necessarily physically existent.

view The data of a view still is - directly or indirectly - constructable
from base relations - or backlogs. However, even though a view
still is derived, it is not necessarily virtual or computed. Views can
be persistent.

Figure 14: Redefinitions of relation types.

view
time dependent view cache
base relation } X X
fixed materialized data
backlog view

Figure 15: Different types of persistent views.

otherwise till they were deleted. Backlog views inherit this notion of lifespan.

The second dimension in figure 15, time dependence, distinguishes between fized and time de-
pendent views. The valid time of fixed time-slices of base relations and views and the lifespan of
fixed backlog views never change. Because it is possible to use the special variable NOW in query
expressions, both base relations, views and backlog views can, however, be time dependent. A time
dependent base relation can be visualized as a view that slides along a backlog as time passes. Sim-
ilarly a backlog view can be thought of as a filtering window where one or both ends (start time
and end time) move along a backlog. Let E be an expression which maps into the domain TTIME
and R a relation. For each time dependent time-slice, R(E(NOW)), there is a differential file,
SR(E(NOW)). This differential file is a sequence of change requests in the backlog of the relation,
that are not yet reflected in the actual state of the time-slice.

The third dimension of figure 15 is persistence. When the system chooses to store a view, it can
be done in two ways. First, a view can be stored as a pointer array, where an entry contain pointers

to the relations (view or base) the view is derived from. The schema entry for a view contains

13

information on how to materialize the view from the data pointed to (recursively). This structure
is called an ¢ndez cache (or just cache for short) because it inherits characteristics from both caches

and indexes. Second, a view can be stored as actual materialized data.

3 Query Evaluation and Redundancy Control

Evaluation of queries and management of storage are closely tied together in the implementation
model. First, we present the problem of query evaluation and control of redundancy in the general
setting presented in this paper. Second, we make simplifying assumptions to reduce complexity, and

describe an algorithm for incremental/decremental computation.

3.1 A General Framework

We are now in a position to outline the function of the query evaluation subsystem. We will only
present the choices that the query evaluation subsystem must make in order to evaluate queries.
How to actually make these choices is left for future research.

In the process of computing a view intermediate views are computed. All intermediate views are
treated the same way as is the resulting view.

Let us assume that a query is issued against our database and let us take a closer look at the

decisions we have to make in the process of evaluating it. These are outlined in figure 16.

, \ (update strategy
redundancy
eager e .
not store result initial computation
o computation procedure is
< store result ¢ X 4 > X) ‘
. threshold triggered selected using cost estima-
index cache .
.. tion
materialized data
t lazy J

Figure 16: Decisions made by the query evaluation subsystem.

It is decided whether the result (similarly for the subresults) should be stored or not, and, in the
case of storing, whether a view cache or materialized data should be chosen. Some restricitons apply:
In subsection 2.3 we mentioned that for any time dependent result to be stored, the subresults it is
derived from must be stored, too. Also, subresults of a view cached result (fixed or time dependent)

must be stored. The decision is made by consulting usage and profile statistics for the database.

14

These should include update and retrieval frequencies for relations, relation sizes and cardinalities,
attribute sizes and cardinalities, domain cardinalities, etc. For references on how to derive and
apply such statistics, see [Rou82a] [Rou89] [SAC*79] [Man88]. The idea is to estimate whether the
results to be computed might come in handy when future queries are issued against the database.
The factors that influence the mutual feasibility of these three alternatives are subject to current
research. The fundamental trade-off is one between space/redundancy versus overall computation
and retrieval speed.

In case we choose to store the result, we must now decided how it should be updated. We choose
between strategies ranging from lazy to eager evaluation. Intermediate strategies such as threshold
triggered update based on global system work-load are considered. Note, that these questions only
are of interest for time dependent views. Also note, that some restrictions apply: Generally, a relation
derived from another relation should not be more eagerly updated than that relation. These are
choices of when and how much to process. A lazy strategy might compromise the responsiveness of
the system for specific queries but allows for minimal overall processing time, too.

It is decided how to most efficiently compute the query. In general a strategy where already
computed - and stored - partial results are either decremented or incremented is selected on the
basis of estimated costs. Costs are again computed from usage and profile statistics.

Finally previous decisions on what to store and how to maintain stored views are reconsidered
and possibly changed. This is necessary to dynamically control the level of redundancy and the
trade-off between system overhead and response time.

The sequence in which to carry out the above decisions is not obvious. Even though the activities

are inter-dependent there still are possibilities for some concurrency.

There is definitely a need to investigate a general framework as the one presented above, because
no single choice is optimal in all situations. Due to the overwhelming complexity of the general

framework we suggest that this is done by investigating less general but still promising settings one

at a time.

3.2 Lazy Evaluation and Cache Indices

To reduce the complexity of the problem, we make a number of simplifying assumptions on the query
evaluation scheme discussed above. We choose to consider only lazy evaluation of time dependent
base relations (and views). We disregard base relations, views, and backlog views that are fixed.
Base relations and views are stored as index caches. The views corresponding to subresults of queries

are stored the same way as are the final results. Our choices are outlined in figure 17. They coincide

15

with the way the ADMS= system is designed.

, \ update strategy
redundancy
relation type _ eager
—— time dependence not store result
X ltime dependent | ¢ %< store result X

backlog view

threshold triggered

fixed

materialized data

A
Figure 17: The boxed choices are considered.

The task of computing a query is now reduced to computing and storing time-sliced base relations
and views efficiently. This implies the usage of incremental techniques.

A time-slice can be either incrementally or decrementally computed from either older or more
recent stored time-slices. The empty relation is the oldest possible time-slice, and the current state

of the relation is the newest possible (but it is not necessarily stored) time-slice.

Top Level Freezing

The algorithm freeze presented below produces a time-slice R(t) of R at time ¢ from the backlog,
Bgr, of R. The time-slice is produced from the neighbor on the left or right, either of which is the
most promising. See figure 18. Note that the existence of differential files of neighbor time-slices
is irrelevant; only the references to the backlog telling when the time-slices were up-to-date are

required.

Cost(R;_1) : Cost(Hi41)

..4...
X
Y.

L L

R; R; R4

Figure 18: Costs are estimated, compared and a strategy is chosen.

16

)

freeze(Rt;)
Find R,,_,, where t;_; = max{t <t; A J a time-slice at time t}

Find, if it exists, Rq,,,, where t;4; = min{t > t; A 3 a time-slice at time t}

i+
if two time-slices are found
then estimate costs of using each time-slice as the outset
if cost(R,_,) < cost(Ry,,,)
then increment(R,t;_1,t;)
else decrement(R,t;11,ti)

-else increment(R,t;_,t;)

The two subroutines increment and decrement used by freeze are described in the following

subsections.

Incremental Freezing

Figure 19 illustrates incremental freezing.

-~
-

tz

Incremental

R(t:)

v

Figure 19: Incrementing an existing time-slice.

increment(R,ty,t;)
Res — R(ty)
t— 1y
while change requests with time stamps between ¢ and ¢,
do
pick oldest change request, at ¢’, bigger than ¢
update t « ¢’

case request type

17

DELETE

remove from Res the pointer pointing to delete-requested tuple
INSERT

insert into Res pointer to change-request tuple
MODIFY

insert into Res pointer to change-request tuple

return(R(t;) — Res)

Decremental Freezing

Figure 20 shows decremental computation of a view.

te ty

Br ! i

R(ty)

Decremental

A

R(tz)

Figure 20: Undoing change requests.

decrement(Rt, tz)
Res — R(ty)
t— 1y
while change requests with time stamps between ¢ and ¢,
do
pick newest unmarked change request, at t’, less than ¢
update t — ¢’
case request type
DELETE
insert into Res the pointer pointing to delete-requested tuple
INSERT
remove from Res the pointer pointing to insert-requested tuple

MODIFY

18

remove from Res the pointer pointing to modify-requested tuple

return(R(t;) «— Res)

Computation of Views

Above we only covered base relations. Here we give an example of how a view can be computed.

Assume we have base relations R, S and T, and V/(t) is defined as follows

def
V() T opR(t) X (0F,S(t) X raT(t))
To compute V(NOW), ignoring for clarity all the permutations from standard query optimiza-
tion, we break the defining expression into subexpressions looking for stored results that can be used

in incremental computations:

1. If V(t), for some t, has been computed already then at least one - possibly outdated - version of
V exists, and becomes the chosen. If several views containing V'(t), again for arbitrary values
of ¢, exist then the one with the lowest estimated cost is chosen. The chosen view is then used

in an incremental computation of V(NOW).

2. If V(t) has never been computed, time-slices containing or, R(t) are located; one is chosen,

and op, R(NOW) is computed using the algorithms above.
3. In case V(t) had not already been computed, we now continue with the next subexpression in

the definition of V(t). If a view containing

O’FQS(t) X WAT(t)

has already been computed, the most promising such one is selected and used in the incremental
computation of the subview. Otherwise, the two subexpressions are computed similarly to the

computation involving R.

4. Finally, when subexpressions are computed they are combined in further computations and

the final result is achieved.

Many details of the computations of views are left unspecified in the description above. Specif-
ically, easily computable and good cost estimation formulas for choosing between candidate views

are subject to current research.

19

4 Sample queries

The time extension and the additional data structures require an extended operation language. We
use the standard relational algebra as a basis for such an extension. Since base relations must be
time-sliced before they can be arguments of algebra operators and since system generated relations
are already “flat” in the same sense, the operators of the standard relational model work in our setting
without modifications. Our transaction time extension is very small and it is also transparent. This
simplicity is a major advantage of our design. In subsection 4.1 we present and shortly discuss the
operators of our data model. In subsection 4.2 we illustrate the utility of parts of the operation
language. Also, we describe how to evaluate queries in terms of the storage model and algorithm in

the previous section.

4.1 Operators and Notation

In figure 21 we present the basic operators of our operation language. Note the special variable
“NOW?” that has as value the time of the transaction it is a part of when used in a query. It is
useful when specifying conditions on transaction time attributes. We will not discuss the operators
of figure 21 in further detail.

From a conceptual point of view user-defined relations are historical, i.e. they have transaction
time attributes. These attributes are crucial for time-slicing to be meaningful. The combination
of the facts that we only manipulate time-sliced relations and that we want to comply with the
transparency principle has resulted in the choice of hiding transaction time attributes in user-defined
and schema relations. To display a transaction time attribute it must be ezplicitly selected. In system
generated relations time stamp attributes are displayed. A simple projection is required to remove
such an attribute.

In connection with the time domain of our data model we add the ability to specify the time
unit. Since we have chosen second to be the lowest unit, second, minute, hour, day, week, month
and year are possible values. We use a unit function with these values. A query with specified unit
could look like this.

Ot.<Time<t, A unit(Time)=day DS

The default unit is minutes.

4.2 Sample Queries

We present a sequence of queries gradually getting more and more complicated. For each it is

indicated how incremental evaluation is applied. At first queries on traditional base relations and

20

views are presented. Then it is discussed how queries on backlogs are helpfull in answering queries
on change history.

Retrieve all employees as of close of business May 1. 1989.

Emp(0501891600)

This is an example of a fixed time-slice of a base relation. See figure 6. If no other queries have
been issued on the relation Emp this view is incrementally computed from Emp(tini¢). The result
stored in the database is a set of pointers to Ins and Mod tuples in Bgmp and a reference to Bgm,
that indicates the time of validity of the time-slicel. '

Retrieve all current employees.

Emp(NOW) or, alternatively: Emp

This is a time dependent time-slice of a base relation. When this view is first computed the
previous fixed time-slice is utilized in an incremental computation. Later retrievals will utilize the
immediate predecessor in an incremental computation. The differential file of this view is all the
change requests to Emp that have arrived after it was last retrieved/computed.

Retrieve the employees that were in the company 20 days ago (as of now).
Emp(NOW - 20days)

This query is very similar to the previous one. Here, however, the differential file is the change
requests with time stamp values between NOW ~— 20 days when the query is evaluated and the
current value of NOW — 20 days. A computation of this query will utilize that of the previously
computed and stored views from above that has the lowest estimated cost.

Let us define a view as follows:

Rich Emp(t) = satary>s0000Emp(t)

A definition does not result in any computation, all that happens is that the query expression
itself is stored in the database system. The first step in evaluating any query is to time-slice the
constituent relations. So, to retrieve data from the view, an expression that evaluates to a value in
the domain TTIME must be supplied and substituted for . Then the selection is computedn

Retrieve all very rich employees as of close of business May 1. 1989

O Salary>so000 Rich_Emp(0501891600)

1The time of validity is the half-opened interval that contain 050189160000 and is bound by the two closest time

stamps in Bemy,.

21

This is a fixed time-slice that involves several levels of computation. First, Rich_Emp is sub-
stituted for its definition (as in Ingres style query modification). Then, second, the time-slice is
computed. Third, the selection(s) is performed. Depending on whether the two selections are col-
lapsed into one (the second) the computation of the query results in three or two separate index
caches: The initial time-slice, (the first selection,) the second selection.

Retrieve all very rich employees
UsazaryZsooooRich_Emp(NOW)

This query differs from the previous one in that it is time dependent. To compute the very rich

employees the Rich_Emp in general must be brought up to date first.

Let us now turn our attention towards queries directly involving backlog relations. Initially,
however, let us look at how the usefulness of backlog relations supplement that of usual relations.
Suppose we want the changes to Emp between ¢, and t,. Although not the onl),' possibility,

we might write something like this:
Emp(ty) — Emp(t;)

The result of this query is the tuples in Emp at ¢, not in Emp at t.. This does not tell us what
took place between ¢, and t,. We will not retrieve any deletions that might hve taken place in the
time interval, for example. If we really want to know what took place between t; and ¢, we would
be better off using the backlog of Emp. We have to make clear what we precisely want. Let us look

at some possibilities.
0t <Time<t,BEmp
This query retrieves all possible information about what happened to Emp. Insertions, deletions
and modifications are distinguished and the times when the requests were placed are available.
TTupleOt,<Time<t, BEmp

This query eliminates the special backlog attributes from the result. Thus several changes back
and forth between identical Emp tuples will be eliminated and it will not be possible to distinguish

between operation types anymore.

TTupleATime a't,STimaSt,BEmp

This result of this query differs from the above in that time stamps are retained, potentially
allowing more tuples to be retrieved. Still, it is impossible to distinguish a modification from a

deletion which in many cases may be unfortunate.

22

TTupleATime0t, <Time<ty,AOp=Ins Bemp

Here we get the time stamped tuples that were inserted in the interval. The result is a list

containing the employees hired in the interval.

TTupleATimeOt, <Time<t,AOp=Del BEmp

Here we retrieve the employees tht left the company.

TTuple0t, <Time<t,A(Op=InsvOp=Mod) BEmp

Finally, we have retrieved all employees that “changed” salary, either because they were hired or

because their previous salaries were updated.

The possibilities listed above are by no means exhaustive but somewhat representative for vast
number of easily formulated queries possible on backlogs. Let us now take a look at the evaluation
of other kinds of queries.

To get the first employee to leave the company after April 30, 1989, we use the min

operator.

min(0043089<TimeAOp=Del BEmp)

Since change requests are assumed to be ordered according to time stamps the system need not
first retrieve all “Del’ change requests inserted after April 30. and then find the one with the smallest
time stamp value. Instead the qualifying tuple can be retrieved directly.

Find all the employees at t, that changed salary between t, and t;. This and the

following query involves both a time-sliced base relation and a backlog.

Emp(tz') B Tuple Ut,f_TimeSty,/\Op:ModBEmp

The compliment is given by

Emp(tz) — TTuple Ote<Time<tyAOp=Mod BEmp

Note that the results of these queries are fixed: Once computed they never get outdated.
The following query results in a list of (Name, Time) of employees with salary change on

December 27, 1988, but with a time granularity of one hour.

23

TName,unit(Time)=hour T27128800<Time<28128800A Op='Mod' BEmp

The un:it operator rounds-off all time values to the closest value in the new unit of measure.
Thus, if an employee changes salary more than once within the same hour (e.g. as a result of a
typing error and a following correction) this will not be visible in the resuls.

Suppose we want the employees that changed salary about the average number of

times during the last 2 years. This can be done with the queries:

Ql(Name, Count) = TName,count(Time)0Op='Mod' ANOW -2 yrs.STimeSNOWBEmp

Q2= avg(ﬂ'Counth)

Q3 = 7|'NameU.S*QQSCountSI.thQl

In @Q; we count, for each employee, the number of times the salary was changed within the given
2 year.period. The attributes of the view are named Name and Count. This is an example of a
sliding time window on a backlog screening out and aggregating relevant tuples. See figure 12. Both
incremental and decremental techniques are used to keep Q: up to date. In Q; we then find the
average number of changes. In Q3 we finally compare the number of changes of an employees salary
to the average number of changes and keep employees that are close.

We retrieve the employees with abnormal change pattern by

TName OOp='Mod' ANOW -2 yrs.STimeSNOWBEmp - Qs

If we only want the employees with very few salary changes during the last 2 years, we can issue

this query, using @, and @, above:

TNameT0<Count< ‘2*Q3Q1

In summary, we have shown how to conveniently retrieve detailled information about change
history of relations. We have used incremental computation of queries formulated in the operation
language of our extended data model. In particular we have demonstrated the convenience of the

backlog relation.

24

5 Conclusion and Future Research

We have presented a relational data model extended with transaction time and an incremental
implementation model for it.

The data model only require one new operator, the time-slice operator. All the standard relational
model operators still work with their standard semantics. The extension is transparent to users
not using the extended capabilities of the model. The model allow for easy retrieval of detailled
information about change history.

The implementation model exploits techniques for eager /lazy update and incremental /decremental
computation in the context of persistant views stored as either index caches or materialized data.
The model is a natural generalization of the work of Roussopoulos.

Several topics touched upon in this paper are subject for current research. Most prominently,
we are further investigating the general framework discussed in subsection 3.1. Sets of rules and
cost estimation formulas for the decisions of the query evaluation subsystem are being developed.
These include rules for when and how views should be stored; rules for how often a stored, time
dependent result should be updated; rules for which existing results should be used in incremental
computations.

Topics for future research include:

¢ Extending the data model with complex objects.

o Incorporating a general version handling mechanism into the data model.

e Extending the data model and the implementation model to support logical time.

o Extending the query language to support queries on change behaviour. This includes investi-

gation of facilities for detection of common patterns of behavior and deviations from these.

25

Standard Operators of the Operation Language

Notation Name Description
R(t;) Time-slice This operator already was introduced and discussed earlier in the
paper. In the literature the notation 7=;, R is common. This
notation is slightly more general, because time intervals can be
easily expressed. In the present setting where only points in
time are meaningful, the function application notation is the most
convenient.

T Projection The standard projection operator. In the context of backlogs we
will use w7ypie to mean projection on all attributes of the associated
user-defined relation.

oF Selection The standard selection operator. The condition F can contain an
arbitrary sub-query.

X Cartesian product [The standard cartesian product operator.

- Difference The standard difference operator.

U Union The standard union operator.

n Intersection | The usual definition applies: RNS ¥ R—(R-S)=S—(S—R)
Mg (Theta) Join | The standard definition: R Xp S <l sr R x S. If no condition
F is specified natural join is assumed.
>p Semi join RbrS % mam)(R XF S), where Att(R) is the attributes of R.

“aggregating functions”

We allow for a full range of aggregating functions: max, min, mean,
count, avg, sum, product, unit.

Assignment

This operator has the usual assignment semantics.

Figure 21: Notation, names and descriptions of basic operators.

26

References

[ALS0]

Michel E. Adiba and Bruce G. Lindsay. Database snapshots. In Proceedings of the Sizth
International Conference on Very Large Databases, pages 86-91, 1980.

[BADWS82] A. Bolour, T. L. Anderson, L. J. Dekeyser, and H. K. T. Wong. The role of time in

(BCL86]

[BLTS6]

[Cams81]

[Cod79]

[Dat86]

[DB78]

[Han]

[Man88]

[McK88]

information processing: a survey. ACM Sigmod Record, 12(3):27-50, April 1982.

Jose A. Blakeley, Neil Coburn, and Per-Ake Larson. Updating Derived Relations: De-
tecting Irrelevant and Autonomously Computable Updates. CS-86-17, University of
Waterloo. Computer Science Department, May 1986.

Jose A. Blakeley, Per-Ake Larson, and Frank Wm. Tompa. Efficiently updating mate-
rialized views. In Proceedings of the ACM SIGMOD ’86, pages 61-71, May 1986.

Steﬁhanie Cammarata. Deferring updates in a relational data base system. In Proceed-
ings of the Seventh International Conference on Very Large Databases, pages 286-292,
1981.

E. F. Codd. Extending the database relational model to capture more meaning. ACM
Transactions on Database Systems, 4(4):397-434, December 1979.

C. J. Date. An Introduction to Database Systems. Volume first of The Systems Pro-
gramming Series, Addison Wesley Publishing Company, fourth edition, 1986.

Umeshwar Dayal and Philip A. Bernstein. On the updatability of relational views.
In Proceedings of the Fourth International Conference on Very Large Data Bases,
pages 368-377, 1978.

Eric Hanson. A Performance Analysis of View Materialization Strategies. , Department
of Electrical Engineering and Computer Sciences - University of California, Berkeley, CA

94720, .

Michael V. Mannino. Statistical profile estimation in database systems. ACM Computing

Surveys, 20(3):191-221, September 1988.

Leslie Edwin McKenszie. An Algebraic Language for Query and Update of Temporal
Databases. TR 88-050, The University of North Carolina at Chapel Hill, Departmen of
Computer Science, CB 3175, Sitterson Hall, Chapel Hill, NC 27599-3175, October 1988.
Ph.D. Dissertation.

27

[0S89]

[RKS6)

[Rou82a]

[Rou82b]

[Rou89]

[SA8S5]

[SA8S]

[SAC*79]

[SK86]

[SL89]

[Sno87]

[TBSS)

[Ul182]

Anthony B. O’Hare and Amit P. Sheth. The interpreted-compiled range of ai/db sys-
tems. Sigmod Record, 18(1):32-42, March 1989.

Nick Roussopoulos and Hyunchul Kang. Principles and techniques in the design of
adms=+. Computer, ():19-25, December 1986.

Nick Roussopoulos. The logical access path schema of a database. JEEE Transactions

on Software Engineering, 8(6):, November 1982.

Nick Roussopoulos. View indexing in relational databases. ACM Transactions on

Database Systems, 7(2):, June 1982.

Nick Roussopoulos. The Incremental Access Method of View Cache: Concept, Algo-
rithms, and Cost Analysis. , Department of Computer Science, University of Maryland,

College Park, MD 20742, March 1989.

Richard Snodgrass and Ilsoo Ahn. A taxonomy of time in databases. In Proceedings of

the ACM Sigmod ’85, pages 236-246, 1985.

Richard Snodgrass and Ilsoo Ahn. Partitioned storage for temporal databases. Infor-

mation Systems, 13(4):369-391, 1988.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings of

the ACM SIGMOD ’79, pages 82-93, 1979.

Arie Shoshani and Kyoji Kawagoe. Temporal data management. In Proceedings of the

Twelfth International Conference on Very Large Data Bases, pages 79-88, August 1986.

B. J. Salzberg and D. Lomet. Access methods for multiversion data. In Proceedings of

ACM SIGMOD ’89, pages 315-324, June 1989.

Richard Snodgrass. The temporal query language tquel. ACM Transactions on Database
Systems, 12(2):247-298, June 1987.

Frank Wm. Tompa and Jose A. Blakeley. Maintaining materialized views without ac-

cessing base data. Information Systems, 13(4):393-406, 1988.

Jeffrey D. Ullman. Principles of Database Systems. Volume of Computer Software

Engineering Series, Computer Science Press, second edition, 1982.

28

