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Abstract

In conventional databases, the amount of data typically reaches a certain level and is then
relatively stable. In databases supporting transaction time, old data are retained, and the amount
of data is ever growing. Even with continued advances in mass storage technology, vacuuming (i.e.,
deletion or off-line storage of data) will eventually be necessary. At the same time, the fundamental
principle, that history cannot be changed, of transaction time databases must be obeyed.

This paper provides a framework for vacuuming subsystems for relational transaction time
databases. Our main focus is to establish a foundation for correct and cooperative query pro-
cessing through the modification of queries that cannot be processed due to vacuuming. In doing
this, we provide language facilities for specifying vacuuming; we present three classifications of
vacuuming specifications; and we define correctness criteria for vacuuming specifications. Based
on the classifications, we provide a comprehensive set of rules for expressing modified queries. For
some of the classes, modified queries can be expressed using relational algebra—for others, this is
impossible, and an extended, tagged relational algebra is used instead.

The framework is a useful tool for designers of specific vacuuming subsystems. The framework is

presented in the context of a previously developed relational model with transaction time support,
DM/T.
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1 Introduction

A conventional database management system (DBMS) differs significantly from a DBMS supporting transaction
time. Relations of a conventional DBMS store a single snapshot, the current state. In contrast, relations of a DBMS
supporting transaction time, termed roll-back relations, store all previous states using time stamps. Thus, it is
possible to retrieve not only the current state, but any previous state. It is also possible to perform, for example,
trend and exception analysis on the change history of relations. This dramatically increased functionality does,
however, not come for free. With no deletions, roll-back relations are ever-growing and will eventually outgrow any
mass storage device. In addition, efficiency degrades as relations grow. It is apparent that effective means of coping
with growth is required before a temporal system can be put into practical and industrial use—this is the task of a
vacuuming subsystem.

The most immediate motivation for a vacuuming subsystem is that storage is limited. It must be possible to
remove data when they are no longer needed, or when additional, free space is needed for more important data. On
the other hand, a vacuuming subsystem should also guard against loss of crucial data—simple cyclic removal schemes,
deleting the oldest data when space for new data is required, are not sufficient. Another motive for vacuuming is
the general tendency that the more data to manage, the-less efficiently can it be managed. Limitation of storage
and degrading performance are both laws of nature. Laws of society also motivate vacuuming. Existing laws require
capabilities to delete certain records of previous history while preserving other records for periods of time. Similarly,
capabilities are required to enforce laws of business, business policies.

A fundamental principle of a roll-back database is that the recorded history must not b« changed [25]. Thus, the
answer to a fixed query (e.g., “how many employees were recorded in the database as of January 22nd 19907”) must
never change. Deletion of data by a vacuuming subsystem must obey this principle. It is done by modifying queries
that would otherwise have accessed vacuumed data into corresponding modified queries that avoid data that have
been vacuumed.

Previously vacuumed data can be involved in queries in several ways. For example, the selection criteria of a
query, @, can involve an attribute, the data of which have been removed, and some of the data requested by @
may be missing. A vacuuming subsystem must handle such situations cooperatively. Our approach is to modify the
user-issued query, @, into a set of modified queries, My Q;, 1 < i < k, where each query reflects that vacuuming,
according to a vacuuming specification, V, has been performed and thus does not reference data that have been
vacuumed. I_f @ 1s not equivalent to any of My @Q;, then Q can not be processed (due to vacuuming), and the best
the system can do is to process one of My Q;, which can be a generalized or specialized (or both) version of Q. In
this case, the user is confronted with the set of alternative queries and asked to either select a query, upon which
that query will be processed, or to issue another query.

To be appropriate, vacuuming specifications must be growing (i.e., data once specified for deletion must continue
to be specified for deletion). Not 2ll vacuuming specifications are appropriate. For example, a specification, stating
that data can be deleted if they were inserted into the database between two and three vears agn, does not make

sense. Data more than three years old cannot be removed, and data between two and three years old eventually



become more than three years old. As a result, no data can be deleted. We term this kind of useless specification
moving, and they are detected at specification time. In addition, a specification is inappropriate if it removes data
needed to perform vacuuming according to other existing specifications; if it removes data needed to compute queries
of application programs and views; and if it conflicts with integrity constraints. Inappropriate specifications are
detected at specification time.

Vacuuming is performed by a vacuuming demon according to the specifications. While vacuuming logically has
eager semantics, any degree of eagerness or laziness can be adopted for the actual physical removal of base data, and -
a variety of conditions triggering the demon can be employed.

In this. paper, we provide a framework for vacuuming subsystems, and we describe how a vacuuming subsystem
augments the functionality of a DBMS. In particular, we have chosen to concentrate on the fundamentals for providing
correct and cooperative query processing of queries that reference data, missing due to vacuuming: we investigate the
fundamental problem of how to express modified queries. In doing so, we identify 8 classes of vacuuming specifications.
These classes are characterized according to two additional classifications that elicit important aspects of the nature
of each class. Following this, each of the 8§ classes are treated in turn. We illustrate the functionality of each class.
We consider how to express, in a single expression, the vacuuming of a relation. This is the basis for modifying
queries that access vacuumed relations. Also, we exemplify how to express vacuumed relations, and we exemplify
querying of vacuumed relations.

We discuss vacuuming in the context of the data model DM/T [14, 13, 15, 16], but it should be clear that
any temporal data model supporting transaction time can be augmented with a vacuuming subsystem, and that

vacuuming facilities are necessary before such a model can be put into commercial use.

To our knowledge, the vacuuming subsystem (VS) framework presented in this paper represents the first work on
systems of this nature.

The database management system, Postgres [22], has two features related to vacuuming. First, cutoff points for
relations can be specified [28]. Consider two examples: discard EMP before ‘1 week’ ', discard EMP before
‘‘now’’, and discard EMP. The former deletes data more than 1 week old from the relation, Emp: the latter two
both retain only the current state. In addition, when a base relation is created, it can be tagged with the designation
no archive (as opposed to light archive and heavy archive), meaning the same as'discard <rel-name> [27].
Second, an asynchronous demon, the vacuum cleaner, is employed. A Postgres database is stored on both magnetical
and optical disk, and the vacuum cleaner moves records of committed transactions from magnetic disk onto optical
disk. By default, it moves records of all transactions committed at the time it is activated onto optical disk, but
records can be kept on magnetical disk by delaying vacuuming. In [28], the syntax is vacuum <rel-name> where
<QUAL> where rel-name is a base relation and QUAL a qualification, typically involving NOW. For example, vacuum
EMP where EMP.tmax < NOW - 30 days tells to retain EM P records on magnetical disk until they are 30 days old.
In [27], the syntax is restricted to vacuum <rel-name> after <T>, and the example becomes vacuum EMP after

‘30 days’’. Vacuuming in the context of crashes is shown to be without complications, and the cost of vacuuming



is shown to be marginal.

Query languages of the standard relational model allow for set-at-a-time deletion. For example, in SQUARE
[5]—a predecessor of SQL—the syntax is { Ra,,..,a.(< exp >) where A,,..., A, are attributes of R and < exp >
evaluates to some n-ary relation [29]. The result of executing the command is to delete from R all tuples where the
values of attributes Ay, ..., An match the corresponding attributes of the computed n-ary relation. This functionality,
a special case of a VS’s functionality, applies only to a standard relational model. Deletions in a model extended
with transaction time needs extra attention because they must adhere to the principle of never changing the recorded
history.

In database restructuring and schema evolution, identification of parts of data is used not only to remove data
but, more typically to split and restructure relations. Schema evolution in a model extended with time has been
addressed by [18]. In a standard relational model, vertical and horizontal partitioning of relations and dropping of
attributes has been addressed by [23]. Our framework allows for pinpointing both vertical and horizontal fragments
of relations, but only for the purpose of deleting attribute values—vacuuming does not result in restructuring of
databases and evolution of schemas.

Query modification is a technique for modifying queries. This technique is used for implementing integrity
constraints and views [26]. For example, an occurrence of a view name in a query is substituted by the definition of
the view so that the resulting query only references the base relation(s) that are used to define the view. Modification
of queries using equivalence transformations is also done for performance reasons during query optimization (e.g.,
[24, 30]). Modification of queries by a VS serves a different purpose: queries are modified into similar (as defined
later), but not equivalent queries, in order to provide cooperative processing when queries rely on vacuumed data
and therefore cannot be processed correctly as they are.

As an extension of query modification, techniques for query generalization can be used to increase the size of
answers to queries [19, 6]. Similarly, query specialization can be used to decrease the size. In this paper, we consider
only the foundation for correct and cooperative query processing. Based on this foundation, both techniques can be
applied to further simplify modified queries and increase cooperativeness.

Vacuuming specifications somewhat resemble integrity constraints, but there are important differences as well.
- To illustrate some of these, consider referential integrity where the idea is that “if some tuple references another
tuple, then this other tuple must exist.” If, in the well-known suppliers and parts database [10], there is a shipment

for supplier “s;”

in the shipment relation, then the supplier “s;” must exist in the suppliers relation. To enforce
referential integrity, an integrity subsystem must monitor update operations and take action if the updates violate
integrity. Monitoring is expensive as it requires search of entire relations for matching foreign and primary keys—this
is a popular explanation why many existing DBMS’s do not support referential integrity [9]. A vacuuming subsystem
does not have this efficiency problem as it needs not do any processing when update operations take place. Actual
physical vacuuming needs not to be done eagerly; it can be done when convenient (i.e., vacuuming can be triggered

by a low system workload, or by another condition). In addition, vacuuming is cheap in itself: no-extra data need

to be referenced at query processing time; only modification and perhaps reorganization of a query expression may



have to be done as extra work. Finally, at specification time, validity checks of specifications need to be performed.
The checks involve only the database intension, no extension is involved.

When vacuuming occurrences of attribute values from tuples, missing values occur, and vacuuming-null values
(“”) are used. Such values can be treated by DBMS’s as they already treat traditional null-values—both signify
missing information. Our research on vacuuming is separate from issues of null-value research.

Vacuuming concerns base data, and we have made the simplifying assumption that vacuuming is specified only

in terms of backlog relations. This is done to avoid the issue of update through views [11, 12].

In the next section, we introduce a sample database and demonstrate the concept of vacuuming. In section 3, we
define the extensions of functionality of a DBMS with vacuuming. In section 4, we present a taxonomy for vacuuming
specifications. Then, in section 5, we define concepts necessary for the presentation in the sections to follow. Based
on the taxonomy and the concepts, sections 6 - 10 discuss various kinds of vacuuming. The final two sections (11

and 12) contain the conclusion and topics of future research.

2 An Example

We devote this section to an example in order to convey the idea of a roll-back DBMS extended with vacuuming
facilities. We use DM/T, a roll-back model with tuple stamping (14, 13], for this purpose. A brief introduction to
DM/T is offered in the appendix.

Assume that we have a database, DB, with a user-defined relation, Emp. The schema of Emp, S(Emp), is given
as!

Emp(Id, Sal, Bal : INT; Sezx : {M,F})

where Sal and Bal is the salary and account balance, respectively, of an employee with the identification number
Id. Updates to Emp result in change requests being entered into the backlog of Emp, Bemp. The backlog has the

schema
BEmyp(Bid : SURROGATE;Op: {I, D, M}, Time : TTIME;Id,Sal, Bal : INT; Sex : {M,F})

where Bid is an identifier of backlog tuples; Op identifies tuples as either insertion (1), deletion (D), or modification
(M) requests; and Time is a transaction time stamp. Note that B, is the base relation, and because BEmp records
the complete change history of Emp, any past state of Emp can be derived from it (by means of a time slice).

All updates of Emp result in tuples being inserted into BEemp, and nothing is ever deleted. Therefore, BEmp 1s
ever-growing, and it is likely that Bg,,, will eventually contain some data that are irrelevant to the users. Now,
assume that the current business policy is that data four years and older are not to be retained, that tuples between

two and four years old with value F' of the attribute Sex can be disregarded, but that a full record of employees

1S(R) denotes the schema of relation R. Similarly, T(R) denotes the set of instances of S(R). Informally, we employ R to mean an

arbitrary, given instance of S(R).



deleted from the database must be retained. This can be specified by entering the following three lines:

|2 p(BEmp) * OTime<NOW —4yrs BEmp
Va P(BEmp) : O'NOW-4yr:<Time_<_NOW—2yr:ASez=FBE‘mp

Va K.(Bgmp) : UOp:DBEmp

Let the set V = {V;, V5, V3} constitute the current specification for Bgmp. It is read as follows: “remove (p) from
Bgmp all tuples where the value of the attribute T'ime is less than the current time (NOW) minus four years; remove
from Bgmp all tuples with Sez F' where the value of Time is less than four and at least two years old; keep (#) in
BEmp all tuples where attribute Op has value D”. While V; and V; are removal specifications and tell what must
be removed, V3 is a keep specification and tells what must be kept.

When a specification for a backlog is created or updated, a VS will perform a list of checks to make sure that the
specified removals make sense and fit harmoniously with other specifications, view definitions, the needs of application
programs, etc. If conflicts are detected, the Data Base Administrator (DBA) is warned and may have to take action

(section 3).

Above, we have considered the specification of vacuuming; below, we consider queries on relations that have been
subjected to vacuuming. Assume that query Q = 0sai>30kBEmp 1s issued against DB and denote the result Q(DB).
Then, assume that the specification V is in effect and evaluate Q, resulting in Q(MyDB). Observe that because Q
can reference data vacuumed due to V/, it is possible to have Q(DB) # Q(MyDB). For example, a tuple of Bemp
more than four years old and with a Sal value of 40k will appear in Q(DB), but not in Q(MvDB). This would be
a violation of the principle that the history recorded in the database cannot be changed. Thus, query @ cannot be
answered as it is. The system does not merely refuse to evaluate Q: it cooperates by modifying @ into a set of one
or more queries, My @;, 1 <i < k, that are equivalent?, ¥ 1< i, <Jj (MvQ; = MyQj). These represent the result
of @ when taking vacuuming according to V into consideration.

In our example, where Q is issued with specification V in effect, the best the system can do is augment the
selection criterion of Q with the additional restrictions imposed by V and present the modified queries to the user
as alternatives. It is easily seen that My Q is of the form op BEmp. If we let F, F\, F, and F3 denote the selection

criteria of @, Vi, Ve, and V3, respectively, then

F' = FA[(=Fi1A~Fs)V F
= Sal > 30k A[(~(Time < NOW — 4yrs) A~(NOW — 4yrs < Time < NOW — 2yrs A Sez = F))v Op= D]
= Sal 2 30k A [(Time > NOW — 4yrs A [(Time > NOW — 2yrs V Time < NOW — 4yrs) V Sex = M])v Op = D]
= Sal 2 30k A [(Time > NOW — 4yrs A (Time > NOW — 2yrs V Sez = M)) V Op = D)

2Let the schema, S(DEB), and a vacuuming specification, V, of a database, D, be given. Two query expressions, Q; and Q3, are

equivelent, Q1 = Q2, iff VI € I(DB) (Q1(I) = Q(I)). In addition, Q; and Q2, are equivalent with respect to (w.r.t.) specification V,
Q1 =v Qq2, iff VI € I(DB) (Q1(Iv) = Qa(1v)).



Similarly, we can derive

F' = (Time < NOW —4yrs AOp = D A Sal > 30k) V
(NOW — 4yrs < Time < NOW —2yrs A (Sex = MV Op = D) A Sal > 30k) v
(NOW — 2yrs < Time A Sal > 30k)
When confronted with modified queries, the user can either select one of these for processing or change and reissue

one of these (figure 1). It is guaranteed that a modified query returned by the system can be processed, but if a

query is changed and reissued, the system may have to go through a new cycle of modification and display.

>> select[Sal >= 30k] B[Emp]
query cannot be evaluated due to missing data; alternative, equivalent queries:
select[Sal >= 30k and ((Time > NOW - 4yrs and (Time > NOW - 2yrs or Sex = M)) or Op = D)] B[Emp]
select [(Time <= NOW - 4yrs and Op = D and Sal >= 30k) or
(NOW ~ 4yrs < Time <= NOW - 2yrs and (Sex = M or Op = D) and Sal >= 30k) or
(NOW - 2yrs < Time and Sal >= 30k)] B[Emp]

Figure 1: The result of issuing query Q = OSal>30k BEmp With specification V = {V}, V5, V3} in effect.

The system divides the process of modifying a query into two parts. At specification time, a backlog expression
(e.g., BEmp) is modified by its current vacuuming specification, V, into a modified backlog expression, My Bemp.

For our example, we have

My Bgmp = O(Time>NOW —4yrsA(Time>NOW ~2yrsvSez=M))vOp=D BEmp

An expression like this describes a physically existing base relation—it tells exactly which data are present in
the vacuumed Bgm,. Even though it can look rather complex, it is actually an atomic unit in the sense that
optimization transformations are pointless when computing the extension. Then, at query time, the system needs
only to replace occurrences of backlog expressions by corresponding modified expressions and possibly use equivalence
transformations to expand the resulting expression into a set of equivalent expressions. In the query osai>30kBEmp,

the occurrence of BEmp is merely replaced by the expression for My Bemp.

3 The Extended Architecture

This section describes the architecture of a DBMS extended with a VS and gives an overview of the functionality of
such a system. More specifically, we first consider how a VS augments the query processing subsystem of a DBMS,

and then we consider the specification of vacuuming itself.



In an extended system, all queries pass through a vacuuming filter. Queries that do not reference vacuumed data
are passed on to the DBMS for processing; queries that may reference vacuumed data are passed on to a query
modiﬁef. The filter implements this selection as follows: if a query does not directly involve backlogs, but only
non-invalidated, predefined views, it is passed on to the DBMS; if the query is from a non-invalidated application
program, it is passed on to the DBMS; if the query is from the VS itself, it is passed on to the DBMS; finally, if
the query is an interactive user query, it is passed on to the query modifier. An error occurs if the query is from an
invalidated view or application program. Validation information for views and application programs is supplied by
the VS (see below) and is stored in the data dictionary of the DBMS. Validated views and application programs are
guaranteed not to access vacuumed data.

When a query, Q, arrives at the query modifier, its modification, My Q, is created (how this is done will be
discussed later). Query My Q gives the same result on My DB as does @, that is My@Q =v Q. Also My Q avoids
vacuumed data, that is VDB (Myv Q(DB) = My Q(MyvDB)). A test procedure then tests @ and My Q3. If the test
succeeds, @ does not reference vacuumed data and is passed on to the DBMS for processing. If the test fails, Q may
reference vacuumed data, and it may be impossible to process without modifications. As a result, My @ and possibly
other similar queries that also avoid vacuumed data will be presented to the user. The user can choose any of the
queries ofiered by the VS for processing, can modify any query expression and issue the resuit for processing, or can

issue a completely new query. See figure 2.

VACUUMING SUBSYSTEM DBMS

MyQ;
ERROR
€ F Q QUERY Q QUERY
! MODIFIER PROCESSOR
Q L
T
Q
E
R My Bg
DATA
— VALIDATION INFO
DICTIONARY

Figure 2: Query processing extension of a standard DBMS.

Together, the vacuuming filter and the query modifier guarantee that vacuuming will never change the recorded
history. They do so by allowing only queries, Q, that if asked previously would have resulted in the same answer as

if asked now:

VS(DB) (YV (VI € I(DB) (Q(MyDB) = Q(DB)))) (1)

3The general problem of determining equivalence of relational expressions is NP-complete, but efficient algorithms exist for determining
equivalence for an important subset of expressions (most practical SPJ-queries) [4, 3, 20]. The query modifier's test procedure will never
succeed if, in fact, @ £ My Q (soundness), but it may fail to detect equivalence between complicated expressions (incompleteness). While

a sound and complete procedure is preferable, the incompleteness is only a minor inconvenience in practice.
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Specification of vacuuming is the responsibility of the DBA. To support the specification function, a VS should offer
three tools: a validate tool, a help tool, and a warning tool. The validate tool is essential in that it ensures that
specifications are correct (see below). The help and warning tools advise the DBA about what should be vacuumed
and about which specifications seem inappropriate, respectively. These two tools are less essential.

When the vacuuming specification for a backlog relation is updated, validily is ensured by performing five checks.

1. The new vacuuming specification must be growing—a moving removal specification is not valid. Note that an
initially valid specification can be rendered moving by updating not only the p part but also by updating the

K part.

2. There must be no conflicts between the vacuuming specification and integrity constraints (ICs). A conflict
exists if the execution of a vacuuming specification would cause an IC to be violated. A conflict also exists if a
vacuuming specification would result in removal of data needed to compute an IC. When conflicts arise, there

is a choice to either modify the IC, modify the vacuuming specification, or modify both.

3. Possible conflicts between the specification and the set of current view definitions must be detected. A conflict
exists if any view cannot be computed because of vacuuming. When a conflict arises, the data dictionary
entries of the views involved are updated to signify that the views are invalidated, and the DBA is notified.
Also, modified view definitions are made available to the owners of invalidated views. This is done to allow for

easy conversion into validated views.

4. Possible conflicts between the specification and the queries of application programs must be detected so that no
validated application programs attempt to access vacuumed data. In the case of a conflict, the data dictionary
Is again updated to reflect this, and modifications of the invalidated queries are made available for the owners

of the involved programs.

5. The specification must not vacuum data needed by (other) specifications in order for them to serve as vacuuming
specifications. An intra-specificational conflict is limited to the specification for a single backlog, and an inter-
specificational conflict involves more specifications for more than one backlog. The DBA must resolve possible

conflict.

The validate tool is activated when the set of vacuuming specifications, ICs, views, and application programs is
updated. Conflict detection can be implemented using a modification-and-test procedure. For example, to test a
view, its modification with respect to the current spectfication is constructed and is tested for equivalence with the
original view. If the test fails, the view is invalidated: otherwise, it is validated. Figure 3 below illustrates the validate
tool.

A help tool will have access to information about query patterns, about space consumption by the individual
backlogs of the database, and about available storage. From this, space-consuming backlogs can be singled out

together with regions of backlogs rarely referenced. Depending on the need for vacuuming—as indicated by the
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Figure 3: Functionality of the validate tool.

amount of available storage—the DBA can now specify vacuuming of appropriate portions of the least used and
most space consuming data.

A warning tool tries to identify possible bad effects of the current specifications in general and of the updated
specification in particular. As one example, we consider it generally imprudent to specify vacuuming of data that
query patterns show are accessed frequently. By retaining information about how queries have been modified, it is

also possible to point out trouble spots.

4 Taxonomy of Vacuuming Specifications

In this section, we present three classifications of vacuuming specifications. The first and second classifications are
orthogonal and are both used for characterization of the classes of the third classification.

The first classification, A - D, makes use of two dimensions to distinguishes between specifications. Thus.
specifications that are based on only the Time attribute are classified differently from those based on any set
of attributes. In addition, specifications that remove complete tuples, and specifications that remove individual
attribute values are classified differently. We have singled out the Time attribute because we consider it fundamental
among attributes: the variable NOW iakes as values elements of the domain of Time, tuples of backlogs are entered
in time order. and we expect that vacuuming will often be specified in terms of Time. The second dimension is
useful because removal of complete tuples is conceptually simpler to understand and technically much simpler than

removal of individual attribute values.

CLass A: removal of complete tuples for time intervals This class of specifications involve only selec-
tions on attribute Time. If present, projections are trivial in that they involve all the attributes of the backlog

relation in question and can be deleted without changing the specification. Figure 4 iilustrates specification 1]

of section 2.

CLASS B: removal of complete tuples This class generalizes the previous class by allowing selections on any

10



attribute. Implementations of the standard relational model typically support this class of deletions. Specifi-

cation V2 is an example. Specifications belonging to this class do not introduce vacuuming-null values.

CLass C: removal of all attribute values in time intervals Specifications of this class can utilize the
projection operator non-trivially. Thus, this class generalizes CLASS A. Selections can only use attribute Time
as parameter. When a backlog vacuumed in this way is retrieved, it will appear with “blank” areas with special

vacuuming-null values. Figure 5 visualizes a backlog vacuumed this way.

CLass D: removal of attribute values This class generalizes CLASS B by allowing vacuuming of individual
attributes, and it generalizes CLass C by allowing selection to depend on any attribute. Figure 6 illustrates

the kinds of patterns that can result from this kind of vacuuming.

Figure 7 visualizes the generalization structure of the classification A - D. The remaining parts of the figure will

be explained next.

NOW - 4 yrs Time NOW

%

2
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HbHLTn
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Ak
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Figure 5: Visualization of attribute value removal for time periods. The figure corresponds to the specification:

P(BEmp) * TBal OTime<NOW —2yrs BEmp~

To motivate the second classification, I - 111, note that in DM/T we distinguish between backlog queries and
time slice queries. While backlo< queries apply directly standard relational algebra operators to time sliced backlogs.
time slice queries involve only backlogs in the sense that they derive time sliced user-defined relations from these. In
this classification. we distinguish between specifications that do or do not specify time slices of backlogs.

The classification is significant because. as we shall see later, time slice queries on hacklogs vacuumed according to
specifications of CLASS | may have modified queries that are problematic. The opposite, backlog queries on backlogs

vacuumed according to specifications of CLass I1. is less problematic. Still. if backlog queries (time slice queries)

1]



Figure 6: Visualization of general attribute value removal.

Generalization structure and characterization of Class 1 - Class 8

T R HE AR RS DI Ty H T Ghpnmn an Generalization structure of A— D

EEETE

Figure 7: Characterization of classes CLASS 1 - CLASS 8.
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are predominant on a given backlog, it is usually preferable to vacuum that backlog according to a specification of

Crass I (Cuass II).

Crass I: backlog based specifications Specifications of this class contain only backlog-query expressions:

no time sliced backlog expressions appear. All specifications in section 2 belong to this class.

Crass II:  time slice based specifications For a specification to belong to this class, each part of it must

involve a time slice; however, it can (and typically will) also involve backlog-query expressions.

Crass III: mixed specifications This category allows both. time slice expressions and backlog-query expres-

sions to be used in specifications, but neither time slice expressions nor backlog-query expressions are required.

The generalization structure of this classification is visualized in figure 7.

The query language can be used in many ways to specify data to be vacuumed. The third classification consists
of 8 classes of queries, some very restricted and some very general. In choosing these, we have focused on conceptual
simplicity, usefulness, and ease of implementation. The first classes are the simplest and easiest to understand, and
the tendency, as we go down the list, is that they become more complex, but also more powerful. By presenting
this classification and basing the subsequent presentation of vacuuming on it, we supply the designer of a VS with a
valuable tool: we make it simple to choose a functionality (and complexity) that matches the particular requirements
at hand.

Figure 7 illustrates the generalization structure of the classification 1 to 8, and it characterizes these classes in
terms of the classes of the first (left columns) and second classification (top rows). For example, CLASS 2 generalizes
CLass 1 and is itself a specialization of CLASS 4. Also, any specification of CLASS 2 is an example of a specification

of CLass B and Crass 1. Figure 8 displays the syntax of the classes 1 through 8.

CLass 1: time-selection based vacuuming This class is both very simple, fundamental, and useful. It removes
tuples depending only on their time stamp attribute values. This class of specifications is represented by V;

(section 2 and figure 4).

CLass 2:  selection based vacuuming This class allows for selections to involve not only attribute Time, but
any attribute of Br. The specification {Vi, Vi, V5} is of this type. Specifications in this class will not result

in vacuuming-null values in query results (see figure 4).

CLaSs 3: projection based vacuuming Elements of this class—where a projection of one or more attributes
of a backlog is specified along with a selection on the attribute Time—all belong to CLass C (see figures §
and 5). Removal of attribute values as they get old is potentially very useful, and this class is the simplest for

doing so. Note that columns of query results may contain vacuuming-null values when this kind of vacuuming

is used.

CLass 4:  general selection/projection based vacuuming Generalizing all the previous ones, this class is

contained in CLASS D (and not in classes B and C). Any SP query involving attributes of Bp is allowed. As
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this, and consequently the previous three classes, is also contained in CLass I, it is well suited for vacuuming
backlogs that are mainly used in backlog queries (i.e., not in time slice queries)—see the example following this

classification.

CLass 5: time slice selection based vacuuming This is the simplest class for tuple removal that affects
only time slice queries in simple and obvious ways, typically by removing all data before a certain date if they
are not needed for time slice queries on states after that date. This class can be thought of as the time slice

equivalent of Crass 1.

CrLass 6: time slice selection and projection based vacuuming This is a simple generalization of the

previous class where not only complete tuples, but also arbitrary projections can be removed.

CLass 7:  general vacuuming involving one backlog This type of specification can contain any query for-
mulated in terms of selection, projection, and semi-join on a single backlog and time slices of that backlog. It

generalizes classes 1 - 6, and it is the first not to be contained in either CLass I or CLass I1.

CLass 8: general vacuuming This class further generalizes the previous one by allowing any backlog and any

time slice as argument in specifications.

ExAMPLE: Here, we illustrate that backlog based specifications can affect time slice queries in subtle and unpleasant

ways. Assume the existence of the specification:

|2 p(BEmp) : O'TimeSNOW-4yr:BEmp

The results of Emp(NOW), before and after vacuuming according to Vi, may almost be identical. However, there
1s no guarantee, and there is no general, simple, and useful way to predict—from the specification and the time slice
query issued—what has been left out due to vacuuming. For some applications, it is unsatisfactory to only know
that employees can be missing from the result of Emp(NOW) if they were not modified during the last four years.

Consequently, if time slice queries are frequent, specifications belonging to CLass I (e.g., specifications of CLasSS
1 and Crass 2) should be used with caution. On the other hand, if backlog queries (i.e., queries without time slice)
are predominant, these classes are likely to be useful.

Conversely, CLASS 5 and CLASS 6 are both designed to contain only specifications that result in useful and
predictable results of time slice queries on modified backlogs. In addition, these specifications do not make backlog

queries useless. Consider the specification:
Vi P(BEmp) : BEmp(NOW — 2yrs) — BeEmp(NOW — 2yrs) b nrime Emp(NOW - 2yrs)

Backlog queries on data less than two years old are totally unaffected, and backlog :ueries on data more than two

years will only retrieve few data. g
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NUMBER SYNTAX COMMENTS

1 OF(Time)BR Only selections are possible, and they can only be pa-

rameterized by Bgr.Time.

2 orBp Only selections are possible, but any attribute of Bp

may be used.

3 TACP(Time)BR A is a list of attributes from Bg and selections can only

be parameterized by Br.Time.

4 Ta0rBr A is any list of attributes from Bg, and F is any selection

involving attributes of Bp,

5 Br(t) — Br(t) X mrimeR(2) t is an expression, possibly involving the variable NOW |
that evaluates to a value of the domain TTime.

6 7a(Br(t) — Br(t) X mrimeR(1)) | A is any attribute of Bp.

7 Q(BRr) Any query using only Bp including time slices of Bg.

8 Q Any query, possibly referencing other relations than Bg.

The query can only use standard relational algebra op-

erators and time slice.

Figure 8: Overview of classification of vacuuming specifications. The column SYNTAX describes Q so that a specifi-
cation V' for Bp is of the form V — w(Br): Q [ , w(Br): Q ]* where w — p | k and with the metasymbols “—",

“[77 @ 1 wn “[7:
3 * )
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5 Theoretical and Conceptual Framework

In addition to physical removal of vacuumed data, a VS augments the functionality of a temporal DBMS in two
areas: (1) specification of vacuuming, and (2) queries against backlogs that have been vacuumed. Here, we motivate
and define general concepts related to these areas. We will make use of the concepts in the sections 6 - 10.
Conceptually, there is a substantial difference between vacuuming and subsequent query processing when spec-
ifications remain within the boundaries of CLAss B, where the unit of vacuuming is tuples, and when vacuuming
specifications are outside CLASs B where the unit of vacuuming is occurrences of attribute values. In the former
case, modified backlogs can be represented by relational algebra expressions; in the latter case, this is not possible
(we will show an example shortly). Due to the differences, we divide the section into three parts. We first concen-
trate on concepts that are identical for both cases. Then we treat concepts that differ substantially when applied to

vacuuming specifications within CLASS B and specifications outside of CLass B.

Generally, a specification consists of a set of subspecifications—some p specifications and some « specifications.
Such specifications can overlap: part of data specified by one subspecification can be part of data specified by another
subspecification. To obtain the largest degree of freedom of expression, we have chosen to allow overlaps between
p specifications, between « specifications, and between p and « specifications. In the last case, x specifications will
override p specifications. This choice provides safety.

Vacuuming of backlogs can be described to the users in two ways: first, we can describe which data that remain
(positive form); second, we can describe which data have gone (negative form). For some specifications, the positive
form might be most easily understood by the user, and for others, the negative form might be easier to understand.

As a consequence of vacuuming, user-issued queries may be modified. Generalization and specialization are

central relationships between queries and their modifications.

DEFINITION: Query Q; generalizes query Q2, Q1 > Q», iff VI € Z(DB) (Q:1(I) 2 Q2(I)). Similarly, query @,

specializes query Qo iff Q2 generalizes Q;. g

Generalization (and thus specialization) is reflexive, non-symmetric, and transitive.
Finally, it is a principle that when a vacuuming specification is changed. the new specification must generalize
the previous specification. This ensures that what has already been vacuumed is part of what the new specification

tells to vacuum.

We now consider specifications within CLAss B only. The concepts of growing and moving specifications are central.
To motivate, note that by definition, and as a consequence of their very purpose, removals by specifications are
irreversible. Also, note that specifications have the potential of changing over time, because the variable NOW can

be used.

DEFINITION: Let 1" € Crass B be a vacuuming specification for instances of S(Bg), and let z denote a tuple.
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Specification V grows iff

VI € I(Br) (Vt € [tinis; NOW] (Vz ((z € I(t) Az & MvI(t)) = V' >t (z ¢ MvI(t')))))

The definition states that any tuple which has been removed from Bg by vacuuming according to V will never
reappear in Bp—a tuple cannot be un-vacuumed. (Also, note that users cannot reinsert vacuumed tuples due to

time-stamps and surrogates).

DEFINITION: Specification V mouves iff

3I €Z(BR) (3t € [tini; NOW] (3’ 2t (3z (z € It) Az € MvI(t) Az € My I(t))))

EXAMPLE: To illustrate the problem with moving specifications, consider the sample moving specification:

Vs p(BEmp) P ONOW=2yrs<Time<NOW —1yrs BEmp

Vs can be envisioned as a window that mowves along BEmp and deletes tuples as time passes. A VS could interpret the
specification in two ways. First, it could simply delete tuples as they become more than one year old. This way—as
data, previously between one and two years old, become more than two years old—data that were not supposed to
be removed will have been deleted already, and the specification is destructive. Second, a VS could recognize the
problem and not delete data that will be needed later. This way, nothing can be deleted, and the specification is

useless. o

Specifications must be growing—moving specifications are invalid. However, note that a subspecification can be
moving as long as the total specification is not (e.g., {V1, V2}). This is the case if tuples no longer in one part {V5)
are immediately included into another part (V7).

Vacuuming concerns base data i.e., the individual backlog relations). Here, we define how to describe a backlog
modified by a specification in CLASS B using standard relational algebra.

DEFINITION: Let By be a backlog modified by a vacuuming specification, V &€ CLass B, and let V' = {Vi, Vs, ..., Vol

where an element V; is a removal specification if 1 < i < k < n and oth~rwise a keep specification. Also, let the

query expression of V; be termed @Q;, 1 < ¢ < n. We define the modified backlog My B as follows

k n
My Bgr = Bp — (U Qi - U Qi) (2)

i=1 i=k+1
a
The modified backlog is obtained by first taking the union of all Q;, 1 < i < k, then subtract the union of all Q:,

k < i < n from these, and finally subtfact this result from Bp.
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The formula (2) has a set of delete terms (Q;, i = 1,2,...,k) and a set of keep terms (@i, i =k + 1,k+2,...,n).
The reason why the keep terms are needed is that they may overlap the delete terms. As we will illustrate in later
sections, it is possible to discard the keep terms by eliminating the overlaps. Upon doing this, there is the option of
expressing vacuuming either positively or negatively. Also, when we later restrict the types of specifications allowed,

the general formula can be made more specific.

Moving on to specifications outside CLASS B, we redefine some concepts and new ones appear.
Again, we require specifications to be growing. The units of deletion are now attribute values, and we use these

to define growing and moving specifications.
DEFINITION: Let v denote an occurrence of an attribute value. Then, a specification, V', for a backlog, Bg, is growing
ifft

VI € Z(BRr) (Vt € [tinit; NOW] (Vv ((v € I(t) Av & My I(t)) = Vt' >t (v € My I(t')))))

As before, if a specification is not growing, it is moving.
DEFINITION: Let v denote an occurrence of an attribute value. Then, a specification, V, for a backlog, Bg, is moving
iff

I € Z(BRr) (3t € [tini; NOW] (3t' >t (v (v € I(t) Av & My I(t) Av e MyvI(E)))))

For later use, we define the concepts of subtuple and supertuple.

DEFINITION: Let a relation R be given. If a tuple tsyp of R can be obtained from another tuple tsyp of R by sub-
stituting vacuuming-ﬁull values for zero or more of the attribute values of sy p, then tgyp is said to be a subtuple

of tsyp and tsyp a supertuple of tsyp. m

For example, the tuple (10, -, 30k, -) is a subtuple of the tuple (10, M, 30k, 0), “” being the vacuuming-null
value.
In general, relational algebra is not sufficient to express a backlog modified by a specification not in CLass B.

The problem surfaces when a specification has several parts.

ExaMpLE: With the definitions of formula (2) in effect, define R= Emp,n=k =2, Q, = TSez0Sal>30kBEmp, and
Q2 = TBaiBEmp. This means that V; and V5 specify removal from BEgmp of attribute value occurrences of Sez in
all tuples with Sal value more than 30k and all occurrences of values of attribute Bal. This cannot be specified as

My Bgmp = BEmp — (Q1UQ2) = BEmp — (T5ez05a1>30k BEmp U TBai BEmp). Arguments of the union and difference

operators must have compatible schemas. O

*We use "v € R” to mean that attribute value occurrence v belongs to a tuple in R.
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Consequently, we need another formalism for expressing a backlog that has been vacuumed. For this purpose, we

introduce the concept of tagged relation.

DEFINITION: A tagged version, R,ofa relation, R, is the relation, R, where each attribute value may be tagged®. D

Next, we need to define how specifications outside CLASS B generate tagged versions of the backlogs, they are
specifications for. We do this by letting the operators that appear in such specifications work like their tagged
counterparts as they will be defined shortly. The tagged operators are also used for combining the tagged relations of
subspecifications into other tagged relations. Finally, we need operators to transform tagged relations into ordinary

relations.

ExaMPLE: The specification p(Bgmp) : TBaiBpmp results in the tagged relation Bgmp defined as Bgmp, with all
occurrences of values of attribute Bal tagged. The result of the specification P(BEmp) : TSexOSal>30k BEmp 1S BEmp

defined as BEmp with the occurrences of values of attribute Sez of the tuples 05415301 BEmp tagged. D

To define the tagged counterparts of the standard relational algebra operators, we first define a help predicate,

tag, on attribute value occurrences of tagged relations.

DEFINITION: Let v be an occurrence of an attribute value in a tuple in a tagged relation.

tag(x) true  if attribute value v is tagged 3)
ag(v) =
false if attribute value v is not tagged

(]

A tagged relation, R, where Vv € R (tag(v)) is denoted R*. and a tagged relation where ¥v € R (—tag(v)) is denoted
Re.

We now define operators that manipulate tagged relations. These operators leave values unchanged: they only

manipulate tags.

DEFINITION: Operator & maps a tagged version of a relation into another tagged version of that relation. Let v be
an occurrence of a value in the argument, and let v; be the corresponding occurrence in the result; also, let F be

the selection criterion of &.

true  if tag(v) A the tuple of v is selected by F
tag(vs) = . (4)
false otherwise

Occurrences that are untagged are treated as null values by operator 4.
Operator # also maps a tagged version of a relation into another tagged version of that relation. Again, let v be an

occurrence of a value in the argument, and let v; be the corresponding occurrence in the result; also, let A be the

5Let S be the schema of a database. Two tagged relation-valued query expressions, Q1 and C» are equivalent, Q1=0Q,, iff vQy = vQa

(Similarly, Q1 generalizes Qz, Q15Q2, iff vQ; > vQ>.). Operator v will be defined shortly.
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projection list of #.

true  if tag(v) A v belongs to an attribute in A
tag(vi) = , (5)
false otherwise

Next, we define an operator, U. It can be applied to two tagged versions of the same relation. The result is another
tagged version of that relation. Let v, and vrn, be the corresponding attribute values of the left and the right hand

side arguments of operator U, respectively. Then, the tag of the corresponding value of the result, vy, is defined by

tag(vg) = tag(vins) V tag(vens) _ (6)

We define an operator —. When applied to two tagged versions of the same relation, the result of — is another tagged

verston of the relation:

tag(v-) = tag(vine) A ~tag(vrs) (7

Cartesian product for relations, x, works for tagged relations as well. It simply leaves tags unchanged.

Semi-join for tagged relations, X r, is defined as follows:
RixpRs= T ar(r)FF(R1 x Ry) (8)

We use X without an index to denote equi-semijoin. We also define an operator, 7, that reverses the tags of a tagged

relation:

tag(vy) = —tag(v) (9)

C
Finally, we define operators that transform tagged relations into relations.

DEFINITION: When applied to a relation (lhs) and a tagged version of that relation (rhs), the result of operator z
is the relation (lhs) modified as follows: first, each tuple, with all attribute values tagged in the rhs argument, is
removed; second, each attribute value, tagged in the rhs argument, is substituted by a vacuuming-null value. We
also define v, an unary version of z It transforms a tagged relation into a relation by removing all tuples where each

attribute value is tagged and by substituting each remaining tagged attribute value by a vacuuming-null value. O

We are now in a position to define vacuuming of a backlog modified by a specification in CLass D, but not in

Crass B (if we are within CLass B, tagged relations are completely irrelevant).

DEFINITION: With the assumptions listed prior to definition (2) in effect, except that V' belongs .o CLASS D, but

not CLAss B, we define

——~T 1

o [T - o A
A4VBR — BR — (U,’—_—lQi—Ui:k-f-lQi) =V <Ui=lQi‘U,’=k+1Q“> (10)
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Asin the case of CLASS B, overlaps between delete and keep terms can be eliminated, the keep terms can be discarded,
and the remaining terms can be changed to obey either the positive or the negative form. Now, each of these forms
can be transformed into two new fundamental forms. As the first option, each term can intuitively specify, for one or
more attributes, which values to remove or not remove. As the second option, each term can intuitively specify, for
a selection of tuples, the occurrences of which attribute values to remove or not remove. The negative forms of these
we term altribuie normal form, ANF~, and selection normal form, SNF~. Both of these tell what to vacuum. The

corresponding positive forms, that tell what to retain, are termed ANF* and SNF*, réspectively. Thus, we have

——~T
ANF-: uUi=17r_4l.Q,- (11)
—~n
+. )
ANF*: w;U’_=11rA'.Q, (12)
where A;, ¢ = 1,2,...,n, are disjoint subsets of the set of attributes of the backlog in question, and all Q; are

different (i.e., not equivalent). Thus, there is, at most, one term per attribute, and if attributes have the same Q;,
they are described by the same term. In (11), a term 74,Q; tells that for attributes A4; the occurrences of attribute
values identified by Q; are not parts of the modified backlog. In (12), a term 74,Q; tells that for attributes A; the
occurrences of attribute values identified by Q; are parts of the modified backlog. The syntax of the forms SNF-
and SNF* are identical to (11) and (12), respectively. However, now 4;, ¢ = 1,2,...,n are mutually distinct subsets
of the set of attributes of the backlog in question. Thus, if the two terms ¢ and j have identical subsets, 4; = Aj,
then Q; and Q; are combined, and therefore A;, i = 1,2,...,n, is the maximal subset for which Q; is valid. Also
the sets of tuples with tagged attribute value occurrences of the Q; are mutually disjoint. The forms will be used
extensively in the following sections.

For the above example motivating tagged relations, formula (10) becomes

MyBgmp = BEmp — (Rses65a1>30kBymp U #Ba1 B p,) [ANFT) (13)
= vn(#Bid,0p Time 1d,5a1BEmpU #5ec0sa1<30k Bhmp) [ANF*] (14)
= V(7 5er,Bai05al>30k BimpU #Bal6saic30kBmp) [SNFT] (15)

= V(7 Bid,0p Time,1d,5a105a1>30k BEmpU TBid,0p, Time 1d,5al, Sez05ai<30k BEmp) [SNFT]  (16)

For restricted classes of specifications, we can derive formulas more specific than (10). To do so, we need
equivalence transformations for tagged relations. Such transformations can—in conjunction with transformations
that allow to convert between ordinary relational algebra and tagged relational algebra—also prove beneficial when

presenting to the users modified query expressions of queries against vacuumed backlogs because they can help

simplify the modified queries.

THEOREM 5.1 Transformations involving tagged relations. Let Ry, R, Rs, R4, and Rs be tagged versions of the

same relation, R, so that tagged values of the latter three belong 1o n:utually disjoint tuples and R3 U Ry U Rs = R*.
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Let F = Fy A F be a selection criterion on R, let Att(R) denole the set of atiributes of R, and let A, B, and C be

sets of atiributes from R so that A and B are disjoint. Finally, lel v be an arbitrary atiribute value occurrence from

R and let vy, vy, and vy be the tagged counterparis in R, Ry, and Rs, respectively.

a’pW)Rl

wAuan

orRy

&r(R1UR,)
ér(R1UR,)

#a6p R U#pép, Ry
n(#aRy U #pRy)
n(7pRs U 7ic Ry)
Ta(R1UR,)
ér(R1=Ry)

#aitpRy
Ty RS
R}OR,
R}IR,
& Fatse R1
vRS

vR}
7777Rl

Proor:

T || T [ 1 1 |1 | O | O | | N {1 TN U1 O |1 [ GO 1 |1 P C R || | N 11

il

Vn&pRl

I/n'frARl

6r,6r, R1

6rR1 U GpRy

6rR1 U épRy [R1UR, in SNFY or SNF-]
#auBGFanFs Ry O 746 F A~Fp R1 U 786 pon-r, Ry
#anrna\(R1)* U 749k U #pnR,
#are(rnBR3 U Fau(r)\cRa 0 # an(r)Rs
#aRy U#4Ry [distributivity of # over U]
6rR1 = 6FrRs

#aRy = #4Ry [distributivity of # over =]
(R ORg)ORa [associativity of U]

RoUR; [commutativity of U]
(R1ZR9)~Rs

#ar(rna(R1)* U FanRy

¢-rRy

V5

Ry

R

(17): If vy is in the result of the lhs, then v; is in the result of the rhs. Also, if v; is in the result on the rhs, then v,

is in the result on the lhs, because & treats tagged attribute value occurrences as nulls (as does v o 7).

(18): Note that the schema of the rhs result is generaily a super schema of that of the lhs result. Also note, however,
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that all the extra attributes of the rhs have solely vacuuming-null values. Even though the equivalence strictly
speaking does not hold, we assume that a DBMS is able to simply remove superfluous attributes. When doing so,
the equivalence follows immediately from the definition of #. Similarly, we will feel free to use the equivalence:
WAVnigﬁfl = VnﬁAnBRy

(19): Only attribute value occurrences in tuples selected by F, are tagged in &r,, and only occurrences tagged in
o r, and selected by Fy are tagged in the ris result. On the lhs, only occurrences in tuples selected by ' = F, A Fy
are tagged.

(20): If v is tagged on the rhs, then v is in a tuple selected by F, and v is tagged in either R, or Ra. Thus, v is
tagged in R;UR; and is therefore tagged on the lhs. The equivalence does not hold true because U combines tags so
that, for example, a selection Att; = Att; may tag the occurrences in a tuple on the lhs and not on the rhs.

(21): The condition means that the set of tuples with tagged occurrences in R; and the set of tuples with tagged
occurrences in R; are disjoint. Thus, tagged occurrences in tuples selected on the lhs will also be tagged on the rhs
(the selection of one tuple does not depend on the tagging in other tuples).

(22): If an occurrence is tagged by the first term on the lhs, it is tagged by the first or second term on the rhs
(depending on whether the tuple it is in satisfies Fg or not). If an occurrence is tagged by the second term on
the lhs, it is tagged by the first or third term on the rhs. If an occurrence is tagged by the first term on the rhs,
it is tagged by the first or second term on the lhs (depending on whether it belongs to an attribute in 4 or B).
Occurrences tagged by the second and third terms on the rhs are tagged by the first and second terms on the lhs,
respectively.

(23): An occurrence tagged by the first term on the lhs is not tagged by the first term (disjoint projections), the
second term (reversely tagged argument to the projection), and the third term (disjoint projections) on the rhs. Due
to symmetry, an occurrence tagged by the second term on the lhs is also untagged on the rhs. An occurrence tagged
by the first term on the rhs is not tagged on the lhs (disjoint projections), and an occurrence tagged by the second
term on the rhs is not tagged by the first term on the lhs (reversely tagged argument to the projection) and the
second term on the lhs (disjoint projections). Again, due to symmetry with the case of the second term, an occurence
tagged by the third term on the rhs is untagged on the lhs.

(24): An occurrence tagged by the first term on the lhs is not tagged by the first term (disjoint projections). the
second term (disjoint selection), and the third term (disjoint selection) on the rhs. The second term on the lhs
Is treated symmetrically. Occurrences tagged on the rhs are untagged on the lhs due to disjoint projections and
selections.

(25): Trivial.

(26): Assume that v is tagged in the lhs result. Then, tuple(v) must be selected by &p in (Rl;Rg), and —tag(va) .
The former implies that 65 selects tuple(v) in R;. The latter implies that v is not tagged in 6 Ra. Consequently, v
is tagged in the rhs result.

(27): Projection leaves tags unchanged for occurrences that are projected, and thus the equivalence holds true in this

case. For occurrences not projected, it removes tags. Therefore, occurences on the lhs will be untagged. Because
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False A —~False = False, occurrences on the rhs will be untagged, too.

(28) - (29): Trivial from the definition of U.

(30): The equivalence follows from the definitions of = and U, and from z A =(y V z) = (z A ~y) A -z,

(31): An occurrence is tagged on the lhs if it is untagged in R, or does not belong to an attribute in A. On the rhs,
an occurrence is tagged if it belongs to an attribute outside of A, or if it belongs to an attribute in A and is untagged
in Rl.

(32) - (40): These observations follow trivially from the definitions. ]

After having seen some of the central properties of the new operators, we can look back and justify their definitions.
The equivalences (17) and (18) state that there is a very close correspondence between operators &, #, and their
standard relational algebra counterparts. Operators U and — do not have counterparts in relational algebra—it was
exactly this deficiency that motivated tagged relational algebra. Operator U is designed for collecting tags of different
p and  expressions into single expressions reflecting all deletions and all data to keep, respectively. Operator — was
shaped to combine p and & specifications. Its definition reflects directly the semantics chosen for overlapping p and
K specifications, namely that « specifications override p specifications.

Recall that equivalences as in the theorem above are utilized to express vacuumed backlogs. Transformation of a
query, @, against the original backlogs into a query, My Q, against the modified backlogs is done by substituting the
original backlog name occurrences in @ by the expressions for the modified backlogs and applying the equivalences.
Using only equivalences guarantee that the result of @ on the vacuumed backlogs and the result of My @ on the
original backlogs are the same. The approach ensures also that modified queries do not reference vacuumed data
(i.e., they obey the law (1))—see section 3. Recall that a modified query expression is displayed to the user for
confirmation before being processed. While still obeying (1), it is possible to obtain additional modified expressions
perhaps more useful to the user by deviating slightly from the transformations based on the equivalences. Specifically,
the technique for doing so is simply to remove conditions in queries that rely on vacuumed data. This results in
more elaborate queries that may prove more informative. In section 7, we will demonstrate this:

This concludes the abstract treatment of vacuuming concepts. When we, in the following 5 sections, consider
CLass 1 to CLASS 8, we will make spe.ciﬁc application of these general concepts. The distribution of the 8 classes is

as follows:

Crass 1 | Crass 2 | CLass 3 | CLass 4 | CLass 5 | Crass 6 | Crass 7 | CLass 8

Section 6 X X

Section 7 X

Section 8§ x

Section 9 X x

Section 10 X ~

The sections are, with minor variations, all organized the same way: The class(es) of specification(s) is (are)

introduced, the syntax is explained, and the use of the particular class of specifications is illustrated by the way
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of a sample specification. Then, issues pertinent to the design and update of specifications are discussed (e.g.
growing/moving, conflicts, etc.). The problem of expressing vacuumed backlogs for the particular class in question is
addressed; a formula is constructed (a special case of the general ones), and its use is demonstrated by means of the
sample specification introduced previously. The issues of querying vacuumed backlogs are considered; the procedure
for modifying a query on a vacuumed backlog is applied to a sample query against the backlog modified previously.

Finally, we set forward some general observations on the relations between queries and modified queries.

6 Selection Based Vacuuming

The syntax of vacuuming expressions for CLASS 1 and CLASS 2 is 0 r(Time)Br and or Bg, respectively (figure 8).

Specifications of both classes delete complete tuples, and because F' can only be parameterized by Time, specifi-
cations of CLASS 1 can be visualized as removing time intervals of tuples; tuples deleted by a CLaAss 2 specification
lack this simple pattern because removal generally depends on multiple attributes. |

Consider these specifications (from section 2):

Vi P(BEmp) :OTime< NOW —-dyrs BEmp
Vo p(BEmp) : ONOW -ayrs<Time< NOW —2yrsASez=F BEmp
V3 'C(BEmp) : UOp:DBEmp

Specification V] is in CLASS 1; Vs, V3, and any combination of the specifications are in CLass 2.

When updating a specification, several problems can occur. First, it does not make sense to change a specification
so that it does not specify removal of data already lost due to vacuuming—an updated vacuuming specification must
generalize its predecessor.

EXAMPLE: Assume that on May 11, 1990, 2:00 p.m. specification Vi for Bgm, is in effect, and that a decision is

made to retain data until they become 5 years old. It is illegal to just change NOW — 4yrs of V; to NOW — 5yrs.

Instead, we can substitute V) for this specification:

' )
Vi P(BEmp) : OTime>May11,1990,2:00p.m.— dyrs BEmp

’
Vl, p(BEmp) P O0Time>NOW —5yrs BEmp

Then, after May 11, 1991, 2:00 p.m., V{” = V/ and V/ can be deleted. O

As another problem area, moving specifications must be avoided. This was dealt with in the previous section.
In section 2, we exemplified how a modified backlog (and a modified query), My Bg, could be derived from
specification V' and backlog Br. Here, we derive two general formulas, valid for both CLass 1 and CLass 2. If

V={V1,Va,...,Va}, Vi=p(Br) :0r,Br, 1 <i < k,and V; = k(Bg) : 0r,Br, k + 1 < i < n, then we have

MyBr = 0op -Fvvi,, F)BR (41)
MVBR = BR_UV:;]F.'/\(I\" HF.)BR (42)

i=k<41
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Formula (41) tells what to retain, and formula (42) tells what to delete. They are derived from the general formula

as follows:

MyBr = BR—(OQ,-_ CJ Qs)

=1 izk+l

k n
BR—(UUF.-BR— U O’F;BR>

i=1 i=k+1

il

i

Br - (UVL,F.'BR - Uv:‘=k+lF.-BR)

Br - Ovk_ Fin-(vh FiyBr

ikl

BR - Uv:‘:lF"A(Ayak-l-l -'Fi)BR

O (vk_ Fin(AT qF,«))BR

i=k41

Ok

=1

~Fiv(Visen F")BR

Here, we have utilized the equivalences: op, RUor,R = op,vr R, o, R— 0, R = 0pa-F, R, R— 0FrR = 0_FR,
—(F1V Fy) = =Fy A—F;, and ~(F) A F») = ~F; V - F,.

Any query, Q(Br), against Bpg is transformed into MyQ = Q(My Bgr), and if the test of the query modifier
fails, then the modified query is presented to the user who then decides whether it should be processed right away

or perhaps modified first.

-‘F,-)v(v:'=j+lp‘.)]BR- Similarly, if

Q = maBR, then MyQ = nq0r Br; if Q = Br X Bg, then MyQ = 0 Br XM o/ Bg. O

ExaMmpLE: If Q = opBpg, then MyvQ = ocpMyBr = oparpBr = TPA[(AS

=1

For an illustration of the modification of a user query on a modified backlog, see section 2. The extension of a
transformed query My @ of a query @ against a backlog relation that has been subject to vacuuming based on a
specification of CLASS 1 and CLass 2 fits the schema of @, and no vacuuming-null values are introduced because
only whole tuples are removed. Also, observe that a transformed query, My Q, specializes the original query, @, so

that @ - Mv Q.

7 Projection Based Vacuuming

In contrast to selection based vacuuming specifications which result in removal of complete tuples from a backlog,
projection based vacuuming (CLASS 3) results in time-parameterized removal of all values of one or more attributes
of a backlog. The syntax of vacuuming expressions of this class is TAOF(Time)Br where A is a list of attributes, and
OF(Time) 1S a selection involving only attribute Time.

With this kind of vacuuming, all values of one or more attributes of tuples, where the value of attribute Time is
in a specified interval, can be removed. This can result in “blank” areas of vacuuming-null values in results {figure 5).
We stress that this class of vacuuming does not alter the schema of argument backlogs; at any time, a tuple of a

relation My Bp, is a subtuple of a tuple of Bp.
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Projection based vacuuming is very useful. For example, when tuples get old, we may not be interested in the

values of all the attributes:

Ve P(BEmp) i TSex,5al0Time<NOW —2yrs BEmp

This specification deletes values of attributes Sez and Sal of tuples where the value of attribute Time is less than

NOW — 2yrs. Following is a more elaborate projection based specification:

Vo p(BEmp) : TBal,Sal,Sex OTime< NOW ~6yrs BEmp
Ve P(BEmp) : TBal,SalONOW —6yrs <Time<NOW —4yrs BEmp
Vo p(BEmp) P TSalONOW —4yrs<Time<NOW —2yrs BEmp

V1o K(BEmp) : T1d,BalONOW —5yrs<Time BEmp

Here, the time dimension is divided into five intervals, each with vacuuming of different sets of attribute values.

For a projection based specification to be legal, we require it to be growing, as in the case of selection based
specifications. This issue was dealt with in section 5.

As indicated already, the convenient functionality of a specifications of CLASS 3—and of any specification, not in
CLAss B—does not come for free: the introduction of tagged relations is necessary.

To express a backlog modified according to CLASS 3, we start out with the general formula, (10). There, the
terms are simply denoted Q;. Here, we can be more specific. First, observe that the deletion part of a specification
of CLass 3 splits the backlog into time intervals with different seis of attributes with vacuumed values, and note
that such a set of attributes of an older interval is a superset of that of a newer. Second, identify this sequence of
intervals with differing sets of missing values (I1,1o,...,I, where i # j = I; N I; =0,and UL, L = [tinie; NOW];
also, denote the set of attributes of I; with deleted values by A7 sothat i < j = A7 C A7 ). Third, for the “keep”

part, denote the corresponding intervals Jy, Jo, ..., Jm, and denote the sets of attributes with values that must be
kept Bi", B;’ y-+., B, Now, the expression of the modified backlog is given as®
delleti keep
. = . m .
MyBr=Br~ || _#,-61B} = UJ_=1%BT&JJ.B§ (43)

net d;,letion
Before we simplify this formula further, we will construct an equivalent but different expressiqn. Now, we observe
that, due to p specifications, each attribute will have vacuuming-null values from some point in time and backwards.
For each attribute, 4;, 1 < i < a, there will exist a term ﬁ'A-"A’t....-«STimesth}.z- Also, we observe, now due to &

specifications, that for each attribute, deletion is not permitted until after a certain point in time. Thus, for each

6This may include superfluous delete and keep terms with nothing to delete/keep.



attribute, there will exist a term 74 -'&!‘,‘STimeS NOW B,’,z. This gives an expression as follows:

delete keep
“~a - ~a -
— . -~ "~ A. -~ - - . A.
MvBR = Br - U,-_lwAiatinitST‘m‘S‘fBR - Ui_IWA,»U't‘I'STimeSNOWBR (44)

net deletion
In order to simplify (43) and (44), observe that the only reason why we cannot discard the keep part is that occurrences
of attribute values tagged in the delete part may be tagged in the keep part as well: there may be overlaps. Once
the overlaps are eliminated, the delete parts may be discarded (i.e., R; =Ry = R, if there is no overlap between R,

and Rz). To eliminate overlaps, we use this equivalence:
T4, 0a<Time<bR' — T4,0.<Time<aR® = (45)
~ -~ ol o~ ~ ~ 2 ~ ~ -~ ‘\.
(F4,0(agTime<t)\(c<Time<d)R' U T4\ 4,6 (a<Time<t)n(c<Time<d)R') = Fa,0c<Time<d R

where there is no overlap between the keep and delete parts of the right hand side.
By means of repeated applications of this equivalence transformation, all overlaps can be eliminated in both

formulas. Doing this gives new intervals. In formula (43), denote by Ki, 1 < k < p, the resulting intervals that

partition [tins; NOW] and have distinct sets of attributes with vacuumed values (denoted Cr,C7,C3,. -G
The formula then becomes
o TP ) ~y
MyBr=Bg = _ #c-0x. B 4 (46)

-

net dgetion
Here, each term tells to remove occurrences of values of some set of attributes for a selection, and the formula is thus
in SNF-.
To simplify formula (44), the values ¢/ and tf, 1 < i < a, are compared, and t; = min(t¥,t?). Then

t 7

——

. ~
My Bg = Br — UA_I%A.&t.M,STimeSt.'B;a (47)

=

net deletion
In this formula, each attribute with values to vacuum is included in precisely one term that tells which occurrences

of values for the attribute to remove: it is in ANF—.

ExaMPLE: To illustrate, assume that Bemp has been vacuumed according to V = {V7, Vs, V5, Vio}. First, we
construct the SNF~ formula. For deletions, we have n = 4 with I; = [tinit; NOW — 6yrs], AT = Bal, Sal, Sexz;
In = |NOW — 6yrs; NOW — 4yrs), A; = Bal, Sal; Is = INOW — 4yrs; NOW — 2yrs], A7 = Sal; I, = INOW —
2yrs; NOW], A7 = 0. For x-specifications, we have m = 2 with J; = [tini;; NOW — 5yrs|, Bf =0; Jo =
[NOW — 5yrs; NOW], Bf = Id,Sal. Upon having eliminated overlaps, we get K; = I, Cl = A7; Ko =
INOW — 6yrs; NOW — 5yrs], Cy = A3; K3 =]NOW —byrs;: NOW — 2yrs], C5 = A5 ; Ks = I, C = A7 . The
modified backlog is then given in SNF~ as

[ ~
My Bgmp = BEmp — (T Bal,Sal,Sez OTime< NOW —6yrs BEmp
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C)

TBal,5alONOW —6yrs<Time< NOW —Syrs BEmyp (48)

~ ” Ae
U 51T NOW ~5yrs<Time<NOW =2yrs BEmy)

Now we proceed to derive the ANF~ formula. Consider this table:

Attribute P K net p
Sal — NOW - 2yrs NOW —~ | — NOW - 2yrs
Bal — NOW —4yrs | NOW - byrs « | — NOW - 5yrs
Sez — NOW — 6yrs NOW — | — NOW - byrs
Id — tinit NOW —58yrs — | — tinis
Time, Op, Bid | — tini NOW «— | — tini

The second column illustrates delete terms: there are 3 non-trivial terms, one for each of the attributes Sal, Bal,
and Sez. The third illustrates keep terms: there are non-trivial terms for attributes Sal and Id. The fourth column

illustrate net deletions. Thus, we get the ANF~ formula:

. . . R .
MV-BEmp = BE'mp - (WSaIUTimeSNOW—2yrsBEmp U WBala'TimeSNO“’—ExyrsB)';mp

U #Sez8Time< NOW ~6yrs Bimp) (49)

]
In the example, we illustrated an SNF~ and an ANF~ version of the modified backlog. Both of these tell what to
remove. Using the operator 7, we can also express a modified backlog by means of terms that show what not to
delete. To get a version in SNF*, the set of attributes of each term is replaced by its complement with respect to the
set of all attributes of the backlog vacuumed, and 7 is applied to the union of the terms. To get a version in ANF™,
the selection for each term is replaced by its complement w.r.t. the interval [t;ni;; NOW], and, again, the operator
7 is applied to the union of the terms.

We illustrate querying of a vacuumed backlog by an example.

EXAMPLE: Assume that we issue this query:

Q = "Tld,BaI,SexUNOW'—TyrssTimCSNOW—lyr.sASalZIBOkASez:FBEmp

To get My Q, we substitute a definition of My Bgmp for Bgmp. Using (48) and only equivalence transformations,
we get

= it 5 e
MvQ = Bpmp — (%Bid,0p,Time,1d,5al,Bal,Sex OTime SNOW —2yrsvTime>NOW —1yrs Bimp

U #Bid,0p,Time,Sal0 NOW —2yrs <Time < NOW —lyrsASal<30kASez=M BEmyp)

In K}, nothing is selected as the selections on both Sez and Sal fail, and in K> and K3, nothing is selected because
the selection on Sal fails. To obtain a more elaborate, alternative expression, we use the technique of removing
conditions that cannot be evaluated (or fail!) due to vacuuming.

. ~
[, o 2 *
My Q" = BEmp — (% Bid,0p,Time,1d,5al,Bal,Sex OTime< NOW —TyrsvTime> NOW —1yrs Bgmp
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U TBid,0p,Time,Sal,Bal,Sex INOW ~Tyrs <Time S NOW = 6yrs By

(&)
=

Bid,Op,Time,Sal,Bal&NOW-Syrs <Time<NOW -SyrsASer=M Bbmp

>

- " Qe
U Bid,Op,Time,SalT(NOW ~5yrs <Time<NOW =2yrsASez=M)V(NOW =2yrs<Time<NOW — lyrsASez=MASal<30k) BEmp)

In K,, the restrictions on Sal and Sezx are ignored, and the result will have vacuuming-null values for attributes
Bal and Sal. In K, the restriction on Sal is ignored, and the attribute Bal will have vacuuming-null values in the
result. In A3, the restriction on Sal is ignored.

Repeating the above, but using (49) instead of (48), we get

. "
Y] - - m A -
MVQ = BEmp - (7‘Bid,0p,Time,SalB;3m U 71Id,BaI,Se:ca’I'ime<N0W—2yr.sv
p

e
(NOW ~2yrs <TimeSNOW —1lyrsA(Sez=MV Sal<30k))VTime> NOW —1yrs BEmp

’ — * n ~
My Q" = Bemp — (#Bid,0p,Time,5a1 BEmp

>

) Id&Time<NOW—7yr:V(NOW—6<Time$NOW—2yrsASez=M)V

(NOW—2yr:<TimeSNOW—1yr:A(5ez=MV5aI<30k))VTime>NOW—lyrs BI.S'mp
U TBalOTime< NOW ~5yrsV(NOW -5<Time< NOW ~2yrsnSez=M )V

(NOW —2yrs<Time< NOW —1yrsA(Sez=MVSal<30k))VTime> NOW ~1yrs B}gmp
0 TSezTTime< NOW —6yrsv(NOW —6<Time< NOW —2yrsASez=M )V

. e
(NOW =2yrs<Time< NOW —1yrsA(Sez=MVSal<30k))VTime> NOW —1yrs BEmp)

This example was constructed to illustrate several points that arise when querying a backlog vacuumed according to

a projection based specification. Typically, attributes deemed expendable will not be involved as heavily as here. O

Several observations can be made about the relationship between an original query, @, its modification, My Q,
and its modification using the technique of ignoring conditions that cannot be evaluated due to vacuuming, My Q’.
There are four cases to consider. First, if the selection criteria of @ and the projection on the backlog requested by Q
only involve non-vacuumed parts of the backlog, My Bg, then the technique will not be applied, and My Q' = MyQ
so that My Q' = Q. Second. if selection criteria of Q still do not involve vacuumed parts of the backlog, but attributes
requested in the final result of Q have been subjected to vacuuming, then the tuples of the result of My Q, will be all
subtuples of the tuples of the result of Q on the original backlog. Third, in the case where attributes in the selection
criteria of @ have been subjected to vacuuming, but no attributes requested in the result of Q have been subjected
to vacuuming, the technique applies. Ignoring conjuncti\‘/e criteria of @, we have My Q' >~ My Q. Disjunctive criteria
that cannot be evaluated are already ignored in Mv@. Fourth, in the final case—where the (conjunctive) criteria
of Q and the requested attributes include attributes that have been subjected to vacuuming—a subset of the tuples
of the result of My Q’, possibly with vacuuming-null values, correspond to tuples, without vacuuming-null values, of

the result of  (i.e., only a subset of the tuples of the result of My Q' are subtuples of turles of the result of Q.
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8 General Selection/Projection Based Vacuuming

General selection/projection based vacuuming (GSP vacuuming) is vacuuming according to CLASS 4. It unifies
selection and projection based vacuuming. The syntax of allowed query expressions is 740 rBr where A is a list of
attributes, and F is a selection criterion involving any set of attributes of Bg.

GSP vacuuming generalizes projection based vacuuming by not restricting selection criteria to involve only the
attribute Time. Instead, multi-dimensional selections are possible, and GSP vacuuming can be understood as
projection based vacuuming with “multiple time attributes”. GSP vacuuming can be used for removal of any set
of attribute values from tuples that satisfy some condition that can be specified in terms of the attributes of the
backlog (figure 6).

Consider this list:

Vao p(BEmp) : ONOW —4yrs<Time<NOW —2yrsASex=F BEmp
Vi1 k(BEmp) : OTime>NOW ~4yrsaBal#0 BEmp
Via P(BEmp) : WSez,SaIUTimeSNOW—2yrsBEmp
Via.  p(BEmp) : TSez,5al0Time< NOW —6yrsaSal<40k BEmp
Specification {V2,V],} is selection based; V}, is projection based; Vi3 is GSP based and so is V = {V,, V11, V12, Vi3}.

When updating a specification of CLASS 4 for Bgp, it is possible for the execution of one part of the specification

to rely on data of Bg which have already been vacuumed.

EXAMPLE: Assume that Vi3 has been specified at some earlier point in time and that we now want to augment the

specification for Bemp with this specification:

Via  p(BEmp) : TBaiO30k<Sai<50kBEmp

V14 removes values of attribute Bal if the condition on attribute Sal is satisfied. However, vacuuming according to
Vi3 can have made it impossible to evaluate the condition: there can exist tuples in Mv,, Bemp, more than six years
old and with missing values for attributes Sez and Sal. For these, we know only that the values of Sal are, at most,
40k: we do not know whether they are at least 30k. Thus, we lack information necessary to perfornﬁ the augmented

specification. a

At specification time, a VS is required to perform checks to detect this potential problem of intra-specificational
conflicts, and the DBA is reéuired to resolve possible conflicts.

The general procedure for constructing My Bg for a GSP based specification is, as can be expected, similar to
the one for projection based specifications. To eliminate overlaps, we utilize a generalization of the equivalence (45)

Ta, 0P R — T4, 0, R* = (74,6 A~ R* U ﬁAl\AQ&pl/\p,R°) — T, 0, R* (50)

where there is no overlap between the keep and delete parts of the right hand side (i.e., either the selection criteria

are mutually exclusive or the projections are disjoint).
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Again, we have the four forms: SNF~, ANF~, SNF*, and ANF*. We will first derive an SNF+ version and then
derive an ANF* version (SNF~ and ANF~ versions are derived similarly).

Now, there are multiple attributes involved in selection criteria of V, and instead of time intervals, we have
multidimensional boxes. The space—where attributes participating in selection criteria of V are the dimensions—is
partitioned into maximal, mutually disjoint boxes so that only one single projection of the original backlog expression
is valid in each box. Let F; denote the selection criteria of the i’th box, and let A} denote the remaining attributes
(i.e., attributes of Bg not in A} have vacuuming null values in box t). The modified backlog expression in SNF* is

given as
-1 .
MyBg = unUmirA:,&F‘,B;, : (51)

In the case of ANF*, isolate for each attribute the (composite) selection criterion, F;, that specify vacuuming
for the attribute. Collect attributes with equivalent selection criteria, and denote the resulting sets of attributes and

corresponding selection criteria A; and Fj,i= 1,2, ... m, respectively. The formula then becomes
——~ .
— AN .
MvBR = VUU‘_=17FA‘0’HF‘BR (52)

ExXaMPLE: Now, let us transform Bemp into the SNF* version of My, ; BEmp. The selection criteria of Vi3 involve
two attributes; therefore, we have two-dimensional boxes: F} = Time € [tini;; NOW - Byrs] A Sal < 40k, A} =
Id, Bal, Bid, Op, Time; F3 = Time € [tinit; NOW — 6yrs] A Sal > 40k, A, = Id, Sal, Bal, Bid, Op, Sezx, Time;
F3 = Time € [NOW - 6yrs; NOW] A Sal < 40k, Az = Id, Sa!, Bal, Bid, Op, Sez, Time; F; = Time € INOW —
6yrs; NOW] A Sal > 40k, A} = Id, Sal, Bal, Bid, Op, Sex, Time. Boxes F3, F3, and F; are not maximal because the
same projection is valid for each. Thus, we define F} = F{, Ay = A}, F, = F}VF}V F§, A» = A),. Consequently,

Mv,;BEmp = vn(#14,Bal,Bid,0p TimeTTime< NOW ~6yrsnSal<40k BEmp

U 14,5 al, Bal,Bid,Op,Sez, Time OTime>NOW —6yrsvSat>40k BEmp)

ExaMpLE: To illustrate querying of backlogs vacuumed according to a specification in CLASS 4, assume that Vis is

in effect and consider this query:
& = TSez,1d030k< Sai<50k BEmp
Using the expression for Mv,,Bgmp above, we get an expression My,,Q equivalent to Q w.r.t. Vi3:
My, Q@ = V1T 1d,Sex0(Time>NOW —6yrsA30k < Sal<50k)V40k < Sal <50k BEmp

In box Fj, the condition of @ on attribute Sal fails due to vacuuming, and nothing is retrieved from this box. In
box F,, the condition of @ on Sal and that of the box are simply combined. By leaving out the condition on Sal in

box Fy, we get a more informative expression:
[ S - e A -~ e
My, Q" = Un(ﬂ'IdO'TimegNow-syrsASalgqokBEmp U 71d,Sez0(Time>NOW —6yrsA30k< Sal<50k)v40k<Sal<50k BEmy)
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In box Fi, the condition of Q on attribute Sal cannot be evaluated, and attribute Sez has been vacuumed. In box

F3, the condition of @ on Sal and that of the box are simply combined. O

The observations made in the previous section about the possible relationships between queries and modified
queries on backlogs vacuumed according to specifications in CLASS 3 are also valid when backlogs are vacummed

according to specifications in CLASS 4.

9 Time Slice Based Vacuuming

In this section, we discuss specifications of CLASS 5 and CLass 6. The syntax is Bgr(t) — Br(t) X mrim.R(t) and
Ta(Br(t) — Br(t) X TTime R(t)), respectively. These classes were created to provide the simplest possible vacuuming
facilities suitable for backlogs where time slice queries are important. However, note that & specifications of the
format of CLaSs 5 and CLASS 6 are awkward and of limited use. Therefore, we will not consider & specifications in

this section.
CLass 5 is a subclass of CLASS A, and the idea is to remove an old part of a backlog, but retain any tuples that

are needed to compute a time slice newer than a given time. Consider this specification:
Vis P(BEmp) : BEmp(NOW — 2yrs) — BEmp X ®ime EMmp(NOW — 2yrs)

Here, all tuples of Bgmp more than two years old are removed with the exception that if a tuple is used to construct
Emp(NOW - 2yrs), it is retained. This ensures that any time slice query after NOW — 2yrs is unaffected by
vacuuming.

CLass 6 generalizes CLASS 5 by allowing projections of tuples instead of whole tuples to be removed, and it is a

subclass of CLass C. A sample CLASS 6 specification would be

Vis P(BEmp) : 71a(BEmp(NOW — 8yrs) — BEmp X TPime EMmp(NOW — 8yrs))
Vis P(BEmp) : ®Bai(BEmp(NOW — 6yrs) — BEmp X 7Time Emp(NOW — 6yrs))
Vis p(BEmp) : T5ai(BEmp (NOW — 4yrs) — Bemp X ©7ime Emp(NOW — 4yrs))

Vie P(BEmp) ﬁsc,(BEmp(NOVV — 2yrs) — BEmp X TTime Emp(NOW — 2yrs))

Consider another specification:

Voo p(BEmp) : TSal0Time<NOW ~ayrs BEmp

Var . K(BEmp) : Emp(NOW — 4yrs)

V2o removes values of attribute Sez from tuples more than two years old, and V5, disallows removal of tuples (and
their values) needed to compute Emp(NOW — 4yrs). Thus, at first sight V' = {Vag, Va1} seems totally equivalent
to Vig. However, a s-specification has a global effect, so once we add, for example, V19 to both V and Vig, the

equivalence disappears.
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So far, we have only said that the symbol ¢ in the syntax Bgr(t) — Br(t) X TTimeR(t) for the two classes denotes
expressions that evaluate to elements of the domain TTime (i.e., Time values). Let us analyze which restrictions on
the possible orderings should be enforced. To do so, assume the syntax is Br(z) — Br(y) X 7rimeR(z) and that z,
y, and z are evaluated expressions. There are 13 different orderings of z, y, z. We want the specification to vacuum
all data with Time value less than or equal to z, and we want time slice queries after Time z to be unaffected by
vacuuming. To achieve this, we require that z < 2. If y < z, time slice becomes unsafe because needed tuples with
Time values in Jy; z] (if any!) are not retained, but are “mistakenly” vacuumed. Thus, we also require that z < y.
We are then left with the valid orderings: 2 < y< z,z<2<y, z=y=z,z=y<z,z=2<y, z<y=z Note
that y can be changed to z in a specifications with z < y without changing the meaning of the specification. It can
also be observed that the advantages from having z = z instead of z < z (i.e., more unaffected time slices) seem
to outweight the disadvantages (i.e., less data vacuumed)—removal of more data is better achieved by increasing z.
Consequently, we have z = y = z in typical usage.

The problem of enforcing growing specifications of CLASS 5 and CLASS 6 is nonexistent because, by definition,
any specification of these classes is growing”.

The formula for computing a modified backlog My Br from a one element specification V of CLass 5 with

z =y = z is simple. From the general formula (2), we have

Br ~ (Br(z) - Br(z) X 7rimeR(z)) | (53)

MvBR =
MyBr = (Bgr(z)Uo0TimeseBr) = (Br(z) — Br(z) X T7ime R(z))
MyBr = 0Time>zBrU BR(x) X TFT,'meR(:B) ‘ (54)

Formula (53) tells what to remove, and formula (54) tells what to retain.
For an arbitrary specification (still with 2 = y = z), the formulas are similar: instead of using z, we use the value

a defined as max({z;}7.,) where z;, i = 1,2,...,n are time values of p specifications. This is so because
12t = BR(tl) — Br(t;) X TTime R(11) > BR(t-_;) - Bn(ig) X TTTimeR(t2) (55)

Specifications of CLASS 6 can be perceived as a generalization of specifications of CLASs 5. Dealing with CLASS
6. we can simply treat each attribute of R as we treated a tuple dealing with CLASs 5. Each attribute can be treated

In isolation, and the results from doing so are collected by the “union” operator (U). The #’th (1 < i < n) element

of a specification has a projection list of the form A Ay Air,- The 7’th element is split into i, elements,
7a,;(Br(z) — Br(z) X TpimeR(Z)), j = i1,4a,...,4x,. This process gives us T, k; elements. They are collected

into m groups where m is the number of attributes of Bgr. The Ith of these groups has elements of the form
T4 (Br(z1) — Br(21) X mTime R(21)). A time value, oy, is selected as above. Elements with a; = t;ni; are discarded,
and elements with identical o, are merged. This leaves k sets of attributes, A;, and corresponding time values, o,

{=1,2,...,k. Now, the ANF~ version of My Bpg is given by

—k
MyBg = VU1=1%AI-(B}{(QI);B;%(az)&frT;meRO(a,)) (56)

"We assume that all TTime-valued expressions are non-decreasing functions of time.
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The ANF* version for CLASS 6 is obtained by applying to each term the transformation that lead from formula (53)

to formula (54) and by including the attributes, 49, which were discarded above. Doing so, we get

—k
]WVBR = vn (Ul___lfrA'- (aT.-,,,»a,B}q(az)L'JB,}(a;)&irT;m,R'(a;)) CJ iAdBﬁ-mP) (57)

Due to the format of specifications of CLASS 5 and CLass 6, the SNF~ and SNF* versions of My By become
more complicated than their ANF counterparts, and they are thus not competitive (see the example below).

Assume that V = {Vjs, V17, Vis, Vio} is in effect. Then, the modified backlog can be expressed as (ANF~ version)

MyBimp = v(#1d(Bmp(NOW = 8yrs) = By, K #rime Emp (NOW — 8yrs))
O #Ba1( Blyyny (NOW = Byrs) = By, & #rimeEmp (NOW — 6yrs))
O #5a1(Blgmp (NOW — 4yrs) < By, K #rimeEmp (NOW — 4yrs))

) #5ec(Blimp (NOW = 2yrs) = By, K ipime Emp (NOW — 2yrs)))

Note the direct correspondence between the structure of this formula and that of its specification. In the interval
between NOW and NOW — 2yrs, any query (including any time slice) can be answered. For other intervals, this is
not true. For example, between NOW — 4yrs and NOW — Byrs, all data of attributes Id and Bal are present, but
occurrences of values of Sal are only present if they are part of Emp(NOW —4yrs), and occurrences of values of Sex
are only present if they are part of Emp(NOW — 2yrs).

In general, a modified backlog can be partitioned into intervals (with the time values o of formula (56) as
boundaries) such that a subset, S, of the terms of the backlog expression (ANF ™ version) contribute to the vacuuming
for that interval. The terms for an old interval will contain the terms for a more recent interval. With V/ in effect, the
intervals are [tini;; NOW —8yrs], INOW —8yrs; NOW —6yrs], | NOW —6yrs; NOW —4yrs], INOW —4dyrs; NOW —
2yrs], and JNOW — 2yrs; NOW]. In interval ]NOW — 4yrs; NOW — 2yrs], all values of attribute Sex have been
removed except for the ones in tuples among Bgmp(NOW — 2yrs) X arime Emp(NOW — 2yrs). Now, let a query,

Q be given as 65.c=p Emp(NOW — 3yrs). Then, using this observation, we can express the modified query as
MvQ = 05cc=F(BEmp(NOW = 2yrs) X npime Emp(NOW — 2yrs))}(NOW — 3yrs)

The modified query retrieves all tuples with Sez = F that were part of Emp two years ago, and that were not
modified between two and three years ago (i.e., they were also part of Emp three years ago). Generally, when Q is
a time slice query, the interval that the time slice belongs to is identified together with the vacuuming specifications

relevant to that interval, and the backlog modified with these is time sliced.

10 General Vacuuming

In this section, we discuss CLAss 7 and CrLass 8. For the former, the syntax is Q(Br) where @ is any query

expression involving Bpg, including time slices of Br. For the latter, the syntax is @Q(Br,,Bnr,,---,Br,) where
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Ry, R, ..., Ry are all user-defined relations, and @ is an arbitrary query restricted to the standard operators of
DM/T.

In this section, we mainly exemplify the possibilities of the two classes of specifications, and we do not derive
specific formulas for My Br—instead, we refer to the coverage of the general case in section 5.

Examples of specifications of CLASS 7 (and not in previous classes, of course) can be obtained by composing
specifications of CLass I and CLAss 1I; thus, previous examples apply. To exemplify further, assume that a decision
is made to retain only values of attributes Id, Time, and Op of modification requests more than two years old
for employees with a nonnegative balance throughout the last year. The expression T1dOTime>NOW ~1yrs BEmp —
TId0Time>NOW —1yrsaBal<0BEmp Tetrieves the values of attribute Id for all the qualifying employees, and the
part of Bemp, where tuples belonging to qualifying employees must be removed, is retrieved by the expression

T1d,Time,0p0Time< NOW ~2yrsnOp=M BEmp. Using the semi-join, we obtain

Vaa p(BEmp) : "TId,Time,Opa'Time<NOW—2yr:/\Op=MBEmp X

TId0Time> NOW ~1yrs BEmp — T1d0Time> NOW ~1yrsABal<0 BEmp

To illustrate specifications of CLass 8, we expand our sample database, DB, with a department relation, Dep,

with schema:
Dep(Id : Int;Job: {D,R,A};Off : {N,C,W, L})

where Job can be either Development (D), Research (R), or Administration (A), and Off can be “No office” (N),
“Core office” (C), “Window office” (W), and “Large window office” (L).

For CLass 1 - CLass 7 vacuuming specifications have been based solely on the values of the attributes of the
relations to vacuum. CrLass 8 adds the capability of basing the vacuuming of one relation on the attribute values
of other relations. In analogy with derived fragmentation of global relations into local fragments in distributed
databases, this can be called derived vacuuming.

To illustrate, the following specifies removal of all tuples in Emp if they represent an employee currently without

an office:

Va3 P(BEmp) : BEmp X w1a00ss=n Dep

As another example, suppose we only want to be able to ask time slice based queries within the last two years
on employees in development and research, but that we still want full capabilities for employees that have only been

1n administration. Then, we can issue this specification:
Vaa P(BEmp) : BEmp(NOW — 2yrs) x T1d0Job=D, RBDep(NOW — 2yrs) — Emp(NOW — 2yrs)

CLASs 8 is a very general class of specifications. Its extra power—the possibility of using semi-joins, joins,
and Cartesian products involving other backlogs—has the complication that both intra-specificational and inter-

specificational conflicts can occur.
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As another complication, the expression of a modified backlog and thus of modified queries can become very
complex. If this occur, we find it likely that less ambitious vacuuming, that is easier to express, will be preferable.

In conlusion, if derived vacuuming is needed, the potential complexity can be dealt with in two combinable ways.
First, the vacuuming subsystem designer may allow only a limited subset of CLASS 8—numerous subclasses beyond
the scope of this presentation are possible. Second, the DBA can exercise a strict discipline and avoid vacuuming

specifications that result in complex modified backlog expressions.

11 Conclusion

Temporal datasases supporting transaction time are ever-growing. In this paper, we have considered how to cope with
the constant growth by vacuuming data without changing history. We have presented a framework for vacuuming
subsystems for temporal databases that adhere to this principle. The framework is a useful tool for designers of
vacuuming subsystems of future DBMS’s supporting transaction time. It provides an understanding of the issues
involved in the design of a specific vacuuming subsystem, it outlines a wide range of choices of functionality of a
specific vacuuming subsystem along with the consequences of the particular choices, and it gives a foundation for
correct and cooperative query processing.

In addition to the physical removal of data, a vacuuming subsystem should augment the functionality of a temporal
DBMS in two ways. First, it should support the specification of vacuuming. Second, it should allow for correct and
cooperative processing of queries against base relations that have been vacuumed.

We proposed two types of specifications, namely removal (p) and keep (k) specifications, and we presented three
classifications of vacuuming specifications. The first and second classifications were both used for characterization
of the 8 classes of the third classification. The first classification made use of two dimensions to distinguish between
specifications. Thus, specifications that were based on the Time attribute alone were classified differently from those
based on an arbitrary set of attributes. In addition, specifications that removed complete tuples and specifications
that removed individual attribute values were classified differently. In the second classification, we distinguished
between backlog based and time slice based specifications. We identified correctness criteria for specifications:
they must be growing and conflicts with other specifications, integrity constraints, view definitions, and application
programs must be resolved.

A foundation for correct and cooperative query processing was established by providing a set of rules for modifying
queries that access vacuumed parts of base relations into similar queries that can be answered correctly because they
avoid access to vacuumed data. We treated each of the 8 classes in turn. For each of the classes with tuples as
the unit of deletion, we developed relational algebra formulas to express vacuuming of backlog relations. For the
remaining classes with attribute value occurrences as the unit of deletion, we extended the relational algebra to a

tagged relationz. algebra and developed formulas to express vacuuming.
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12 Future Research

As pointed out previously, we believe this to be the first paper to consider how to delete data from temporal databases
without changing history. Consequently, we find it appropriate to point to several important areas of future research.
We devote subsections (1) to extension of the framework to include off-line archival as an intermediate between
on-line storage and irreversible deletion, (2) to the incorporation of more powerful vacuuming capabilities based on
a new type of relation, (3) to issues related to how the cooperativeness of a VS can be further improved, and (4) to

the integration of vacuuming into IM/T, the implementation model for DM/T.

12.1 Extending with Off-Line Archival

In conventional DBMS’s, complete transaction logs are sometimes stored on magnetic tape and never deleted. In
addition, temporal databases that have already been vacuumed may still not fit in on-line storage. These observations
suggest that off-line archival should be included into the framework for vacuuming. Here, we will mention some of the
issues that arise when we include both p, &, and 7 specifications, the last one identifying data that are to be moved
from expensive and fast on-line storage, typically magnetic disc, to cheap and slow off-line mass storage, typically
magnetic tape. )

Theoretically, the semantics of 7 specifications differ from those of p specifications. While removal of data (p) is
inherently irreversible, moving data from on-line to off-line storage (7) is reversible. This has two implications: first,
the concept of growing specification does not apply to 7 specifications the same way it applied to specifications with p
and k—growth was required exactly because of the irreversibility of deletions; second, an inverse operator, !, must
be offered to reverse the migration from on-line to off-line storage. This operator may be employed by the system
during several tasks: when dealing with moving r specifications, when answering queries that need access to off-line
data, and when specifications are updated. In the last case, when data previously archived by a 7 specification,
7(Br) : Q, are wanted on-line, the DBA removes specification 7(Bgr) : Q, and triggers the system to issue the
operation 7~1(Q) that brings the desired data on-line.

In practice, the semantics appropriate for = specifications may depend on the particular type of off-line media,
the level of operator service that is provided, and the nature of the applications running against the DBMS. For
example, if it will take hours or days to gain access to data off-line and if applications require response times in the
range of seccids, then it makes sense to require that 7 specifications be growing.

, When introducing a new construct, its interaction with and effect on existing constructs must be considered in
detail. To illustrate the issues, note that data items can be specified or referenced. For example, a semi-join, R X S,
specifies data part of the left hand side argument, R, and references data part of the right hand side argument, S, in
order to serve as a specification. Several questions arise due to the possibilities of overlaps between the data accessed

(specified /referenced) by the various constructs.

* Can the same data be both specified by some r specification while being referenced by another specification? If

so, this would mean that it may be necessary to move data from off-line to on-line storage in order to evaluate
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a 7 specification.

e Can a 7 and a & specification specify the same data? If so, should the common data be stored off-line, on-line,
or should it be left unspecified? That is, is the semantics of x that data specified must be stored on-line or

merely that data specified must not be deleted?

o Can the same data be specified by a 7 specification and referenced by a « specification at the same time? If
so, moving data to on-line storage may be necessary to evaluate the « specification. The same question arises
when we replace & specifications with p specifications, view definitions, and query expressions of application

programs.

» Can the same data be specified by a 7 and a p specification at the same time? If so, what should the semantics
be? The p specification can-override the « specification, but the r specification generally cannot override the
p specification. For example, this is so if the p specification were in effect before the 7 specification became
effective. Similar questions arise when view definitions and query expressions of application programs are

substituted for p specifications.

When it has been resolved which specifications are valid and what their semantics are, appropriate responses to
queries that access data stored off-line must be considered. Prior to the introduction of = specifications, a query, Q,
was modified so that it did not access data removed by p specifications, and one or several such modifications were
presented to the user. First, it is now possible that a query, Q, must be modified into M »Q due to p specifications;
second, due to T specifications, it is possibie that M,Q cannot be answered without the access to archived data.
Because this can result in an unacceptable delay, there is also a need to present at least one modification of M,Q,
M,:Q, that avoids the access to archived data. Consequently, when 7 specifications are allowed, two distinguished
types of modified queries will be presented to the user. A user will be able to issue a query of the first type, get an
immediate answer, and can then choose to issue a query of the other type and engage in other tasks while waiting '

for the result.

12.2 Statistics Views

The kind of vacuuming we have seen so far results in data being deleted from existing relations. For some purposes,
more advanced capabilities are desirable. Assume for example that, due to space constraints, only the last four years
of Emp can be retained (V;), but that it is important to know, at any time, the number of employees in the company
database ever since its creation. This cannot be accomplished by the previously introduced mechanisms. However,
by introducing the concept of S-view (Statistics view), this becomes possible. In the case of this example, we could

issue this definition (see the appendix for a definition of £):

define S-view: EmpSum as: Tsumé—, Sum=count(1d) BEmp
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In response to this definition, the DBMS creates and incrementally [15] maintains a backlog, BEmpsum, with this
schema:

BEmpsum(Op : {I, D, M}; Bid : SURROGATE; Time : TTIME; Sum : INT)

To see how an S-view differs from base relation, view, and snapshot [1], first note that the part of S-view BEmpSum
more than four years old cannot be derived from Bgm,, due to vacuuming but must be computed and stored before
vacuuming takes place. Thus, unlike a view, an S-view is not derivable from base data (e.g., BEmpsum cannot be
derived from Mv, BEmp). Unlike a snapshot, an S-view is not independent of the base relations, from which it is
derived. Updates to the base relations must be reflected in the S-view. Finally, unlike a base relation, an S-view is
derived from another relation (e.g. when Bgm, is updated, BEmpsum must be updated at most four years later).
S-views can be seen as a natural extension of the kind of statistics that reflect parts of backlogs before they were
vacuumed and still fits the schemas of the backlogs. Using the aggregation mechanisms of the query language, an
S-view for a base relation can maintain summaries that, due to vacuuming, are no longer obtainable from the base
relation; and using advanced operators (e.g., the T operator [13]), the DBA is able to vacuum bulks of detailed data
and just retain extracts of interest. Extracts can indicate trends and patterns of deleted data, can be exceptional

and dqyiating data, or can be both.

12.3 Increased Cooperativeness

In this paper, we provided the foundation for cooperative query processing in temporal databases supporting trans-
action time where relations can be vacuumed. Within CLass B, the query modifier returned a set of one or more
equivalent modified queries, and outside CLass B it, in addition, applied the technique of ignoring selection criteria
that could not be evaluated due to vacuuming.

It is an interesting topic how to extend the query modifier’s capabilities of returning understandable and useful
queries when the original query cannot be evaluated due to vacuuming.

We use the example in section 2 to illustrate this idea. F igure 1 illustrates two equivalent modifications of query
Q = 05ai>30k BEmp With vacuuming specification V = {V1, V2, V3} in effect. We can simplify the two modifications
by strengthening the restrictions implied by V, by weakening the restriction of Q, or both. For example, if we assume
that sparse deletion requests are of little interest, then we may delete the terms (Time <= NOW - 4yrs and Op = D
and Sal >= 30k) and Op = D from the second alternative of figure 1 and achieve the shorter, more specialized, and

perhaps more useful query:

select [(NOW - 4yrs < Time <= NOW - 2yrs and Sex = M and Sal >= 30k) or
(NOW - 2yrs < Time and Sal >= 30k)] B[Emp]

Similarly, we can delete the term Op = D from the first alternative and get this query:
select[Sal >= 30k and Time > NOW - 4yrs and (Time > NOW - 2yrs or Sex = M)] B[Emp]
Techniques for query generalization/specialization (19, 6], which have been developed for other purposes, can prove

applicable as the starting point towards improved cooperativeness. However, additional issues must be addressed.
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For example, it is not obvious how to determine which generalizations/specializations out of the vast number of
possibilities are useful (i.e., easy to understand and of interest to the user). In addition, it can be necessary to be
capable of choosing a few queries from a larger set of queries that seem useful.

In conclusion, though improved cooperativeness by generalization/specialization is important, it is far from trivial.

12.4 Implementation Issues

We have been concerned with semantic and conceptual issues of vacuuming, and actual physical vacuuming has
been beyond the scope of the presentation. Integration of vacuuming into the implementation model, IM/T [16],
of DM/T is an interesting area of current research. IM/T offers differential computation of views based on results
of previous computations stored as pointer structures or actual data in an indexed cache. IM/T also offers cache

update strategies ranging from eager, via threshold triggered, to lazy update. Below, we list 5 open problems.

1. How can the capabilities of IM/T best be exploited to allow for differential physical vacuuming? Vacuuming
specifications can be perceived as views, and as such, they can be computed and stored as pointer structures.
Upon doing so, following the pointers will allow for identification of all base records that need to be vacuumed.
When vacuuming is done this way, the cached views corresponding to vacuuming specifications have empty
extensions, and consequently, it is interesting to explore how differential update of views with empty outset

can be performed most efficiently.

2. Which conditions should trigger vacuuming? Vacuuming logically has eager semantics, but physical vacuuming
can be done using deferred strategies. Intuitively, it is clear that vacuuming should be done often enough that
space shortate is avoided and so that it does not compromise the responsiveness of the system. However, it is

a non-trivial issue of research to actually implement the abstract idea.

3. What should be the unit of vacuuming triggered by a condition? There are many possibilities. For example,
it is possible to vacuum the whole database, a set of backlogs, a single backlog, and a sub-specification for =

backlog.

4. How is the property (when applicable), My @ =v @, best exploited during query processing? In addition, note

that there will be intermediate queries (between Mv @ and @) that also can be processed instead of My Q).

5. Which reorganizations of physical structures are appropriate during massive (and partly predictable) deletions?
Given that the set of vacuuming specifications is relatively stable and given that the rate of update of relations
is also stable, it is possible to predict the removals by a VS. It is an interesting issue how to organize physical

storage in advance so as to take advantage of the knowledge of deletions.
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A.1 Appendix

To make the paper self-contained, we give a brief description of the extended DM/T query language. The first

subsection describes DM/T, and the second describes the aggregate formation operator, €.

A.1.1 Transaction Time in the Relational Model, DM /T

DM/T is a transaction time extension of the standard relational model [7, 8]. The model was introduced in [14]; in
[13], it was extended to support queries on change; in [15] and [16] efficient implementation is addressed.

The properties of the the time concept offered by DM/T are outlined in figure 9 and are discussed below.

transaction regular discrete
X P X X
logical irregular ! arbitrary manual

Figure 9: Characterization of the time concept offered by DM/T.

Two orthogonal time dimensions have been studied in temporal databases [25]. Logical time models time in the
part of reality modeled by a database. Transaction time models time in the part of the reality that surrounds the
database, the input subsystem. While logical time is application dependent, transaction time depends only on the
DBMS and is inherently application independent.

First, DM/T supports transaction time as opposed to logical time. Second, a domain is regular if the distances
between consecutive values of the active domain are identical. Otherwise, the domain is irregular. DM /T supports
an Irregular time domain. Third, a time domain can be discrete or stepwise continuous. Facts with discrete time-
stamps are only valid at the exact times of their time stamps. In contrast, in a stepwise continuous domain facts
have an interval of validity. The DM/T time domain has this property (é,lso termed stabilily), because the values of
a relation remain the same until the relation is changed by a new transaction. Fourth, DM/T supports true time
as opposed to arbitrary time. True time reflects the actual time of the inbut subsystem while an arbitrarv time
domain needs only to have a metric and a total order defined on it; the natural numbers is a possible arbitrary time

domain. Fifth, DM/T has automatic time-stamping, which is the natural choice for transaction time. Manual, user
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supplied time-stamp values are natural for logical time. We have chosen tuple stamping as opposed to attribute value
stamping. The major motivation has been to provide a 1.NF model which is a simple and yet powerful extension of

the basic relational model.

In order to record detailed temporal data and still be able to use the operators of the basic relational model, we
have introduced the concept of a backlog relation. A baciclog, Bp, for a relation, R, is a relation that contains the
complete history of change requests to relation R [21]. Backlog Br contains three attributes in addition to those
of R. Attribute Id is defined over a domain of logical, system generated unique identifiers (i.e., surrogates). The
values of Id represent the individual tuples, termed change requests. The attribute Op is defined over the enumerated
domain of operation types, and values of Op indicate whether an insertion (Ins), a deletion (Del), or a modification
(Mod) is requested®. Finally, the attribute Time is defined over the domain of transaction time stamps, TTIME,
as discussed previously. DM/T automatically generates and maintains a backlog for each base relation (i.e., user
defined relations and schema relations). Figure 10 shows the effect on backlogs resulting from operation requests on

their corresponding relations. As a consequence of the introduction of time stamps, a base relation is now a function

Requested operation on R: Effect on Bp:
insert R(tuple) insert Bpr(id, Ins, time, tuple)
delete R(key) insert Bgr(id, Del, time, tuple(key))
modify R(key, new value) insert Br(id, Mod, time, tuple(key,new value))

Figure 10: System controlled insertions into a backlog. The function “tuple” returns the tuple identified by its

argument.

of time. To retrieve a base relation, it must first be time sliced. Let R be any base relation, then the following are

examples of time slices of R:

def
R(tinit) é Rinit
def » . »
R(t;) = R7attimet,”, iz > tinit

def

R R(NOW)

When the database is initialized, it has no history and every relation is empty. If R is parameterized with an
expression that evaluates to a time value, then tie result is the state of R as it was at that point in time. It has
no meaning to use a time before the database was initialized and after the present time. If R is used without any
parameters, then this indicates the current R. Time sliced relations have an implicit time stamp attribute, not shown
unless explicitly projected. Note that these features help provide transparency to the naive user. We also introduce

the special variable NOW which assumes the time when the query is executed.

80n a lower level, modifications are modeled by a deletion followed by an insertion, each with the same time stamp.
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If the expression, E, of a time sliced relation, R(E), contains the variable NOW, then R is time dependent.
Otherwise, it is fized. While fixed time slices of relations never get outdated, time dependent time slices do, and they
are consequently updated by the DBMS before retrievals.

A view is time dependent if at least one of the relations and views it is derived from is time dependent. Otherwise,
it is fixed. Traditional views are ultimately derived directly and solely from time sliced base relations. If a view
ultimately is derived directly (i.e., not via a time sliced base relation) from at least one backlog, then we term it a
backlog view. Backlog views are time sliced as are base relations and views. Backlog view time slices involving NOW

are time dependent, and, as above, so are backlog views derived from views involving NOW. We define

def
BR(t::) = UTimeSt,BR

Br & Br(NOW)

We adopt a set of precedence rules to simplify the appearance of query expressions. Time slice has the highest
precedence and is followed by the other unary operators, all.with the same precedence. These, in turn, are followed
by binary operators all of which again have the same precedence. Parentheses are used to control precedence in the

standard way, and evaluation is from left to right.

A.1.2 The Aggregate Formation Operator

The aggregaie formation operator, £, is used to apply aggregate functions to groups of attribute values. The operator

we present here is a variation of the one described in (17] and [2]. The following notation is used

EX, att_name=agg.fet R

X is a grouping specification, att_name is a new attribute name, and agg_fct is an aggregate function. The result
of the query is derived the following way: Fifst, the tuples of R are divided into the groups implied by X; second,
agg-fct is applied to each group, and the resulting value is associated witb each tuple in the group as a value of the
ati_name attribute.

The following query generates a relation telling what the average salary is for each department (assuming a Dep

attribute):

{Dep,Avg_saI:augs,, Emp

where Avg_sal is the new attribute to be generated. One group is generated for each distinci value of Dept. X can

be any sequence of distinct attributes in relation R.

46





