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ABSTRACT

A data model is a means of modeling, communicating about, and managing part
of reality. In our understanding one of the most fundamental characteristics of reality
is change; whereas change is fundamental, stability is relative and temporary. Change
is an often critical aspect of database systems applications; in many applications
change itself and previous states are of interest. Change presupposes the concept of
time. We provide a data model that allows for the storage of detailed historical data in
so-called backlog relations. The query language extends the standard relational algebra
to take advantage of the additional data. In particular, we introduce an operator Sigma
based on the notion of compact active domain. This operator groups data, not in
predefined groups, but in groups that ‘‘fit’”” the data. The expressive power of the
operator is demonstrated by examples showing how patterns and exceptions in change
history can be detected. Sample applications of this work are statistic and scientific
databases, monitoring (of production systems, databases, power plants, etc.), CAD and
CASE.
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1 Introduction

Within systems development/SE the shortcomings of current commercially available database prod-
ucts have been recognized for some time. For instance Jackson [Jac83] writes in the introduction to

the JSD systems development method:

“A database is essentially a snapshot; it captures a single state of the reality it models,
just as a photograph captures a single state of its subject at a single moment in time.
... A fundamental principle of JSD is that a dynamic real world cannot be modeled by

a database.”

In order to support retrieval of change history we need the capability to store not only the most
recent snapshot but the changes that lead to it as well.

DM/T is an extension of the basic relational model that supports transaction time thus allowing
for storage of historical data. Using its extended relational algebra one can retrieve information about
normal and exceptional change behavior. In general, an extension or generalization of functionality
should always be augmented with proper default behavior making the extension transparent to users
that do not exploit it. DM/T obeys this principle. We remain within 1.NF in that the relational
algebra operators of the extended query language, except for the time-slice operator, only manipulate
standard “flat” relations. Thus the standard relational operators keep their standard semantics. In
these senses the model is a minimal extension of the relational model, and it promises an easy and
efficient implementation.

The transparency is, in part, achieved by introducing a separate, system generated and main-
tained relation, a backlog, for each user defined relation. The backlog contains the complete change
history of its associated relation. To our knowledge we are the first to use this approach. Previously,
history information has been put in the relation itself. The backlog approach allows for convenient
storage of more historical information than does traditional approaches, thus making it possible to
store and conveniently retrieve requests for insertions, modifications, and deletions, even if it turned
out that these had no effect.

In order to facilitate retrieval of patterns and exceptions related to the change history an extended
query language is required.

The ¥ operator is the central extension provided by the relational algebra of DM/T. Based on
the notion of compactness of active domains this operator tries, under given restrictions, to group
the elements of a domain in a relation so that the elements of each group are contiguous. Several
results can be returned: The tuples of all groups generated, tuples of single groups, cardinalities of

- groups, and ranges of groups.



The extension also includes a unit operator (Y), a fold, and an unfold operator (¢ and ¢,
respectively), a when operator (w) and an aggregate formation operator (&).

The backlogs of DM/T paired with the standard relational algebra alone provides many new
possibilities for formulating queries on change history. When the algebra is extended with the
operators T, ¢, ¢!, w, and £ the expressive power increases, and when the operator X is added the
possibilities are further expanded.

We do not address the issue of integrity constraints of DM/T in this paper. Also, issues of
efficient implementation are not part of the subject of this paper. Instead we refer the interested
reader to [JMR89], where we present an implementation model for a transaction time extension
like the one of this paper. The model presented exploits techniques of incremental computation in
the context of deferred update of persistent views, and is a natural generalization of the work of
Roussopoulos [Rou82a, Rou82b, Rou89].

The contents of this paper touch upon issues of temporal databases and scientific and statistical
databases. Numerous temporally oriented extensions of the relational model have already been
proposed, including [TAO89, Gad88, LI88, MS88, CC87, Sno87, Ari86, UT86, CUT85, CW83]. See
these for further references. While we support transaction time, the vast majority of the work has
focused on logical time. Our approach has been to make a simple transparent 1.NF extension which
contrasts the previous ones that generally are elaborate NF? extensions. The contributions most
closely related are reported in {[MS88] where a relational algebra that supports transaction time is
found, and in [LJ88] where the relational algebra is extended to support logical time while remaining
in 1.NF.

The X operator is based on the notion of compact domain and it is related to scientific and statis-
tical databases (SSD) where a similar notion of compact domain is found in [Gho89]. While [Gho89]
uses compactness as the basis of the definition of statistical normal forms, we use a genéralized form
of compactness as the basis of a relational algebra operator. In SSD focus has been put on sampling,
nearest neighbor search, estimation and interpolation, transposition and summary operators, and ef-
forts have been put into creation and manipulation of summary tables [0085, SW85, Sho82, Gho86].
The ¥ operator presents an attempt to group data according to the data themselves and not ac-
cording to predefined intervals in order to retrieve information about normal and exceptional change
behavior. In [UT87] a statistical interface for historical relational databases is presented. A so-called
enumeration operator is added to the relational algebra of a data model supporting logical time.
This operator can be used for generating meaningful summary data in the presence of the time
dimension. It does not, however, resemble the ¥ operator. We have not found a similar operator,

and there have been no attempts to combine a transaction time extension and advanced statistical



operators into a single data model. In [Mal86] it is described how to statistically treat the infor-
mation content of a database. There relations are treated as multivariate frequency distributions;
and they can be analysed using methods of multivariate information theory, making it possible to
measure statistical interdependence among attributes and the effect of one attribute on other ones.
The language of this work is “multivariate information theory” and as such the approach deviates
from the one of this paper.

The contents of the remaining sections of the paper are:

Section 2, Time and Change in Databases, describes the time concept supported by DM/T
and discusses tuple versus attribute value time stamping.

Section 3, Data Structure Extensions of the DM/T Data Model, presents the different
types of relations in DM/T. Special focus is put on the backlog relation.

Section 4, Query Language of the DM/T Data Model, present the basic query language
consisting of the operators of the standard relational model and the unit, when, aggregate formation
and fold/unfold operators.

Section 5, Query Language Extension based on Compactness and Uniformity, intro-
duces the T operator, based on the concept of compact domain, which allows for retrieval of patterns
and exceptions. First the conceptual framework is presented. Then the operator is defined, and fi-
nally its expressive power is illustrated by sample queries.

The last section contains the Conclusion and Future Research.

2 Time and Change in Databases

Until now we have talked about time as a single concept. Time is, however, more complex. In this
section we discuss different éoncepts of time. The purpose is to convey an understanding of the time
concept we have chosen to support in DM/T.

Extensive work already has been done on concepts of time. Curious philosophers have been
puzzled and thrilled by it for centuries. Within the area of databases, Clifford notes that “time
is something so taken for granted that its exact nature is highly elusive” [CUT85]. While we
focus on categories of time-domains we do not intend to present a complete account of all the
aspects of time. For coverage of and reference to other aspects of the understanding of time in
databases we encourage the interested reader to study the surveys of Snodgrass and Ahn [SA85] and
Bolour, Anderson, Dekeyser and Wong [BADWS2]. All the kinds of time domains we address are
characterized by a total order of the elements. For discussions of partially ordered time domains,

see [BMP] or [Lam]. Also, we will only discuss absolute temporal data. Temporal information such



as “x happened 5 minutes before y” or “x took place after z” is relative. For a discussion of relative

temporal information, see [Cha88].

Time in reality is perceived uncountably infinite and continuous. Any representation of time of
reality in a database is discrete and finite, due to the finite nature of computers.
Fundamentally, a database models a part of reality and is itself a part of (a different part of)

reality. From this it follows that we can have an interest in representation of

¢ Time in the part of reality which is modeled in the database.

e Time in the part of reality that surrounds the data base, the input subsystem.

EXAMPLE: Assume we have a database with salaries of employees of an organization. The daily
working hours, the earnings, the rules for payment and other financial aspects of the employees are
the part of reality we model.

The database is placed in an office where it is operated by secretaries. The office with its
secretaries is the part of reality that surrounds the database. This is termed the input subsystem
[Jac83].

In the area of systems development, the concepts of edp-system and edp-based system have been
applied for years. The first concept is used to indicate that we only consider the technical system
itself while the second indicates both the technical system and its organizational setting. See [Mat81]
for an excellent discussion.

The time a worker arrives, say 8:00 am, is time in the modeled reality. The time the database is
updated to reflect that the worker has arrived, say 8:30 am, is time in the reality surrounding the

model, the input subsystem. o

Different names with slightly different meanings have been used for these time concepts. Rep-
resentation of time in the modeled reality is referred to as logical time, event time, effective time,
state, valid time and start/end time. Representation of time in the input subsystem is referred to
as physical time, regiétration time, data-valid-time-from/to, start/end time and transaction time
[SA85]. We adopt the terms logical time and transaction time.

Both logical and transaction time can be erroneous. Transaction time is inherently independent
of the part of reality which is modeled while it indeed is dependent on the computer based systems.
Logical time is application dependent. Thus, transaction time and logical time are independent time

dimensions.



We have chosen to concentrate on transaction time. A database supporting only transaction
time is termed a (static) rollback database [MS88]. Using a time-slice operator, it is possible to see
the database as it appeared at any time during the past. Such a database records the history of the
input subsystem, and only if a well-defined mapping exists between logical and transaction time does
it model the history of the modeled reality. Well-defined mappings exist in for example monitoring
applications.

A database with logical time, a historical database, is a poor foundation for queries on change
history. To quote Snodgrass and Ahn [SA85]: ”[In a historical database] Previous states are not
retained, so it is not possible to view the database as it was in the past.”

A database supporting both transaction time and logical time is a temporal database. Here

relations can be thought of as four dimensional:

transaction time x logical time x attributes x tuples

Before we turn our attention to another, orthogonal characterization of time domains let us
mention user defined time. In present commercially available database products the primitive types
are often very limited (e.g. character strings, real and integer). A database supports user defined
time if a time domain is one of the primitive types. The attributes defined over the time domain
are uninterpreted by the system. User-defined time is independent of the above time concepts. In

summary, so far we have these domain types:

l transaction timew

logical time

user defined time

The characterizations of time domains to be discussed next are inspired by [SK86]. A time domain
can be either regular or irregular. It is said to be regular if the distances between consecutive values of
the active domain are identical. Otherwise it is irregular. Statistical data are occasionally regular,
1.e. values are recorded at regular intervals during controlled experiments. Our transaction time

domain is irregular; transactions updating relations occur irregularly.

[ transaction time |

regular

irregular

A time domain can be either discrete or stepwise continuous'. Facts with discrete time stamps are

logical time ¢ X

user defined time

only valid at the exact times of their time stamps. This is, for instance, the case when temperatures

1We talk about virtual, simulated continuity.



in a power plant are measured. In contrast, in a stepwise continuous domain facts have an interval
of validity. Our time domain has this property, because, until a relation is changed by another
transaction, the data as they were after the previous transaction are valid, i.e. they are part of the
current state of the database. Ideally, this should be left unspecified, i.e. left to the interpretation of
the user depending on the kind of fact that is time stamped. In order to keep the extension simple

we have chosen not to support discrete time.

| transaction time |

regular discrete

X
irregular | stepwise continuous

To complete the conceptual description of our transaction time concept, we note that we use true

logical time x

user defined time

time as opposed to arbitrary time. True time reflects the actual time of the input subsystem. Thus
we assume the existence of a system clock correctly reflecting actual time. A domain characterized
by arbitrary time only needs to have a total order and a metric. A simple count mechanism would

be sufficient to support such a domain.

I transaction time |

regular discrete true time
X X
irregular {stepwise continuous arbitrary time

Time stamping can be done automatically and manually. We use automatic time stamping,

logical time X

user defined time

which is a natural choice for recording transaction times. Manual time stamping is a natural choice

for supplying logical time stamps.

| transaction time ]

- ) regular : discrete
logical time X X X

lstepwise continuous
true time automatic
X

arbitrary time manual

user defined time

The minimal time unit used is arbitrarily chosen to be seconds. Note that this means that there.
exists an € > 0 so that for any two elements, a, 8, of our time domain, dist(e,3) > €. Thus
we do not provide limitless precision. [Gad88] terms this discreteness. It is possible to control the
granularity using a unit operator, T. The default unit is minutes.

Time attributes can be either implicit and ezplicit. To illustrate, let us briefly mention the
choice we made. In user defined and schema relations we chose implicit time stamps. Thus we do

not consider time attributes during duplicate removal. This does not mean that the time stamps



are gone; they can be displayed by an explicit projection. In backlog relations we have explicit time

attributes.

There still remains the question as to what to attribute with time, i.e. where time enters our data
model. The two relevant choices are attribute value stamping or tuple stamping. We have chosen
the latter. Let us consider the major arguments.

In the literature the opinions are mixed. Some researchers use tuples as units, e.g. Snodgrass,
Ariav, Ben-Zvi, etc. [CUT85]. Other researchers argue for attribute values as units, e.g. Clifford,
Tansel, etc. The most prominent argument why attribute values are the proper units is that the
attributes of relations generally are not interdependent. Four manifestations of independence have
been mentioned. First, attributes might be updated at different rates. Second, some attributes might
not change at all. Third, some attributes vary continuously over time while others vary stepwise,
etc. Fourth, a change to a tuple is usually a change to an individual attribute, not all the attributes
of a tuple. As a fifth manifestation, there might be attributes for which we do not care about the
history, and attributes where we do care.

The crucial advantage of the tuple approach is that the model becomes comparably simpler than
in the attribute value case. The introduction of time stamps on attribute values would have made
our model a N F2-model [CUT85, Gad88]. In addition, if we use a semantically irreducible (fact)
design discipline where independent facts are separated the independence argument above does not
apply. Indeed, it seems that a tuple approach - with its simplicity - married to an irreducible design

discipline is a promising approach.

In summary our transaction time concept has the following characteristics: Tuples are auto-
matically stamped with transaction times. Stamps on backlog tuples are explicit while stamps on
user-defined and schema relations are implicit. Once entered, time stamped data never change.
Transaction times are relative to the system clock which is assumed to reflect the time of the input
subsystem. They are irregular and stepwise constant. The default unit was chosen to be minutes,

but seconds and coarser granularities were possible.



3 Data Structure Extensions of the DM /T Data Model

In this section we present the different kinds of relations in the model, i.e. backlog, base relation,

view, backlog view.

3.1 Backlogs

A backlog, Br, for a relation, R, is a relation that contains the complete history of change requests

to relation R.

The schema of relation R and its corresponding backlog is shown in figure 1.

Relation name Br
Atiribute name | Domain name
Id SURROGATE
Relation name R Op {Ins, Del, Mod}
Attribute name | Domain name Time TTIME
Ay D, Ay D,
A, D, A, Dy
A, D, An Dy,

Figure 1: Schema for the relation R and its backlog, Br.

Each tuple in a backlog is a change request. As shown, Br contains three attributes in addition
to the attributes of R. Id is defined over a domain of logical, system generated unique identifiers,
l.e. surrogates. The values of Id represent the individual change requests, they can be referenced
but not read by users/application programs. The attribute Op is defined over the enumerated
domain of operation types, and values of Op indicate whether an insertion (Ins), a deletion (Del)
or a modification (Mod) is requested. Finally, the. attribute Time is defined over the domain of
transaction time stamps, TTIME, as discussed in detail in the previous section.

The database management system (DBMS) automatically generates and maintains a backlog
for each base relation (i.e. user defined relations and schema relations). Figure 2 shows the effect
on backlogs resulting from operation requests on their corresponding relations. When an insertion
into R is requested the tuple to.be inserted is entered into Bg. When a deletion is requested key
information is entered into the backlog and in the case of modification both key information and

new values are inserted into the backlog.



The Effect of Requested Operations on Backlogs

Requested operation on R: Effect on Bg:

insert R(tuple)
delete R(k)

insert Bgr(id, Ins, time, tuple)

insert Bg(id, Del, time, tuple(k))

modify R(k, new value) |insert Bgr(id, Mod, time, tuple(k,new value))

Figure 2: System controlled insertions into a backlog. The function “tuple” returns the tuple

identified by its argument.

ExaMPLE: We introduce a sample database to illustrate the concept of backlog and other concepts
to be presented in the sequel. The database consists of one user-defined relation, Emp, with five
attributes. Figure 3 shows the schema of Emp and its backlog, Bgmp. Note that relation Emp
is used as a domain for the “Tuple” attribute. This is only a convenient shorthand, not a nested

attribute (cf. figure 1).

Relation name Emp
Attribute name | Domain name
Id SURROGATE
Name STRING(20)
Mass KILOGRAM
Height cM
Salary DOLLAR

Relation name

BEmp

Attribute name

Domain name

Id SURROGATE
Op {Ins, Del, Mod}
Time TTIME
Tuple Emp

Figure 3: Schema for the user-defined relation, Emp, and its backlog, Bgmp.

The concept of backlog as presented in this subsection. is inspired by the backlogs of the ADMS
system [RK86], but while our backlogs are relations accessible through the query language, the
backlogs of ADMS are purely implementation level concepts, and also ADMS does not support

transaction time.
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3.2 Base Relations and Views

As a consequence of the introduction of time stamps, a base relation is now a function of time. To
retrieve a base relation it must first be time-sliced. Let R be any base relation, then the following

are examples of time-slices of R:

def

R(tinit) = Rinit
R(tz) = R7attime 17, ty > tinis
R ¥ Rwow)

When the database is initialized, it has no history and it is in an initial state, possibly with
every relation equal to the empty set. If R is parameterized with an expression that evaluates to a
time value, the result is the state of R as it was at that point in time. It has no meaning to use a
time from before the database was initialized and after the present time. If R is used without any
parameters this indicates that the wanted relation is the current R. Note, that this feature helps
provide transparency to the naive user. We also introduce the special variable NOW which assumes

the time when the query is executed.

If the expression, E, of a time-sliced relation, R(E), contains the variable NOW, then R is
time dependent. Otherwise, it is fired. While fixed time-slices of relations never get outdated, time
dependent time-slices of relations do and are consequently correctly updated by the DBMS before

subsequent retrievals.

EXAMPLE: Figure 4 shows the extension of Emp at two points in time. The extension of the

corresponding backlog is shown in figure 5.

Emp(NOW - 20 days) Emp
Id Name | Mass | Height | Salary Id Name | Mass | Height| Salary
“surrogate” | Mark | 85.0 [ 177 {90 000 “surrogate” | Smith | 74.5 | 170 |30 000
“surrogate” | Brown | 80.0 | 178 |32 000 “surrogate” | Brown | 85.5 | 178 |32 000
“surrogate” | Jensen | 88.0 { 188 (10 000 “surrogate” | Jensen | 87.0 [ 188 |11 000

Figure 4: Time-slices of a relation, where NOW = 4:00 pm, May 1. 1989.
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BEmp

1d Op Time Idgmp Name | Mass | Height | Salary
“surrogate” | Mod | 0420891238 | “surrogate” | Brown | 80.0 | 178 |42 000
“surrogate” | Ins | 0408891034 | “surrogate” | Brown | 80.0 | 178 |32 000
“surrogate” | Ins | 0402891456 | “surrogate” | Mark | 85.0 | 177 |90 000
“surrogate” | Mod | 0420891245 | “surrogate” | Brown | 85.5 | 178 {32 000
“surrogate” | Ins | 0331891131 | “surrogate” | Jensen | 88.0 | 188 |10 000
“surrogate” | Del | 0415891209 | “surrogate” | Mark | 85.0 | 177 |90 000
“surrogate” | Ins [0419890902| “surrogate” | Smith | 74.5 | 170 {30 000
“surrogate” [ Mod [ 0501891555 | “surrogate” [Jensen | 87.0 | 188 |11 000

Figure 5: A sample backlog relation for the
1989.

relation Emp(NOW) where NOW = 4:00 pm, May 1.

A view is time dependent if at least one of the relations and views it is derived from is time
dependent. Otherwise it it fixed. Traditional views are ultimately derived directly and solely from
time-sliced base relations. If a view ultimately is derived directly, i.e. not via a time-sliced base
relation, from at least one backlog, then we term it a backlog view. Backlog views are time-sliced

as are base relations and views. We define:

def
Br(ts) = 0Time<t.Br

Br & Bp(NOW)

Backlog view time-slices involving NOW are time dependent, and, as above, so are backlog views

derived from views involving NOW.

EXAMPLE: We can use Bgm,p to retrieve all the employees that, during the last month, had varying

properties. This is easily done with the following query:

ONOW -30 days < Time < NOW A Op = Mod BEmp

The exact meaning of the query will be made clear in section 4. The result of the query is given

in figure 6.
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ONOW —30 days < Time < NOW A Op = Mod BEmp
Id Op Time Idgmp Name | Mass | Height | Salary
“surrogate” | Mod | 0420891238 | “surrogate” | Brown | 80.0 | 178 {42 000
“surrogate” | Mod | 0420891245 | “surrogate” | Brown | 85.5 | 178 |32 000
“surrogate” | Mod | 0501891555 | “surrogate” | Jensen | 87.0 | 188 |11 000

Figure 6: A backlog query and its result. NOW = May 11. 1989.

3.3 Logical and Physical Aspects

So far, we have presented several kinds of relations. To get a better understanding of these, let
us characterize them according to two dimensions. The first is related to the question of physical
storage. Traditionally, base relations are stored while views are computed or virtual. The second is
related to the question of logical derivability. Base relations are not derivable from other relations,

while views are. See figure 7 where generally accepted characterizations of base relation and view

are summarized [Dat86, Ul182, Cod79).

Traditional relation concepts

Concept

Description

base relation

Actual data are stored in the database. The relation physically

exists, in the sense that there exists records in storage that directly

represent the relation. The Emp relation is an example. A base
relation cannot be derived from other relations. A base relation

definition is part of the schema.

view

A view is characterized as a virtual, derived or computed relation.

It is not physically stored, but looks to the user retrieving infor-

mation from the database as if it is. A view definition is part of a

subschema.

Figure 7: The usual definitions of relation types.
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described in figure 8. In the sequel, we will use the definitions presented there.

In DM/T the relation concepts have new meaning. Every base relation has a backlog. All data
of base relations are stored in the backlogs in the form of change requests. This makes backlogs

act as base relations and base relations act as views, derived from backlogs. The new meanings are

As noted in figure 8 the system has the capability of storing views and base relations. When

the system chooses to do so, it can be done in two ways. First, a view can be stored as a pointer




Redefined relation concepts

Concept

Description

backlog

Backlogs are the relations that now function as base relations in the
sense that they are stored and that all other relations (ultimately)
are derived from these.

base relation

Base relations are not necessarily stored, and they are derived (di-
rectly) from backlogs. Thus the base relation Emp is derivable from
Bemp and is not necessarily physically existent.

view

The data of a view still is - directly or indirectly - construable from
base relations - or backlogs. However, even though a view still is
derived, it is not necessarily virtual or computed. Views can be
persistent.

array, where an entry contain pointers to the relations (view or base) the view is derived from. The
schema entry for a view contains information on how to materialize the view from the data pointed
to (recursively). This structure is called an indez cache (or just cache for short) because it inherits

characteristics from both caches and indexes [Rou89, JMR89]. Second, a view can be stored as

Figure 8: Redefinitions of relation types.

actual materialized data.

3.4 Summary of Data Structures

We can summarize the concepts presented in this section as illustrated in figure 9.

We distinguish between backlog views, traditional views and base relations. The only difference
between views and base relations are that the former are derived indirectly from backlogs while the
latter are derived directly. A view is valid only at a single point in time: The time-value specified
when it was produced using the query language. Backlogs have an associated lifespan: From the

time when the corresponding base relation was created till the current time - if they still exist - or

view )
time dependent

fixed

base relation X

backlog view

Figure 9: Different types of relations.

otherwise till they were deleted. Backlog views inherit this notion of lifespan.
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The second dimension in figure 9, time dependence, distinguishes between fized and time de-
pendent views. The valid time of fixed time-slices of base relations and views and the lifespan of
fixed backlog views never change. Because it is possible to use the special variable NOW in query
expressions, both base relations, views and backlog views can, however, be time dependent. A time
dependent base relation can be visualized as a view that slides along a backlog as time passes. Sim-
ilarly a backlog view can be thought of as a filtering window where one or both ends (start time
and end time) move along a backlog. Let E be an expression which maps into the domain TTIME
and R a relation. For each time dependent time-slice, R(E(NOW)), there is a differential file,
SR(E(NOWY)). This differential file is a sequence of change requests in the backlog of the relation,
that are not yet reflected in the actual state of the time-slice [RK86].

4 Query Language of the DM/T Data Model

To take full advantage of the time extension and the additional data structures we need an extended
query language. We use the standard relational algebra as a basis for such an extension. In sub-
section 4.1 we present and shortly discuss the operators of our data model. In subsection 4.2 we

illustrate the utility of parts of the query language.

4.1 Operators and Notation

In figure 10 we present the basic operators of the query language. Since base and schema relations
must be time-sliced before they can be arguments of algebra operators, and since backlog relations
are already “flat” in the same sense, the operators of the standard relational model work in our
setting without modifications. This simplicity is a major advantage of our design. We will not
discuss the operators of figure 10 in further detail.

From a conceptual point of view user-defined relations are historical, i.e. they have transaction
time attributes. These attributes are crucial for time-slicing to be meaningful. The combination of
the facts that we only manipulate time-sliced relations and that we want to comply with the trans-
parency principle has resulted in the choice of hiding transaction time attributes in user-defined and
schema relations. A transaction time attribute can be displayed by means of an explicit projection.
In backlog relations time stamp attributes are displayed. ‘A projection is required to remove such
an attribute.

The first extension of the query language is the unit operator, Y. It is used for changing units and
precision of attribute domains. In this paper we focus on the precision aspect of the operator and we

will not discuss the important aspects of conversion of compatible units. Instead we choose to refer
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Standard Operators of the Query Language

Notation Name Description

R(t;) Time-slice This operator already was introduced and discussed earlier in the
paper. In the literature the notation m=;, R is common. This
notation is slightly more general, because time intervals can be
easily expressed. In the present setting where only points in
time are meaningful, the function application notation is the most
convenient.

T Projection The standard projection operator. In the context of backlogs we
will use mrypie to mean projection on all attributes of the associated
user-defined or schema relation.

oF Selection The standard selection operator. The condition F can contain an
arbitrary subquery.

X Cartesian product | The standard cartesian product operator.
- Difference The standard difference operator.
U Union The standard union operator.
n Intersection The usual definition applies: RNS “ R- (R-S)=5—-(S—-R)
Xp (Theta) Join The standard definition: B X S def or; R x S. If no condition
F is specified natural join is assumed.
DF Semi join RppS def Tan(R)(R XF S), where At(R) is the attributes of R.
“aggregate functions” We allow for a full range of aggregate functions: max, min, mean,

count, avg, sum, product, unit.

Figure 10: Notation, names and descriptions of basic operators.

to [KLI78] and [Geh82), from where it follows that such conversions can be done algorithmically
applying simple linear algebra techniques. Also the issue of information loss due to finite arithmetic
1s beyond the scope of this presentation.

The syntax is as follows:
Yai=Ds,a,=D% .., Ai,=Df R(A1: D1, A2: Ds, ..., An: Dy)
1 2 tk

where 1 <i; <n, j=1,2, ...,k
The result of this query is relation R with domain D;, of attribute A;, changed to Df , domain
D;, of attribute A;, changed to Df,, ..., domain D;, of attribute A;, changed to Df,.

A special relation, Units, contains information about which domains are compatible and how to
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make the transformations. It has four attributes: Domain; and Domainy are each character strings

listing domain names. Factor is a real number, and Decimals is an integer. See figure 11.

Units
Domain, | Domaing | Factor| Decimals
D,' 1 Dfx ki; Ci,
D, Df; ki: Ciy
D;, D}, ki, Ci

Figure 11: The relation Units.

The j’th entry in the Unit relation tells that an element in domain D;; can be transformed into
an element in domain Dy, by multiplying it with k;; and, when representing the element in scientific
notation, allowing c;; decimals. The user can insert, delete and modify tuples from this relation.
In accordance with the normal convention the operator rounds off to the closest value in a coarser

domain.

ExaMPLE: If we are measuring the masses of individuals in a population of people and want to use
grams as the unit of measure we might define D = {500,501, ...,400000}. The domain defines the
precision of measurement. If we change the granularity of data we get a new domain. For instance,
the granularity kilo of data can be achieved by noting that 1 kilo = 1000 units of measure. Thus,

D' ={1,2,...,400}. The corresponding entry of the relation Unitsis (D, D', 1/1000, 0) m]

In connection with the domain TTIMFE we have chosen the default unit to be minutes and the
lowest unit to be seconds. Tuples allowing for Second, Minute, Hour, Day, Week, Month and Year
have been inserted into Units. These units all have zero decimals. If possible without causing
ambiguity we do not distinguish between the domain TTIME and its compatible domains.

In our relations we record time stamps, i.e. simple time values. Sometimes it is convenient to
have the corresponding time intervals. Thus we provide a fold operator (¢) and an inverse unfold
operator (¢~1) [LI88]. The ¢ operator can be used on an unfolded relation, and it transforms the
attribute defined over the domain TTIME into two attributes, From and To, both defined over the
same domain. Used on an already folded relation it produces the identity. Similarly, $~! produces
the identity when applied to an already unfolded relation. Figure 12 shows a sample query and its

result; see also figure 5.
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¢Time TName, Time, Mass, Salary EmP(0410891600)

Name From To Mass| Salary

Brown | 0408891034 { 0420891238 80.0 | 32 000
Mark | 0402891456 (0415891209 85.0 | 90 000
Jensen | 0331891131 - 88.0 | 10 000

Figure 12: Retrieving af folded relation. The query is issued during April 28.

The query in figure 12 first time-slices Emp; then attributes are projected - note that Time is
projected; finally the attribute Time of the qualifying tuples is expanded into attributes From and
To.

‘The next extension is the time related when operator, Q [CUTS85]. It is used for retrieval of times
when a specified condition was true. If we issue the following query at May 1. 1989, 4:00 pm we get

the result 0408891034, see figure 5:

QNume:Brown/\Scxlary =32000 Emp

The attribute name of the unary relation returned is From?.
If the Q operator is used on a folded relation it returns intervals of validity. The following query

issed at the same time as the one above returns the interval 033189 - 050189.

TFrom:Day, To=Day QName:.lensen/\.'i'alary:10000 d’ Emp

The attribute names of the binary relation returned by Q are From and To.
The final operator is an aggregate formation operator, €. This operator is used to apply aggregate
functions, see figure 10, to groups of attribute values. The operator we present here is a variation

of the one described in [Klu82] and [Agr87]. The following notation is used:

EX, att_name=agg_fct R

X 1s a grouping specification, ali_name is a new attribute name and agg-fct is an aggregate
function. The result of the query is derived the following way: First, the tuples of R are divided
into the groups implied by X. Second, agg_fct is applied to each group and the resultant value is

associated with each tuple in the group as a value of the at{_name attribute.

2Using standard operators this can be expressed as:

TTime O Name=BrownASalary=32000 BEmp
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If we assume that employees in the relation Emp belong to one of say three departments, the

following query could generate a relation telling what the average salary is for each department:

EDcpt,Avg_.saI:a.vgs,z", Emp

where Dept is the assumed department attribute and Avg.salis the new attribute to be generated.
One group is generated for each distinct value of Dept. In general, X can be any sequence of distinct
attributes in relation R. In addition, the keyword Interval can be substituted for Xmeaning that
intervals previously generated by the ¥ operator to be described in the next section are the groups

to be used.

4.2 Sample Queries

We present a sequence of queries gradually getting more and more complicated. At first queries
on traditional base relations and views are presented. Then it is discussed how queries on backlogs
are helpful in answering queries on change history. Finally, we show some queries using the new
operators.

Simple retrieval involving base relations. The following queries demonstrate how time-

sliced base relations are retrieved.

Emp(0501891600) (1)
Emp(NOW) or, alternatively: Emp (2)
Emp(NOW — 20 days) (3)

Query (1) retrieves all employees as of close of business May 1. 1989 and is an example of a fixed
time-slice. Figure 4 shows the result of the query. The queries (2) both retrieve the current state,
l.e. the current employees as of the time of the queries. The second provide transparency. Finally,

the last query (3) illustrates a more complicated time-dependent retrieval.

19



Retrievals involving base relations and views.

Rich_Emp(t) = 0salary>40000 Emp(t) (4)
OHeight>180 Rich_Emp(050189) (5)
OSalary>80000 Rich_ Emp(NOW) (6)

In (4) we define a view. A definition does not result in any computation, all that happens is
that the query expression itself is stored in the database system. The first step in evaluating any
query is to time-slice the constituent relations. So, to retrieve data from the view, an expression
that evaluates to a value in the domain TTIME must be supplied and substituted for t. Then the
selection is computed. In (5) all tall and rich employees in the company as of May 1. 1989 are
retrieved. This is a fixed time-slice that involves several levels of computation. First, Rich_Emp is
substituted for its definition. Then, second, the time-slice is computed. Third, the selections are
performed. In the last query (6) all currently very rich employees are retrieved. In contrast to the

previous query the extension of this query is not stable.

Retrievals involving backlogs. Before we turn our attention toward queries directly involving
backlog relations let us look at how the usefulness of backlogs supplement that of usual relations.
Suppose we want the changes to Emp between £, and ty. The following are all plausible candidate

queries:

Emp(ty) — Emp(tz) (7)

Ot <Time<t, BEmp (8)

TTupleTt, <Time<t, BEmp (9)
TTupleTt, <Time<t,A(Op=InsvOp=Mod) BEmp (10)

The result of the first query (7) is the tuples in Emp at t, not in Emp at ¢,. This does not tell us
what took place between t, and t,. We will not retrieve any deletions that might have taken place

in the time interval, for example. If we really want to know what took place between ¢, and ty we
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would be better off using the backlog of Emp. We have to make clear what we precisely want. Let
us look at some possibilities. The query (8) retrieves all possible information about what happened
to E'mp. Insertions, deletions and modifications are distinguished and the times when the requests
were placed are available. Query (9) eliminates the special backlog attributes from the result. Thus
several changes back and forth between identical Emp tuples will be eliminated and it will not be
possible to distinguish between operation types any more. Finally, in (10) we have retrieved all
employees that “changed”, either because they were hired or because their previous properties were
updated.

The possibilities listed are by no means exhaustive but illustrate sufficiently how a large number

of detailed queries are easily formulated using backlogs.

Retrievals involving backlogs, views, and new operators. Let us now take a look at other

kinds of queries.

MINTime 0043089<TimeAOp=Del I Time=Day BEmp (11)
Emp(tz) b TTuple Ot,<Time<tyAOp=Mod BEmp (12)
Emp(tz) — TTuple 0t,<Time<tyAOp=Mod BEmp (13)

TName, Time LTime=Hour 027128800<Time<28128800AOp=Mod BEmp (14)

In query (11) we use the miny;m. operator to find the first employee to leave the company after
April 30, 1989. Since change requests are assumed to be ordered according to time stamps the system
need not first retrieve all “Del” change requests inserted after April 30. and then find the one with
the smallest time stamp value. Instead the qualifying tuple can be retrieved directly, and a potential
set valued retrieval is avoided. To find all the employees at ¢, that changed properties between
ts and t; we issue query (12) which involves both a time-sliced base relation and a backlog. The
compliment is given by query (13). The query (14) results in a list of (Name, T'ime) of employees
with property changes on December 27, 1988, but with a time granularity of one hour. It is assumed
that the tuple (ITIME, Hour, 1/60, 0) is present in Units. We achieve a coarser granularity.
Thus, if an employee changed salary more than once within the same hour (e.g. as a result of a

typing error and a following correction) this will not be visible in the result.

Retrieval of patterns and exceptions. As the last example of this section let us illustrate

how patterns and exceptions can be retrieved. In the next section we will present the operator ©
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which can be used for retrieval of patterns and exceptions as well. As will then be seen new classes
of patterns and exceptions can be easily retrieved.
Suppose we want the employees that changed salary about the average number of times during

the last two years.

Q1 = TName,Count EName,Count=countrime TOp=ModANOW —2 years<Time<NOW BEmp (15)
Q2 = avgcount Q1 (16)

Q3 = TName 0.8¢Q,<Count<1.2¢Q; @1 (17)

TName OOp=ModANOW ~2 years<Time<NOW DBEmp — Q3 (18)

TNameT0< Count<.25Q, @1 (19)

In (15) we count, for each employee, the number of times the salary was changed within the
given 2 year period. The attributes of the view are named Name and Count. This is an example of a
sliding time window on a backlog screening out and aggregating relevant tuples. In (16) we find the
average number of changes. In (17) we finally compare the number of changes of an employees salary
with the average number of changes and keep employees that are close. We retrieve the employees
with abnormal change pattern by (18). If we only want the employees with very few salary changes

during the last 2 years, we can issue query (19), using Q; and Q5.

In summary, we have shown how to conveniently retrieve detailed information about change

history of relations. In particular we have demonstrated the convenience of the backlog relation.

5 Query Language Extension based on Compactness and

Uniformity

This section presents the ¥ operator. First, we motivate the need for a query language extension
that allows for retrieval of pattefns and exceptions from a database. Second, we present a general
framework for compactness and uniformity of active domains. Third, we base the ¥ operator on
this framework, and present a notation for compactness queries. Fourth, we illustrate with sample

queries, how to use the operator.
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5.1 Motivation

A major, increasing problem in database systems is that they contain more information than the
users have time to consume. New detailed information is entered faster than it can be looked at.
This is the case in many applications, e.g. satelite surveillance, database monitoring, etc. Thus,
the need to extract relevant and representative information from the database becomes still more
important. We will present a framework that opens to a new world of summary and statistics queries
that allow for retrieval of change behavior and of common patterns and exceptions in the change

behavior. Queries like the following will be possible.

e Given a unit of measure and an attribute of a relation, group the values into intervals and

return the interval which has the smallest cardinality.

o Given a cardinality and an attribute of a relation, group the values into intervals and return

all intervals with at least the given cardinality.

o If the given attribute is TTIME of DM/T backlogs, it will be possible to answer queries like
these:

— When has there been many insertions into relation R?
— What is the average number of deletions per time unit from relation R?
— When were deletions most frequent?
The exact meanings of the sample queries above are not specified. It is the purpose of the next

subsections to formalize what they can mean.

5.2 Compactness and Uniformity of Domains

Let a relation S be given as follows

S(C1,Cy,...,C1,D1,Da,...,Dy)

We assume that domain names are unique and omit attribute names. We are only interested in
domains for which there exist a metric and a total order as defined below®. Let the “D” domains

be such ones and let

D; = {a?};"___‘l,iz 1,2,...,n

3Compare this distinction to the distinction in statistical and scientific databases between category data (measured
data) and summary data (parameter data) [SW85]. The domains of interest include all summary data and some

category data.
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We drop the top and/or bottom indices in the sequel if possible without causing ambiguity.
Associated with each domain, D;, is an active domain, D;(t), consisting of the values from D;
present in S at time f. Denote the metric and total order of D;, ¢ = 1,...,n, dist; and >;,

respectively.
DEFINITION: Let X be a set. Then a real valued function on X x X, dist, is a metric iff it satisfies
dist(a,a) =0

dist(a,B) > 0ifa # 8
dist(a, B) + dist(B,7) > dist(c,7)

dist(a, B) = dist(B, @)

THEOREM 5.1 For any aggregated domain D;, x --- x D;, the induced metric, dist, given below is

mdeed a meiric.

dist( (a"l,a"z, . ..,ai*),(ﬂi‘,ﬂiz; B =
VT dists (a3, 65)7

Proor: Obvious. 0

THEOREM 5.2 The induced meiric, dist’, defined as one plus the number of elements between two

elements if the elements are distinct and zero otherwise, is a metric.

PROOF: Obvious. |

DEFINITION: > is a total order on a domain D iff for all elements in D
a>a
(@2PAB2r)=>a2y

(aZB)A(a2pB)=>p2a
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Va,fE€D:(a>B) V(> a)

In the following we feel free to use the derived predicates <, <, and > if convenient.

THEOREM 5.3 An aggregated domain D;, x ---x D;, has a lezicographic order > defined as follows

in terms of the total orders >;; of the domains D;;, j = 1,2,...,k :

a = (al1,af2, ... a'%)
B=(8",6%,...,6%)
o> ﬁ%g

aft >y BV (VL (AT (@ =45 B5) Al i BY)) V AR (o =45 BY)
The lexzicographic order is a total order.
ProoF: It is easily seen that > is indeed total. O

We now are in a position to define the concept of compact domain which informally is a domain

without-holes. More formally, we have
DEFINITION: The active domain, D(t), of domain D in a relation S is compact iff
Va,B,v€ D :(a,B€ D) A x 27 > p)=>v€D(t)

where > is the order on D.

REMARK: Note that compactness is an extensional property of a relation (attribute). Also observe
that D can be an aggregated domain, and finally observe that the domains we consider do not

include null values.

REMARK: Compactness is not preserved under subsequence formation. E.g. for some t, let D(t) =
Di(t) x Da(t) x ... x Du(t) be compact. Then, for the same t, D'(t) = Dj,(t) x Di(t) x ... x
D;, (1),1 <4 <13 <---< i <nisnot generally compact.

Let us illustrate this point by means of an example. We define

D = {1,2,3,4,5} x {1,2,3,4,5} x {1,2,3,4,5}
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D(t) = {(1’2)4)1 (1)2)5)’ (1v3:1)1 (1v3a2)}

It can be seen that D(t) is compact. Now we project out the second domain to get D'(t)

D,(t) = {(1)4)1 (1’5)1 (1)1)a (1’2)}

This domain is not compact, because (1, 3) is missing.

A maximal compact domain is a compact domain to which no other domains can be aggre-
gated without the resultant domain loosing the property of being compact. A relation can have
many maximal compact domains, some of which might involve fewer domains, D;, than do other
non-maximal compact domains.

So far, the set of values of a domain present in a relation, i.e. the active domain, must constitute
one single interval in order to be compact. We now generalize by relaxing this to a set of intervals
and imposing various restrictions on this set instead. Let us define the concept of partially compact

domain.

DEFINITION: The set of values of a domain D in a relation S, D(t), is a partially compact domain
iff all values of D(t) together constitute a set of intervals. The elements of each interval constitute

a compact domain. It is possible to impose various restrictions on the set of intervals:

number of intervals The number of intervals can be restricted. Generally, conjunctions and dis-

junctions of restrictions of the number of intervals can be specified. Let ¢ denote this quantity.

size of intervals The size of intervals can be restricted. Combinations of conjunctions and dis-

Junctions can be specified. Let § denote this quantity.

cardinality of intervals The number of elements in an interval can be restricted. Again, conjunc-

tions and disjunctions can be specified. Let # denote this quantity.

mixed restriction Constraints on the number of intervals and their sizes and cardinalities can be

specified.

Partial compactness is a generalization of compactness because when we impose the restriction
that the maximum number of allowed intervals in a partially compact domain be one, we have a
compact domain. As in the case of compactness, partial compactness of aggregated domains is not

in general preserved under permutation of the aggregation sequence.

EXAMPLE: Let us, by means of an example, investigate why the definition as it is given above does

not have this property. Let an aggregated domain be given by
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D=D; x D,
and let the aggregated “interval” be made from the values

Ti,...,Zn and Y1,...Yn.

Let us assume that (z;,,%:,) and (z;,,y;,) are arbitrary elements of an interval of D(t). Assume
without loss of generality that the former element is smallest. Then these elements belong to the

interval:

(xiw {yizl .. ‘1yM})v (w1'1+1’ {yl’ .- -,ym}), .- "(xjw {y17 R ng})

The reader may convince himself that the existence of these elements in an interval of D (t) x
Ds(t) are not enough to make the corresponding elements of Dy(t) x Dq(t) an interval.

To be even more concrete let Dy = {1,2,3} and let D2 = {a, b, c} and let an interval of D;(t) x
Ds(t) be given by {(2,8),(2,¢), (3, a)} then the set {(a,3), (b,2),(c,2)} of elements on the permuted
domain is not an interval. Finally, observe that the permutation of the compact domain containing
(1,¢) and (2,c) as end points is not compact. This tells that not even the further restriction that
the end points be mutually ordered according to the orders of their respective domains ensures

compactness of a permuted domain. 0

As in the case of simple compactness we talk about maximal partially compact domains.
A (constrained) partially compact domain is maximal iff it cannot be expanded (under the given

constraints). A relation can have a lot of both partially compact domains and maximal partially

compact dornains.

The definitions of compactness rely heavily on the notion of order. Every atomic (non aggregated)
domain has an order. The lexicographic order on an aggregated domain induced by the orders of
its constituent atomic domains is a generalization of the order of numbers (from digits) and words
(from letters). It assigns a monotonic decreasing importance to atomic values of a domain. The
first elements are the most significant, the second ones are the next most significant, and so on. For

example, “el” comes before “le” and “bz” is less than “cc”.

We now arrive at the concepts of uniform domain and partially uniform domain.

DEFINITION: (Dy(t), Da(t), ..., Dn(t)) is a uniform compact domain iff it is compact and for

each subdomain, D;(t), the number of times each value of D;(t) occurs is the same.
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Similarly, (D1 (), D2(2), ..., Da(t)) is a uniform, partially compact domain iff it is partially
compact and for each subdomain, D;(t), the number of times each value (whatever interval it might
belong to) of D;(t) occurs is the same.

A partially compact domain is a partially uniform, partially compact domain iff for each

subdomain, D;(t), and for each interval in D;(t), the number of times each value occurs is the same.

Similarly to what we did for compact domains we also define maximality of the three kinds of
uniform domains. A maximal uniform compact domain is a uniform maximal compact do-
main. A maximal uniform, partially compact domain is a uniform maximal partially compact
domain. A maximal partially uniform, partially compact domain is a maximal partially

compact domain that is partially uniform.

5.3 A Notation for Compactness Queries

We need a notation for expressing queries based on compactness. That is the subject of this subsec-
tion. We introduce a ¥ operator that takes a relation as an argument and returns a relation, thus

preserving the closedness of the extended relational algebra. The general notation is given by

LiEoio B

Some explanation is in order.
The first subscript, E, is an expression that can be any combination of conjunctions, disjunctions,

and negations of restrictions of the variables ¢, § and #, as defined by the following grammar:

E — EAE|EVE|-E|(E)|Ezp

Ezp - N<V|VLSN|V=N|N<SV<N
N — ...|-10]=9]...]9]10] ...
Voo~ usl#

The E expression restricts the process of generating intervals: Intervals are only generated if

they fulfill the specified restrictions.

EXAMPLE: The E expression below makes the ¥ operator generate intervals only if:

e The total number of intervals (¢) to be generated is less than or equal to 10.
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e The width (6) of any generated interval is larger than or equal to 8.

o There are at least 1000 elements in each generated intervals (#).

L < 10A8 <6 A1000 < #

If any of the restrictions cannot be met the empty relation is returned. a

The second subscript, D, specifies which active domain (possibly aggregated) of the argument

relation (R) should be used in the interval generation process. If the schema of R is given by
R(Al : Dl, Ag: Dg, ey An: Dn)

then any sequence A;, A;,, ..., A;,, where 1 < 43 < i3 < ... < i < n, can be specified
provided a metric and a total order exist for each constituent subdomain. If the cardinality of the
active domain is zero then we have an empty interval, and + = 1,6 = 0.

The third subscript, O, is used for specifying which part of the computed result to be returned.
The top-level syntax is

O - X:Y

X is aspecification of which intervals that fulfill £ should be part of the result; Y is a specification

of exactly which information about the intervals should be in the result.

X = X,X|AB|C|E

A — max|avg|min

B — range]card

C — all

Y — Y, Y |data|range|card

ExaMPLE: The expression “max range: card” results in only the cardinality of the ones of the
computed intervals with the largest range being returned. The expression “all: data” returns a
selection on the argument relation with all the tuples that were placed in the generated intervals.

Finally, “avg card: range” returns the range of the interval(s) with average cardinality. o

Figure 13 defines the schemas of the various types of results that can be returned. If combinations

of the three keywords are specified, the schemas are simply aggregated.
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data

A11D1 Az:Dz AnIDn

range

A; From: D; | Ai, From: Dy, |... | A;, From: D;, | A; To: D

12

A, To: D,

ig-

card

Card

Figure 13: Schema of the results when either data, range, or card is specified.

5.4 Sample Compactness Queries

Now that we have introduced the general notation for compactness queries let us consider some
examples.

The query (20) below retrieves all the tuples of BEgmp if the restrictions on ¢, #, and § are
fulfilled.

z:[E'][Timez][a”: data) BEmp (20)

The following algorithm will produce the result:

init # boundaries { initialization of restrictions implied by E }

init 6§ boundaries

init ¢ boundaries

init Res { the result relation is initially empty }

init ¢ { the number of generated intervals, initially 1 }

init 6[¢] { the size of the i’th interval, initially 0 }

init #[i] { the cardinality of the i’th interval, initially 0 }

{ a clustering index on the domain TTIME is assumed, so no sorting on Time is required }

while unread elements in Time

do pick next element, e { tuple of Bgy,, with the lowest Time value }
#[i] + + { one more element in interval i }

Res — Res U e
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while unread elements in Time, and succ(e) immediate successor of e
do e « succ(e)
#i]++
Res — ResU e
check # boundaries
if unread elements in Time
then i + +
check ¢ boundaries
compute §[z]

check 6 boundaries

If any of the checks in the algorithm fail then Bg.,, with an empty extension is returned. Note

that if n is the cardinality of the attribute Time, then the algorithm is linear in n, i.e. O(n).

Now let us consider some more interesting examples.

E[L:l][Height][alI: data) Emp (21)

L[ Timellmin card: data] YTime=Hour TNOW ~12 months<Time BEmp (22)
T{ Timell#>X: range] BEmp (23)

Il [Time][mas range, maz card: range] TOp=Ins BEmp (24)
E[1<10A8<6A1000< #][Time](all: data] TNOW —2years<Time BEmp (25)

E[42&][Time][all: range,card] TOp=DelA09058916<Time<10058907 Y Time=Hour OOp=Del BEmp (26)

Angum TSum €Time, Sum=countrime TTime:Day 00p=Day BEmp (27)

Statistical normal forms based on compactness and uniformity are important in statistical ap-
plications of contents of databases [Gho89]. A relation is in 1. statistical normal form (1.SNF) if
every atomic non-category domain is compact [Gho89]. Let us illustrate how we can test whether
a relation is in 1.SNF. In Emp this means that the active domains of attributes Mass, Height, and

Salary must be compact. Query (21) returns the whole relation Emp if Salary is compact and the
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empty relation otherwise. Using similar queries for Mass and Height we can determine whether
Emp is compact. Given a relation in 1.SNF a natural continuation would be to ask if it is also in
2.SNF, i.e. whether every atomic non-category domain is also uniform. This can be done using the
aggregate formation operator and count functions. We have chosen not to present an operator based
on the notion of uniformity.

The query (22) retrieves the data of the hour(s) during the past year where the least happened
to relation Emp. First, the part of the backlog of Emp for the past year is selected. Second, the time
unit is changed to Hour. Third, the tuples of Bgm, are grouped according to the Time attribute
and the elements of the interval with the least number of elements is returned as the final result.

In query (23) intervals are again generated on the basis of the attribute Time of Bgmp,. This
time the ranges of the cardinality-wise large intervals (i.e. intervals with more than X elements) are
the result.

In the next query (24) we find the periods through the lifetime of Emp where the most insertions
took place. Among all possible intervals the ranges of only the ones with largest cardinality and
range are returned.

In (25) we put some restrictions on the interval generation process. For simplicity, we have
chosen those of the first example of subsection 5.3. If it is possible to generate intervals under the
imposed restrictions the whole relation is returned; otherwise Bgmp, with an empty extension is the
result.

In query (26) we are interested in deletions to the database that took place after 4 pm on May
9. and before 7 am on May 10. Before the X operator is applied we select the interesting parts of
the backlog and change the domain of attribute Time. Then, if at least four intervals will result,
the ranges and cardinalities if the generated intervals are returned; otherwise the empty relation is
the result.

The final query (27) returns the average number of deletion requests per hour to the relation

Emp.

In conclusion, we have illustrated the utility of the £ operator. The reader may compare the

sample queries to the informal questions of subsection 5.1.
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6 Conclusion and Future Research

In this paper we have pursued the idea of asking questions about the evolution of a database. In
doing so we have focussed on abstracting common patterns and exceptions in the change history.

First, we added transaction time to the standard relational model. We gave a precise character-
ization of the time concept chosen and argued that tuple time stamping better suited our objective
to provide a not just small but also transparent extension than did attribute value time stamping.

Second, we extended the data structures of the standard relational model to include system
generated and maintained backlog relations that proved to be ideal for recording a detailed change
history. The backlogs contained requests for changes to their associated base relations rather than the
results of the requests. Thus they more faithfully reflected the evolution of the database. Change
requests were grouped into requests for insertions, deletions, and modifications. Using only the
standard relational algebra the extended data structures allowed for historical queries.

Third, we extended the standard relational algebra to include the operators unit (Y), fold (¢),
unfold (¢~1), when (), and aggregate formation (¢). By means of sample queries we demonstrated
the retrieval power of the combination of the extended algebra and the extended data structures.

Fourth, we added the novel ¥ operator to the query language. Based on the notion of com-
pactness, the operator provides a new way to group data. Usually data were grouped according to
predefined groups. The idea of the L operator was to let the data themselves determine the groups.
Thus the operator grouped consecutive data together, and started a new group when a hole was
detected. It was possible to impose restrictions on the grouping process. The number of allowed
groups could be specified; the allowed widths and cardinalities of the groups could be specified.
Not only could the grouping process be applied to atomic attributes, but it could be applied to
arbitrary sequences of domains, i.e. aggregated domains. Also, it was possible to select from among
the generated groups the ones to be the result of an application of the operator. We demonstrated
the use of the operator by sample queries. The unit operator allowed for varying the consecutiveness
of data, and the aggregate formation operator allowed for cémputing statistics on generated groups.
As a whole the query language used in conjunction with the extended data structures allowed for

retrieving patterns and exceptions in the change history of the database.

The incorporation of a general and flexible mechanism for version support into the data model
of this paper is subject of current research. So is further investigation of the query evaluation
subsystem underlying the data model of this paper [JTMR89).

While the basic idea of the operator X is fixed, an issue of further research is how to apply it in

different settings, and a more extensive study of the applications of the basic idea can lead to other
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versions of the operator, better suited to their specific applications. Because of the ability to generate
groups from the data the operator is well suited for usage during the process where for example a
statistician tries to get a feel for the data of a database. Integration of browsing capabilities and
the operator by allowing for interactive modification of the subscripts £ and O is a natural future
direction with some resemblance to query generalization [Mot84a, MDT, Mot88, Mot84b]. Also,
the application of the operator to the statistical normal forms of {Gho89] is an interesting direction,
and finally it would be of interest to investigate the possible application of a X-like operator to

dependency theoretic problems.
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