On the Semantics of “Now” in Temporal Databases

James Clifford? Curtis Dyreson, Tomas Isakowitz, Christian S. Jensen

and Richard T. Snodgrass

Abstract

Most databases record time-varying data, and significant efforts have been devoted to the conve-
nient and efficient management of such data. Perhaps most prominently, numerous data models
with varying degrees of built-in support for the temporal dimension of data have been proposed.
Some models are quite restricted and simply support uninterpreted attribute domains for times
and dates. Other models incorporate either a valid-time dimension, recording when the stored
data is true, or a transaction-time dimension, recording when the stored data is current in the
database. Bitemporal data models incorporate both valid and transaction time. The special
temporal notion of an ever-increasing current-time value has been reflected in some of these
data models by inclusion of current-time variables, such as “now,” “until-changed,” “co,” “@”
and “—.” As timestamp values associated with facts in temporal databases, such variables may
be conveniently used for indicating that a fact is currently valid. Although the services of time
variables are very desirable, their use leads to a new type of database, consisting of tuples with
variables, termed variable databases.

This paper proposes a framework for defining the semantics of the variable databases of tem-
poral relational data models. A framework is presented because several reasonable meanings
may be given to databases that use some of the specific temporal variables that have appeared
in the literature. Using the framework, the paper defines a useful semantics for such databases.
Because situations occur where the existing time variables are inadequate, two new types of
modeling entities that address these shortcomings, timestamps which we call now-relative and
now-relative indeterminate, are introduced and defined within the framework. Moreover, the pa-
per provides a foundation, using algebraic bind operators, for the querying of variable databases
via existing query languages. This transition to variable databases presented here requires min-
imal change to the query processor. Finally, to underline the practical feasibility of variable
databases, we show that variables may be represented and manipulated efficiently, incurring
little space or execution time overhead.

1 Introduction

Now is a noun in the English language that means “at the present time” [Syk64]. A variable with
this name has also been used extensively in temporal relational data model proposals, primarily as
a timestamp value associated with tuples or attribute values in temporal relations. Yet, the precise
semantics of databases with this and other current-time variables have never been fully specified. An
important goal of this paper is to give a clear semantics for databases with current-time variables.

Time variables such as now are of interest and indeed are quite useful in databases that record
time-varying information, the validity of which often depends on the current-time value. Such

*J. Clifford and T. Isakowitz are with the Information Systems Department, Leonard N. Stern School of Busi-
ness, New York University, 44 W. 4th Street, New York, NY 10012, USA, {jclifford|tisakowi}@stern.nyu.edu.
C. Dyreson is with the Department of Computer Science, James Cook University, Townsville, Queensland Q4811,
Australia, dyreson@jcu.edu.au. C. S. Jensen is with the Department of Mathematics and Computer Science, Aal-
borg University, Fr. Bajers Vej 7E, Dk-9220 Aalborg @st, Denmark, csj@iesd.auc.dk. R. T. Snodgrass is with the
Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA, rts@cs.arizona.edu.

databases may be found in many application areas, such as banking, inventory management, and
medical and personnel records. For example, in a banking application, it is necessary to record
when account balances for customers are valid. Specifically, if a customer opens an account and
deposits US$ 200 on January 15 (in some year), the validity of that balance starts when the deposit
is made and extends until the current time, assuming no update transactions are committed. Thus,
on January 16, the balance is valid from January 15 until January 16; on January 17, the balance
is valid from January 15 until January 17, etc. It is impractical to update the database each day
(or millisecond) to correctly reflect the valid time of the balance. Rather, it has proven convenient
to use a variable, such as now, for indicating that the time when a balance is valid depends on the
current time. In the example, it would be recorded on January 15 that the customer’s balance of
US$ 200 is valid from January 15 through now.

There have been numerous temporal database models proposed in the literature [K1i93]. Most of
these proposals have incorporated one or both of two temporal dimensions that have been identified
as important in the data modeling of temporal information and which are given special semantics
by the query language. The valid time of a database fact is the time when the fact is true in
the modeled reality, while the transaction time indicates when the fact is current in the database
[JCE*94]. The majority of temporal models have incorporated only the valid time dimension, and
are termed valid-time data models. A far fewer number, the so-called transaction-time data models,
have incorporated only the transaction-time dimension. A slightly larger number than this, the
bitemporal data models, have incorporated both dimensions. Time variables are equally relevant
to both time dimensions, but we shall show that the appropriate meaning of a tuple with a time
variable in its timestamp is dependent on the specific time dimension(s) supported by the database
and to which the variable belongs.

In examining the large body of existing temporal data models, it is apparent that two different
types of models have been proposed. The first type of model essentially accords with the view
expressed by Reiter that a relational database can be seen as a set of ground first-order formulae,
for which there is a minimal model [Rei84]. These models have either been presented as logical
models directly (e.g., [CW83],[CCT93]), or have been presented in such a way that their logical
model was clear.

The second type of model deviates from this tradition. Rather, these models have been presented
as a set of formulze some of which are ground, but others of which have included one or more free,
current-time variables. Chief among these current-time variables is “now” (e.g., [CC87, Gad88,
CT85]), but a variety of other symbols have been used, including “-” [BZ82], “c0” [Sno87], “@”
[LJ88], and “until-changed” [WJL91, WJL93]. As already mentioned and exemplified, the use of
such variables is quite convenient and practical. Thus, these approaches have advantages at the
implementation level, namely, they are space efficient and avoid the need for updates at every
moment in time. However, nowhere have we found a clear exposition of temporal variables, i.e.,
nowhere has the semantics of this type of database—a database with current-time variables, here
termed variable databases—been formally specified so that the logical model represented by the
database is clear. Rather, the models have relied on the choice of intuitive names for the variables
to convey their meaning. This has led many to suppose that they understood their semantics.
However, this reliance on intuition and lack of a clear semantics for databases with current-time
variables is unsatisfactory as a foundation for the development and implementation of variable
databases, as it is prone to ambiguities and misinterpretations and, therefore, to errors.

In this paper, we present a framework for the specification of the different semantics that may be
given to variable databases, which builds on the approach introduced in [CI94]. In the framework,
the semantics of a variable database is defined by means of what we term an extensionalization
mapping {rom a variable database to a fully ground data model. The actual extensionalization

mappings for valid-time, transaction-time and bitemporal databases with one or more current-time
variables are given in subsequent sections. This illustrates that the framework is general enough to
allow for the specification of a wide variety of semantics, an important property of a framework. It
also illustrates that the framework can capture the semantics of multidimensional databases in a
straightforward manner: the multidimensional extensionalization mapping is obtained by a simple,
but coordinated, combination of the mappings for the constituent one-dimensional databases.

We also observe that the modeling capabilities of current-time variables are limited. To over-
come these limitations, two new modeling entities, now-relative and now-relative indelerminate
timestamps are introduced and defined within the framework. Next, a mechanism for the query-
ing of variable databases using existing query languages is provided. This mechanism provides
added functionality, does not require changes to a query language, and is easily integrated into
a query processor. It is observed that the incorporation of the notion of perspective into query
languages may provide additional functionality when querying variable databases. Finally, to un-
derline the practicality of a variable database, compact physical representations for timestamps
involving current-time variables are provided. These formats can be efficiently manipulated during
query processing.

In the remainder of this paper we address the issues touched upon in this introduction. To
motivate the need for additional current-time-related modeling entities and a framework for ex-
pressing the semantics of these and of existing current-time variables, the next section addresses
shortcomings of existing current-time variables and informally explores the semantics of databases
using such variables. Section 3 then presents the framework for specifying the semantics of variable
databases. Within this framework, the semantics of variable databases is given by an extension-
alization mapping from a variable database to instances of a fully ground model, i.e., a model
without variables. Section 4 considers the use and semantics of new now-relative and now-relative
indeterminate timestamps, in addition to the existing variable now, in the valid-time dimension.
The section illustrates in depth how the semantic framework is used. Further, it is shown how
variable valid-time databases may be queried with existing query languages, with minimal changes
to their implementation. Finally, the novel use of perspective in querying a variable database is
explored through examples. Section 5 provides a parallel treatment of variable transaction-time
databases. Specifically, the different semantics of transaction-time gives the current-time variable
in transaction time a different semantics than its valid-time counterpart. Section 6 then considers
bitemporal variable databases, which support both time dimensions. It is shown how the seman-
tics of variable bitemporal databases is obtained by combining the semantics of variable valid-time
and transaction-time databases. Section 7 extends an existing timestamp representation scheme
for ground timestamps to provide space-eflicient timestamp formats for current-time-related times-
tamps. We show that the new timestamps have little impact on the efficiency of query evaluation.
Finally, in Section 8, the paper’s contributions are summarized and suggestions for future research
are offered.

2 Motivation

To motivate the need for current-time variables in temporal databases, including a solid, formal
foundation for their use, this section introduces the use of such variables and explores some of the
perhaps unintuitive, semantic subtleties resulting from their incorporation. Further, this section
explores the limitations of current-time variables in some realistic situations.

As the meaning of current-time variables depends on whether the context is valid time or
transaction time, current-time variables in valid-time and transaction-time databases are considered

in isolation, followed by a short discussion of current-time variables in bitemporal databases.

2.1 Variables in Valid-time Databases

In this section, we first exemplify why it is convenient to use the current-time variable now as a
timestamp value in a valid-time database. We then explore three current-time-related situations
that illustrate shortcomings of a single variable now and thus indicate a need for additional current-
time modeling entities, which we introduce in Section 4. Finally, we informally discuss how the
variable now complicates query semantics.

2.1.1 The Use of “now” in Valid-Time Databases

The valid time of a fact denotes the time(s) when the fact is true in reality [JCE+94, SA85]. In
the valid-time dimension, a timestamp involving now is commonly used to indicate that a fact
is currently valid [ABM84, BL92, EWK90, Gad88, NA89, Sar90, Tan90, YC91]. In conventional
databases, facts that are currently valid are the only ones that are directly supported by the data
model.

FACULTY
VALID TIME
NAME | RANK | (from) | (to)
‘ Jane ‘ Assistant H June 1 ‘ now ‘

Figure 1: Jane’s employment tuple

For example, suppose that a database records that Jane began working as an Assistant Professor
on the faculty of “State University” on June 1 (in some particular year, e.g., 1994; which year is
not relevant here). Figure 1 shows the relevant tuple from the University’s employment database
(the FACULTY valid-time relation). Jane started working as an Assistant Professor on June 1, as
indicated by the “from” attribute. The value now, appearing as the “to” time in Jane’s employment
tuple, represents the (later) time when Jane will stop working for State University. Together, the
“t0” and “from” attributes encode the valid time associated with the tuple. For simplicity, we
assume a timestamp granularity of one day in all examples.

The informal meaning of this tuple is that Jane is a faculty member from June 1 until the
current time. Thus, the result of a query that requests the current faculty members will include
Jane. As the current time inexorably advances, the value of now also changes to reflect the new
current time. Some authors have called this concept “until changed” [WJL91, WJL93] or “@”
[LJ88] instead of “now,” but the meaning is the same.

Using the variable now in a timestamp is very convenient. To see why, suppose that instead
of using the variable as the “to” time, we use a ground time, i.e., a particular date. We start by
recording a “to” time of June 1. Then as time advances and Jane remains an Assistant Professor,
the “to” time on Jane’s tuple must be updated each day to record when she worked. Hence, the
“to” time would be updated to June 2, then to June 3, etc. While this representation is faithful to
our knowledge at any point in time, having to continuously update the “to” time as time advances
is impractical. It is also unclear who should do the updating, as the database has no indication of
which tuples have a continuously increasing valid time and which are stable. For these reasons, it
is better to use the variable now.

In summary, the current-time variable now provides a convenient mechanism for allowing the
temporal dimension of data in the database to evolve without the need for database updates at
each successive tick of the clock.

2.1.2 The Pessimistic Assumption

While using now is convenient, using it as the “to” time of a tuple may lead to an overly pessimistic
assumption about the modeled reality. The university application introduced in the previous section
provides such a situation. Specifically, it is reasonable to expect that if an employee is employed in a
certain position today, that employee will also be employed in that position tomorrow (and the next
few, following days). Consider, however, the FACULTY relation given in Figure 1. It specifically
records that Jane will not be employed tomorrow. Assume, for the purpose of this discussion, that
today is July 9. Then a query asking who will be employed tomorrow (i.e., July 10) will not have
Jane in the answer, since the “to” time of Jane’s tuple is now, or in this case, July 9.

Using a “to” time of now leads to an overly pessimistic assumption about Jane’s employment.
Some temporal data models avoid this problem by limiting valid time to the past, that is, to times
before now [Gad88, Tan90]. For many applications, e.g., the university application, this limitation
is much too restrictive.

Other data models have advocated using one of the special (non-variable) valid-time values, such
as forever, co, or “~” [Sno87, Sno93, BZ82, TK88]) instead of now. These symbols (we will use
forever) denote the largest representable timestamp value, that is, the one furthest in the future.
In SQL and in IBM’s DB2, forever is about 8,000 years from the present [MS93, DW90]; in our
more liberal proposal, it is approximately 18 billion years from the present time [DS93a].

FACULTY
VALID TIME
NAME | RANK | (from) | (to)
‘ Jane ‘ Assistant H June 1 ‘ Jorever ‘

Figure 2: Jane’s employment tuple with a large right boundary

By using a “to” time of forever, as in Figure 2, we certainly avoid the pessimistic assumption,
But, we are now being overly optimistic. We have indicated that Jane will be employed as an
Assistant Professor not only tomorrow, but forever. To assert that Jane will be employed as an
Assistant Professor until forever is most assuredly incorrect (others have also noted that a “to”
time of oo, or forever, has erroneous implications for the future [NA89]). Another indication that
Jorever is inappropriate is that when Jane departs the University, forever must be replaced by
the date of her departure; but the revised date will be a separate and much earlier time that is
inconsistent with forever. Rather than having the new information refine the old information, the
new information contradicts the old information.

Perhaps, instead of forever, we might choose some large, application-dependent time value
earlier than forever. In the university application, the mandatory retirement date is a good choice.
While such a date is better than the generic forever, it is still overly optimistic.

In conclusion we have shown a practical situation where now (and forever) falls short of meeting
the requirements for recording the valid time of tuples. In Section 4.4, we introduce a new type of
timestamp that meets these requirements.

2.1.3 The Punctuality Assumption

The use of the current-time variable now in timestamps implies a strong assumption about the
punctuality of updates. For example, the tuple in Figure 1 states that Jane will remain an Assistant
Professor until the current time. The correctness of this tuple is dependent on the correctness of
the assumption that updates are made ahead of time, i.e., predictively. Thus, changes in Jane’s
employment status and rank are assumed to conform with the punctuality assumption: “changes
are recorded in the database no later than the instant they take effect.” Specifically, if Jane is
promoted to Associate Professor, to start on July 8, it is assumed to be recorded no later than
that day. This amounts to assuming that State University’s database is a correct, exact, up-to-date
model of the modeled mini-world.

The punctuality assumption for valid-time databases is often not satisfied. In many cases
information is recorded after the time it became valid, but with a well-specified maximum delay
[JS94]. For example, when employees change status, it may be that the database is guaranteed to
be updated to reflect this at most three days after the status is changed. If Jane was promoted
on July 8, perhaps it is then not until July 10 that her tuple is actually updated to reflect her
correct status. With a maximum delay of three days, the database is known to correctly describe
the mini-world only in the past, up until three days ago. Within the last three days, it can only
be concluded that it is likely, or possible, that Jane is employed as an Assistant Professor. In this
case, one could interpret the meaning of Jane’s tuple in Figure 1 as of today (July 9) as shown in
Figure 3.

FACULTY
VALID TIME
NAME RANK (from) | (to)
Jane Assistant June 1 | July 6
Jane possibly employed as an Assistant || July 6 | now

Figure 3: Meaning of Jane’s tuple, if today is July 9 and the bound is 3 days

Figure 3 intuitively illustrates the “possible” type of information that we would like to be able
to record because it more accurately describes our knowledge of the mini-world. This cannot
conveniently be recorded using now. Later in this paper, in Sections 4.2 through 4.4, we describe
a new kind of timestamp that can be used to address these issues.

2.1.4 The Problem of Now in Predictive Updates

This section explores another problem with the variable now as a “to” time in a tuple, namely
where predictive updates lead to “from” times that are after the current time. In such situations,
the “to” time, i.e., the current value of now, is before the “from” time, contradicting the intuition
that the “from” should always be before the “to” time.

To illustrate this use of now, assume that State University sometimes records faculty hires prior
to when that faculty member begins work. Further, assume that the tuple in Figure 1 was inserted
on May 25. Then, during the remainder of May, the “to” time is before the “from” time.

Some data models do not allow the use of now as a “to” time when its value is before the “from”
time. Instead a special “to” time value of NULL is used in such situations [EWK90, NA89, YC91].
This value is replaced by now when the value of now exceeds the “from” time. Tuples with NULL’s

are ignored in queries. However, there is a subtle difficulty with this solution. Suppose that today
is May 25 and we record that Jane will be an Assistant Professor from June 1 until now (or NULL
in this case). We then execute a query that determines who will be employed in June barring any
changes to the database between now and June. To evaluate this query, we temporarily “observe”
the database from the perspective of a user in June even though today is June 1. The result should
include Jane; however, Jane’s tuple is ignored since it has a “to” time of NULL.

To summarize, we have provided several illustrations of why the use of the valid-time variable
now in timestamps, while intuitively appealing, has certain shortcomings. In Section 4 we will
introduce new modeling entities that address these shortcomings, and we will provide a formal
semantics for variable valid-time databases.

2.2 Queries and Now

The variable now in a timestamp conveniently captures the evolution of current-time-related data.
When querying that data, the current time must be clearly specified since the value of the variable
now depends on the current time.

To illustrate the kind of ambiguity that can result from unclear specification of the current time
assume that today is July 9 and that our database is given as in Figure 1. Then, consider the
query, “Will we agree on July 13 that Jane was employed on July 117”7 Since Jane is employed
until now, the query cannot be answered unless we know what time it is now. Suppose that now
is interpreted to refer to the time at which the query is asked, in this case July 9. Then Jane will
not be employed on July 11 and so we would answer “no.” But now could be interpreted as the
time mentioned in the query about which we were asked to agree, in this case July 13. Then Jane
will be employed on July 11 and so we would answer “yes.”

Another source of ambiguity is that the constant evolution of the current-time variable now
appears to cause the “same” query to return different results when evaluated at different times,
even if no updates have occurred. For instance, consider the query, “Is Jane employed on July 117”
This simple query asked on July 10 will yield one answer (“no”), but if we ask the query on July 12
we will receive a quite different answer (“yes”).

In summary, the querying of variable databases introduces new semantic subtleties, not found
when querying non-variable databases, thus motivating a clear and precise definition of the meaning
of variable databases.

2.8 Variables in Transaction-time Databases

The transaction time of a database fact denotes the time when the fact is (logically) current in
the database [SA85]. It is an orthogonal concept to valid time, in that it concerns the evolution of
the database, as opposed to the enterprise being modeled. As we will see, the use of current-time
relative variables in transaction-time databases introduces a different set of problems.

While a valid-time timestamp is generally supplied by the user, a transaction-time timestamp,
an interval from a “start” to a “stop” time, is supplied automatically by the DBMS during an
update. Specifically, insertions initialize the “start” time to the “current time” and the “stop” time
to now'. Deletions are accommodated by changing “stop” times of now to the value of the current
transaction time. Hence, in transaction-time relations, deletion is logical. The information is not
physically removed from the relation; rather, it is tagged as no longer current by having a “stop”

!The transaction processing system must also obey the requirement that the “start” times of tuples be consistent
with the serialization order of their respective transactions.

-~

time different from now. Physical deletion never occurs in a transaction-time relation. Updates
may be considered combinations of deletions and insertions.

As an example, consider the transaction-time relation shown in Figure 4. The distinct semantics
of transaction time yields a different interpretation of this relation as compared with the one shown
in Figure 1. The “start” time of June 1 indicates that this tuple was stored in the database on
June 1, i.e., we first became aware that Jane was an Assistant Professor on that date. The value
of now for the “stop” attribute indicates that the database still records that Jane is an Assistant
Professor, i.e., the fact that Jane is an Assistant Professor is current in the database. If we learn
on July 10 that Jane left State University and thus (logically) delete the fact, this is reflected in
the relation by changing the “stop” time to July 10.

FACULTY
TRANS TIME
NAME | RANK | (start) | (stop)

Assistant H June 1 ‘ now ‘

‘ Jane

Figure 4: Jane’s employment tuple in a transaction-time relation

In transaction time, a tuple timestamped with a “stop” transaction time of now means that
this tuple has not yet been logically deleted [YC91]. The problem with using a variable called now
in transaction time is that the name “now” obscures this meaning. Strictly speaking, it implies
that every current tuple was deleted by the current transaction! In Figure 4, if the current time is
July 9, then a strict interpretation of a “stop” time of now suggests that the “stop” time is July 9
(we used exactly the same interpretation for now in valid time). This is not what was intended.

As with valid time, some data models address this problem by using forever (also called oo or
“-") instead of now, as shown in Figure 5 [BZ82, BG89, Sno87, TK8&8]. Using this large value, we
immediately encounter difficulties. The strict interpretation of this tuple is that some transaction
executing a (very) long time in the future will logically delete this tuple from the relation. In the
meantime, it will remain in the database. If, on July 10, it becomes known that Jane has left
State University, then we logically delete this tuple by changing the “stop” time to July 10. Such a
change is inconsistent with the previous “stop” time. Put differently, in this scenario the database
first records that we believe that Jane is an Assistant Professor from June 1 until “forever.” The
subsequent update then contradicts this belief by saying that it is only from June 1 until July 10
that we believe Jane is an Assistant Professor. In this one sense, now is somewhat more appropriate.

There is a more fundamental problem with forever in transaction time. By the semantics of
transaction time, storing future transaction times in the database is equivalent to predicting future
states of the database, which is a highly problematic proposition. With no crystal ball at hand,

FACULTY
TRANS TIME
NAME | RANK | (start) | (stop)
‘ Jane ‘ Assistant H June 1 ‘ Jorever ‘

Figure 5: Using forever in a transaction-time relation

it is customary to avoid predictions and require that the right endpoint of every interval be less
than or equal to the current time. Since the meaning of “now” in the transaction-time dimension
differs from its meaning in the valid-time dimension, we propose in this paper to adopt the name
“until changed’ for the former.

2.4 Variables in Bitemporal Databases

Bitemporal databases support both valid time and transaction time [SA85]. The confusion that
has arisen in a number of bitemporal data models between the use of the same variable in both
dimensions was a prime motivation for the semantic framework which we will present below. In
order to allow for a completely general treatment of the semantics of these variables, we will use a
different variable in each dimension. In Section 6 we show how the concept of a reference time can
coordinate the interaction between the current-time variables in both time dimensions.

3 Semantic Framework

In order to provide a precise semantics for databases with current-time variables, in this section
we propose a semantic framework for defining the meaning of databases with variables in terms
of databases of a fully extensional temporal data model. Databases in this latter model are fully
ground, i.e., they do not admit variables. While the model is not suitable for the implementation
of temporal databases, it is well suited for capturing the semantics of variable databases.

Since the variables we discuss are temporal, we first sketch a simple model of time that sup-
ports valid time and transaction time, and introduces reference time. Reference time captures the
perspective of the database user. We discuss the importance of these times in a query showing
the pivotal role played by the reference time. We then outline how the mapping from the variable
databases to the fully extensional logical model provides a semantics for these databases.

3.1 The Temporal Universe

The framework developed below includes three distinct time dimensions, each with its own temporal
universe. The framework requires the existence of well-defined mappings between these universes.
Although this requirement does not preclude the possibility of different granularities for the uni-
verses, we choose to avoid such diversions and instead use a single, underlying granularity. This
yields a homogeneous treatment of all time dimensions and their relationships.

Since most database researchers have adopted the view that valid time in a database is best
viewed as discrete, and every database transaction model that we are aware of has this property,
we will adopt a discrete model of time here. Therefore, let 7 be our temporal universe, and let T
satisfy the following properties.

1. T is a countably infinite set.
2. 7T is totally ordered by a relation, which we will symbolize by <.

3. T contains distinguished elements, T and L, such that Vt € 7 (L < ¢ < T). Intuitively, L
and T correspond to —oo and oo, respectively.

In other words, 7 is isomorphic to the set {...,—2,—-1,0,41,42,...} U{L, T}, i.e., the integers
extended with two additional elements that satisfy property 3.

In addition to the concepts of valid time and transaction time, we introduce a third time,
reference time, to represent the relationship between a temporal database and the “real world”
time at which it is viewed. Thus, three temporal universes are required in the framework, namely
the reference lime, the valid time, and the transaction time universe, and it may be desirable or
convenient to restrict them to some subset of 7. Therefore, let

e Trr C 7T denote the reference time universe of our database,
e Tyr C T denote the valid time universe of our database, and

o Trr C 7 denote its transaction time universe.

3.2 Important Times

Throughout our discussion of variable databases and queries on these databases, five times surface
repeatedly. The first of these is called initiation. It is relative to a specific relation and denotes
the time in 7p; when that relation was created. To simplify the discussion that follows, we assume
that all relations are created at the same time, denoted by t{y. Once created, we assume that the
database schema never changes. Schema versioning [Rod92] is orthogonal to most of the issues
discussed in this paper.

The second important time, which is new to most readers, is the reference time. The reference
time is the time of the database observer’s “frame of reference,” denoted by rt,. Reference time is
a term analogous to the indices or “points of reference” in intensional logic [Mon74], and discussed
more recently in the context of valid-time databases [Fin92]. The reference time facilitates a kind
of “time travel” by means of which we may observe the database at times other than the present.

A related time is the query time, or current transaction time, denoted by t.yrren:. It is the time
at which a query is processed. The reference time, rt,, and current transaction time, t.yrren:, are
related, but distinct. In general, £, ,rcn: 18 the time at which a query is initiated, while rt, is the
time at which the user “observes” the database. In many queries, the user “observes” the database
with respect to the same frame of reference in which the query was initiated, so the reference time
and the query time are the same. But the user may choose to “observe” the database from a
previous perspective; for this kind of query, the reference time is earlier than the query time. For
example, if today is July 9 and we wish to observe the database from the perspective of a week
ago, then t yppen: = July 9, and rt, = July 2.

The final two times of special interest are the wvalid timeslice time, vt,, and the transaction
timeslice time, tt,. These times are important in this paper because, for expository purposes, we
focus exclusively on various timeslice queries. The valid and transaction timeslice times could both
be an instant, an interval, or a set of instants or intervals. The valid timeslice time(s) specifies the
real-world time about which information is wanted, while the transaction timeslice time(s) is the
time(s) during which information must be current in the database in order to be of interest for a
query. For the example queries given in this paper, it is advantageous choose an instant as the valid
timeslice and transaction timeslice time in timeslice queries—such instants are denoted by vt, and
tt,, respectively.

Later, we shall see that there are important relationships between the valid timeslice time, the
transaction timeslice time, and the reference time.

To illustrate the distinction among these five times, let us consider the following example.
A temporal database for recording employment information is created on May 11 (as mentioned
above, the particular year is immaterial). Today (which we assume is July 9), the director of the
personnel department investigates an apparent discrepancy reported by a co-worker a week earlier,

10

while using the database on July 2. The co-worker discovered that the database had mistakenly
recorded on June 27 that an employee had been hired two weeks earlier, on June 13. The five times
in this example are as follows.

1. tty is May 11, the day of the creation of the database;

2. rt, is July 2, the day when the problem was observed;

3. lewrrent 18 July 9, the day the personnel department director investigates the database;
4. vt, is June 13, the real-world day of the problematic information; and

5. tt, June 27; this is the day for which we are interested in what was recorded as current
information in the database.

By using a reference time of July 2, the director can view the identical database state in existence

when the co-worker discovered the discrepancy. If a reference time of June 20 had been used instead,

it is possible that no discrepancy would have been found, because that date was well before tt,.
We have the following constraints on these five times.

L4 LS ttO S tt* S tcurrent S T
o 1<y, <T

o [<wt, <T

3.3 Extensional and Variable Database Levels

It is useful to view the semantics of temporal databases with variables within the context of a
two-level framework. This section develops such a framework in two steps, by first presenting the
levels of a theoretical framework. Then this framework is augmented, motivated by the practical
concerns of easily extending existing temporal data models to admit databases with variables, such
as now, with minimal impact on the existing query language and query processing engine.

In order to introduce the two-level framework and discuss the issues related to variable databases,
we need to adopt the following standard terminology. A relational database consists of a set of
relations, where each relation is a set of tuples. Each tuple in a relation has a number of application-
specific attribute values. Temporal databases extend this view by incorporating, in addition, some
number of timestamp attributes (e.g., “from” and “to”, as in Figure 1, or “start” and “stop,” as in
Figure 4). In a variable database, the value of the timestamp attributes in any tuple is extended
to permit instances of one or more current-time variables, as discussed earlier in the paper. This
general view of a temporal variable database enables us to focus on the issues surrounding the use
of variables in a temporal database, regardless of the number of variables or the number of temporal
attributes in a particular data model.

Most temporal data models, such as the one adopted in TSQL2 [SAA*94], have incorporated
the temporal dimension with temporal attributes whose values, termed timestamps, are represented
using time intervals (or just intervals for short), rather than instants. Such timestamps are very
convenient at the conceptual and implementation levels, since they are compact and can represent
information about a potentially large number of times in a single tuple.

In the model of time presented in the previous section, instants are points in time and intervals
are sequences of temporally consecutive points. In general, intervals are uniquely described or
denoted by two bounding instants, termed the starting and terminating instants. In a valid-time

11

interval, the starting instant is the “from” time and the terminating instant is the “to” time, whereas
transaction-time intervals have “start” and “stop” instants. The use of interval notation to denote
time intervals is common. When time is discrete, intervals are merely shorthand for a finite (or
countably infinite) set of instants. To summarize, tuples at the variable level are timestamped with
intervals whose endpoints can be temporal variables.

At the extensional level, tuples also have temporal attributes as do tuples at the variable level.
However, there are three key differences. First, no variables are allowed at the extensional level.
The extensional level is fully ground. Second, timestamps are instants, rather than intervals. Third,
an extensional tuple has one additional temporal attribute, called a reference time attribute. Later
in this paper we describe the importance of reference time to the meaning of tuples. For now, it
may be thought of as representing the time at which a meaning was given to the temporal variables
in the tuple.

Whereas the variable database level offers a convenient representation that end-users can un-
derstand and that is amenable to implementation, the mathematical simplicity of the extensional
level supports a rigorous treatment of temporal databases in terms of first order logic. A theoretical
framework for providing a logical interpretation or “meaning” for a particular variable database,
i.e., a “translation” from variable to extensional level, may be based on homomorphic mapping
from variable-level databases to extensional-level databases [C194]. This mapping is termed an
extensionalization, and is denoted []. In addition to giving the semantics of variable databases,
the framework also provides a means for checking the correctness of query languages over variable
databases. This is illustrated in Figure 6 and explained in the following.

v
variable database level — db a = ¢"(db)
extensionalization mapping [| [
A A
extensional database level [db] - > ¢H([db]) = [q" (db)]
q

Figure 6: Relationship between variable database and extensional database

The top of the figure, labeled the variable database level, represents a database model that allows
the use of temporal variables in timestamps of tuples. At the top left, we see a particular variable
database, db. A query ¢" is applied to this database, resulting in another variable database, ¢ (db).
The bottom of the figure, labeled the extensional database level, represents our fully extensional
temporal data model, whose semantics is well-specified in the standard tradition of a first-order
logical framework. Developing a query language in this extensional model is relatively straightfor-
ward, due to the model’s simplicity. In contrast, developing a query language for a more complex
variable-level data model is error prone. The framework can be used for checking the correctness of
variable-level query constructs. Specifically, variable-level query constructs must commute with the
corresponding extensional-level query constructs, as indicated in the figure: ¢ ([db]) = [¢" (db)].

A particular extensionalization mapping from the top level to the bottom level is defined in

12

order to specify the semantics of variable databases. As tuples at the variable database level are
independent of each other, an extensionalization mapping may treat each tuple in isolation.

We are concerned in this paper with the practical use of variable databases. In particular,
we are interested in how to extend existing temporal data models and query languages with the
ability to allow current-time variables in their temporal dimensions, with as little impact as possible
on their conceptual model and their associated query processing engines. This is consistent with
the philosophy of the designers of the proposed temporal extension to SQL-92, termed TSQL2
[SAA194]. Thus, we next augment the theoretical framework by introducing a third, intermediate
level, as shown in Figure 72.

db oy
variable bind
database
level - bind"(db) q’ q(bind {db)
[1 [
g’;ﬁg‘;jagga' Tdb T 209 ping § [db])) a° _ 45bind R do])) = [d (bind {db))]
level =
& [bind“(db)]

Figure 7: Preprocessing of variable-level databases

Tuples at this intermediate level contain interval timestamps but no variables. The various
existing temporal data models, including TSQL2, that do not permit variable timestamps in their
databases belong at this level. By mapping variable level databases to this intermediate level,
it is possible to reuse existing—or proposed—query engines to query variable databases. This is
the motivation for augmenting the framework to permit preprocessing of variable databases before
querying them.

The preprocessor substitutes each instance of a variable with a specified time, effectively ”bind-
ing” the variables in a variable database (as discussed in Section 7.3, this occurs during query
evaluation on a per-tuple basis). The bind operator, bind", maps a database from the variable to
the intermediate level, then it is queried with a variable-level query ¢". The correctness of this
mechanism is ensured by providing extensional level counterparts to the preprocessor and to the
queries, bind? and ¢ respectively, and by demonstrating that the above diagram commutes.

We focus on one particular kind of query, time-slice, which, in addition to being simple and
well-known, illustrates clearly the interaction among the various interesting times that come into
play. We define valid-time and transaction-time operators at both the variable and extensional
level, and we develop a framework that leads to the desired correctness results.

In Sections 4 through 6, we define concrete bind and extensionalization mappings for valid-
time, transaction-time, and bitemporal databases, respectively, that employ current-time variables
as timestamp values. In particular, we will show how the meaning of a tuple with current-time
variables depends on the reference time.

?In the definitions to follow, bind requires a subscript and [] takes an optional subscript. We omit these subscripts
here to simplify the discussion.

13

Not surprisingly, it is possible to define other semantics for these variables. Moreover, other
“useful” semantics may exists for the different database types. So while we give here a specific, and
we believe, reasonable, semantics for each type of database, other semantics are possible [C194].

Finally, we emphasize that many models, e.g., [CW83] and [CCT93], have been presented
completely extensionally; they did not present an operational model at the variable level and thus
did not make use of any variable symbols requiring further interpretation. However, when variables
such as now are present, some well-specified mechanism is needed to unambiguously interpret
variable databases. We believe that the framework presented here constitutes such a mechanism.

4 Valid-Time Databases

In this section we present a semantics for variable valid-time databases by specifying mappings
to the extensional level, of tuples with timestamps that may include such variables. We initially
consider the extensionalization mappings for databases with ground timestamps and timestamps
with the variable now. With varying names, this variable is employed in a number of existing data
model proposals. In order to address the shortcomings identified in Section 2, we also introduce
additional current-time, modeling entities. Specifically, we consider now-relative timestamps that
allow for positive and negative displacements from now. Next, we introduce so-called indeterminate
time values which may be used in timestamps to indicate an imprecise time. This leads to a further
generalization of now-relative instants to now-relalive indeterminate instants, which are values
that are imprecise as well as current-time relative. The section concludes with an illustration of
the querying of variable databases.

4.1 Extensionalization of Valid-time Tuples with Now

We first consider the extensionalization of tuples with ground timestamps. To do this, it is conve-
nient to start by defining the meaning, or denotation, of the ground component in a timestamp.
As other timestamp values are introduced, their denotations will also be defined.

Definition 4.1 [Denotation of Time Instants]
The denotation of a valid-time instant ¢ at a particular reference time rt,, written ((¢)),, , is defined
as follows.

(e, =ar t [

In general, to map a ground valid-time tuple, i.e., a tuple without variables, to the extensional
database level, the tuple is expanded into a set of tuples, one for each time instant in its associated
timestamp. Let us consider first the extensionalization of a ground tuple at a particular reference
time. We will use the notation, [T],, , to denote the extensionalization of tuple T’ at reference time
ri. .

Definition 4.2 [Extensionalization of a tuple at an Instant]

The extensionalization of a ground tuple 7" of the form 7" =< X, [vt, vly] > at reference time rt,
is defined as follows.

[T],., =ar {(X,vt, L) [vt € [(vth)),,,, (vi),.,]} i

14

Note that each extensional tuple is tagged with a reference time attribute whose value is the
reference time at which the tuple was extensionalized. For example, the extensionalization of the
tuple < Jane, Assistant,[June 1, June 9] > at reference time July 9 yields the set

{(Jane, Assistant, June 1, July 9), ..., (Jane, Assistant, June 9, July 9)}.

Notice that since this tuple does not contain variables, its extensionalization is essentially inde-
pendent of the reference time. Not surprisingly, the meaning of any ground tuple is reference-time
invariant, that is, it always has the same meaning no matter when we observe it. The role of the
reference time attribute in the meaning of each extensional database level tuple will become clear
when we revisit this topic in the presence of variables.

In the extensionalization mapping, a reference time interval may be used rather than a single
reference time.

Definition 4.3 [Extensionalization at an Interval]
The extensionalization of the tuple 7" over the reference time interval [rt;, rt,] is defined as follows.

[I:T:I][rtlyrtQ] :df Urt* € [rtl,rtg] [I:T:I]rt* I

The complete meaning or extensionalization of a tuple 7', denoted [T7], is simply the extensional-
ization of T over all reference times.

Definition 4.4 [Extensionalization (Complete)]
The general meaning or extensionalization of a tuple T is: [T] =4 [T];, + - |

We have found that a two-dimensional graphical notation makes valid-time concepts easier to
grasp. In the visualization, reference time corresponds to the X-axis and valid time corresponds to
the Y-axis. The graphical representation is a plot of the tuple at the extensional database level.
Each cell in the plot stands for a particular reference time, RT, and valid time, V'T', combination.
The cells corresponding to the temporal coordinates of tuples in the extensional set of tuples are
shaded, indicating when a tuple is valid relative to the reference time of an observer. Even though
our underlying model of time is discrete, we treat each cell as a region rather than a point since
this results in a better visualization. Several tuples may be plotted in the same graph by using
different cell colors or patterns. The key, shown below the graph, indicates the explicit attribute
values of the corresponding tuple.

As an example, assume that the academic career of Jane at State University is given by the tuple
T =< Jane, Assistant, [June 3, June 9] >. Figure 8 graphically depicts this tuple for a sequence
of reference times, June 1 through June 11, that is, it visualizes [[T]][June | June 1] - The key to the
graph indicates the color or pattern of the cell that represents the value of the attributes in the
tuple corresponding to the < rt, vt > combination. For example, at rt = June 4, vt = June 5,
Jane is an Assistant Professor.

The graph illustrates that the valid time of this tuple is independent of the reference time. So
for a tuple with a valid-time interval but without variables, it does not matter at what time the
tuple is observed, it is always valid over exactly the same interval.

The extensionalization of tuples containing a time of now is straightforward: now is bound to
the reference time rt, and the interval is then extensionalized as before.

15

VT

June 9

June 3

Taunt
Traunt

RT
]

Jane, Assistant

Figure 8: A graphical representation of the extensionalization of a valid-time tuple

Definition 4.5 [Denotation of Now]
The denotation of the current-time variable now at a particular reference time rt, is defined as
follows.

(now)),,, =q rt. |

With this additional timestamp value, the extensionalization of a tuple with now is given by
Definition 4.2. The definition permits tuples with now as the “to” and “from” time. Note also that
Definitions 4.3 and 4.4 are applicable to tuples with variables.

To exemplify the extensionalization, the tuple < Jane, Assistant,[June 1, now] > of Figure 1
is extensionalized as follows.

[< Jane, Assistant, [June 1,now] >], = {< Jane, Assistant,vt,rt,) | vt € [June 1,rL.]}.
For a given reference time, say rt, = June 2, this results in the set of tuples
{(Jane, Assistant, June 1, June 2), (Jane, Assistant, June 2, June 2)}.

As can be seen via this example, the extensionalization of a tuple containing now depends upon
the reference time. The reference time determines the exact bounds of the valid-time interval in
the tuple. As the reference time increases so does the duration of the valid-time interval.

Figure 9 visualizes the extensionalization of the tuple given above, for every reference time
between June 1 and June 8. Note that before June 1 the empty interval is depicted in the figure.
This is because a timestamp with a “from” time that is after the “to” time denotes the empty
interval. This situation occurs prior to June 1. The valid-time region in the figure is “stair-shaped”
since, unlike a valid-time tuple without variables, the extensionalization of a tuple with variables is
dependent on the time at which we observe the tuple. The stair-shape is a result of the constraint
that the terminating time in the valid time interval is bound to the reference time.

16

VT

June 8
June 7
June 6
June 5
June 4
June 3
June 2

June 1

May 31|
May 30

0 fen
1€ fe
Taung
zaunp
gaunp
paung
gaunp
gaunp
Launp
gaunp

RT
]

Jane, Assistant

Figure 9: A graphical representation of the extensionalization of a valid-time tuple with a variable

The symbol forever has been used in valid-time databases with the following interpretation:
forever = T. Here, T is the special element in Tyr that is greater than any other time in 7y7. As
a consequence, we point out that the symbol forever is in fact not a variable, but a distinguished
ground value.

It is our contention that all other valid-time current-time variables currently in use (e.g., “Q”
[LJ88] and wuntil-changed [WJL91, WJLI3]) have the same meaning as now. Thus having covered
existing variables, we now proceed by proposing new timestamps that address the shortcomings of
now discussed in Section 2.

4.2 Now-relative Instants

In this section we introduce a new type of timestamp, called a now-relative instant, that adds
flexibility to the variable now. Now-relative times were first introduced in transaction time for
vacuuming [JM90]. A now-relative instant generalizes the variable now by allowing an offset from
this variable to be specified. The “to” time in Jane’s employment tuple shown in Figure 10 is a

now-relative variable.

FACULTY
VALID TIME
NAME | RANK | (from) | (to)
‘ Jane ‘ Assistant H June 1 ‘ now — 3 days ‘

Figure 10: Using a now-relative instant

With now-relative instants, we have a means of more accurately recording our knowledge of Jane’s

17

employment with State University. As an example, if the bound on the relationship between
transaction time and valid time is known to be three days (all updates are made three days after
the occurrence of the event), then Jane’s employment extends from when she was hired (June 1) to
three days before now, as shown in Figure 10. As another example, we can record our knowledge
on May 12 that Jane will begin employment on June 1, with all terminations given a two-week
notice, as seen in Figure 11.

FACULTY
VALID TIME
NAME | RANK | (from) | (to)

‘ Jane Assistant H June 1 ‘ now + 14 days ‘

Figure 11: Using a predictive now-relative instant

A now-relative instant includes a displacement, which is a (signed) span, from now. In the
examples given above, the displacements are minus three days and plus fourteen days, respectively.
The extensionalization of tuples with now-relative instants is formalized as follows.

Definition 4.6 [Denotation of Now-relative Instants]
The denotation of a now-relative instant, now OP n days, OP € {4, —}, at a particular reference
time rt, is defined as follows.

(now OP n days), =y (now),,, OP n i

Even with this additional timestamp value, the extensionalization of a valid-time tuple is still
given by Definition 4.2. When a now-relative instant appears in a tuple, that tuple is transformed
to a set of ground tuples as follows. First, the variable now is bound to the reference time, and
then the offset is added or subtracted, yielding rt, OP n. Then the tuple is expanded into a set
of ground tuples. For example, consider the extensionalization of the tuple in Figure 10 on July 9,
i.e.,

[< Jane, Assistant,[June 1, now — 3 days] >],,,, o -

First now — 3 days is bound to the reference time, July 9, minus three days, i.e., to July 6, and
the resulting tuple is expanded into the set of tuples

{(Jane, Assistant, June 1, July 9), ..., (Jane, Assistant, July 6, July 9)}.

Figure 12 visualizes the tuple in Figure 10 for every reference time between June 1 and June 11.
Note that before June 4 the emply interval is depicted in the figure. This is because before June 1,
the “to” time is earlier than the “from” time. The visualization of this tuple is similar to that of the
tuple with just now as the terminating time, shown in Figure 9. But in Figure 12, the stair-shape
has been shifted by three days along the reference time axis.

One refinement of now-relative instants is to “round” the span values in such instants to a
meaningful calendar-specific boundary by using a calendar-specific span [S92c]. For a predictive
update, a useful span would be “rest of month.” When used in a now-relative instant, such a span
would model the situation where all hiring decisions take effect on the first day of the following
month rather than just 20 days into the future. That is, now plus the “rest of the month” would
result in the first day of the following month.

18

VT

June 8
June 7
June 6
June 5
June 4
June 3
June 2

June 1

Taunt
gaunt
gaunt
yaunt
gaung
gaung
Laung
gaunt
6aunt
ot aunt
Traunt

RT

Jane, Assistant

Figure 12: A graphical representation of Jane’s employment

In Section 7, we demonstrate that now-relative instants can be stored in the same representation
as other instants, with the result that they impose no space overhead. Section 7.3 demonstrates
that the execution time overhead of now-relative instants is minimal.

Although now-relative instants allow us to relax the otherwise close coupling between valid and
transaction time found in the punctuality assumption, now-relative instants still suffer from making
a pessimistic assumption. The use of now — 3 days in the first example is an ultra-pessimistic view
of the future. Jane would not even be employed now since her employment terminates three days
prior to now. To address this potential shortcoming, we next introduce the notion of indeterminate
timestamp values.

4.3 Indeterminate Timestamp Values

It turns out that valid-time indeterminacy, introduced in another context [DS93b, Dyr94], can also
alleviate the shortcomings of now and now-relative instants. This section introduces the notion of
indeterminate timestamp values and considers only ground timestamps. The next section considers
variable indeterminate timestamps.

Sometimes, the time when an event occurred is known only imprecisely. For instance, we may
know that an event happened “sometime in June 1993,” which is an imprecise period of 30 days. An
indeterminate instant is the time of an event, which is known to have occurred, but exactly when
is unknown. As we shall see in later sections, indeterminate instants are very useful in addressing
the issues raised by evolution of data in the valid-time dimension.

The times when the event might have occurred is called the period of indeterminacy and is
delimited by a lower and an upper bound (e.g., the event occurred sometime between June 1 and
June 30). An indeterminate instant could have an associated probability distribution that gives the
probability that the event occurred for each time in the period of indeterminacy. For the purposes
of this paper, we ignore the probability information: every indeterminate instant is treated as

19

though it has a distribution that is missing [Dyr94]. A determinate instant may be thought of as
an indeterminate instant, with identical lower and upper bounds.

An indeterminate interval is an interval bounded by indeterminate instants. The indeterminate
interval begins sometime between the lower and upper bounds of the starting instant and ends
sometime between the upper and lower bounds of the terminating bounding instant. Since it
is unknown precisely when an indeterminate instant occurs, it follows that it is unknown when
an indeterminate interval begins or ends. Instead, an indeterminate interval describes a set of
posstble intervals. Every combination of times in the starting and terminating instants’ periods of
indeterminacy is in the set of possible intervals.

By using indeterminate instants, we can more accurately record our knowledge of Jane’s em-
ployment with State University. Instead of using now as the “to” time in Jane’s tuple, we can use
an indeterminate instant. Which indeterminate instant to use depends on our knowledge of the
situation. If Jane was hired as a limited-term employee, to work between two and three months,
we could record this information as shown in Figure 13(a). Here two time bounds, July 31 and
August 31, delimit the “to” indeterminate instant. If we knew only that the term would be at
least two months, we would use the representation shown in Figure 13(b). If State University has a
mandatory retirement policy, we could decrease the indeterminacy considerably, as shown in Fig-
ure 13(c). If we removed the guarantee that Jane will work at least two months, we arrive at the
representation shown in Figure 13(d).

FACULTY
VALID TIME
NAME | RANK | (from) | (to)
(a) | Jane Assistant || June 1| July 31 ~ August 31 |
(b) | Jane Assistant || June 1| July 31 ~ Jorever |
(c) | Jane Assistant || June 1| July 31 ~ January 1, 2028 |
(d) | Jane Assistant || June 1 | June 1 ~ January 1, 2028 |

Figure 13: Using indeterminate timestamps for recording Jane’s appointment

Indeterminate instants address the first problem, the pessimistic update assumption, provid-
ing evidence that Jane might still be employed in the future. They also remove the problem of
incompleteness in the non-timestamp attributes (e.g., possibly employed, as shown in Figure 3),
and ensure that new knowledge acquired later, such as the information that Jane left the company
on August 10, is not inconsistent with currently stored information, but rather is a refinement of
that information. They also address the problem of now in predictive updates; an indeterminate
interval is a valid interval no matter when it was stored in the database.

There are two bounds on the information represented by an indeterminate interval [Lip79]. The
first bound is the definite information. The definite information represents all that is definitely
known about the interval and is the intersection of all of the possible intervals. The second bound
is the possible information. The possible information represents the maximum possible extent of
an interval and is the union of all of the possible intervals.

20

The two bounds have different extensionalizations. The definite information is given by the
definite extensionalization, given next.

Definition 4.7 [Definite Extensionalization of an Indeterminate Tuple]

The definite extensionalization of a ground tuple of the form T =< X, [vt; ~ viy, viz ~ vty] >,
where vty and vt,, vt < vly, are the lower and upper bound, respectively, of the starting instant
and vtz and viy, viz < viy, are the lower and upper bound, respectively, of the terminating instant,
at the reference time rt, is defined as follows.

[7]5.. =a {(X,vt,rt.) | ot € [(uta)),,,, (vta),.]} i

For example, the definite extensionalization of the tuple:
< Jane, Assistant,[June 1 ~ June 3, June 5 ~ June 9] >
at a reference time of July 9 is the set of tuples
{(Jane, Ast., June 3, July 9), (Jane, Ast., June 4, July 9), (Jane, Ast., June 5, July 9)}.

Note that the extensionalization of an indeterminate instant is reference-time invariant.
The possible information is given by the possible extensionalization.

Definition 4.8 [Possible Extensionalization of an Indeterminate Tuple]
The possible extensionalization of a ground tuple of the form T' =< X, [vt; ~ viy, viz ~ vty] > at
the reference time rt, is defined as follows.

[TT5,. =4 {(X,vt,rt) | vt € [(uta)),,., (vta)),,]} i

The possible extensionalization of the above example tuple at reference time July 9 is the following
set of tuples.

{(Jane, Ast., June 1, July 9), (Jane, Ast., June 2, July 9), ..., (Jane, Ast., June 9, July 9)}

It is always the case that the definite information is a subset of the possible information. Note, that
if the bounding instants are determinate, that is, if the lower and upper bounds are the same, then
the possible and definite extensionalizations yield exactly the same set of tuples. Consequently, for
the extensionalization of determinate intervals, we omit the possible or definite superscript and use
[1,.. instead of either [[]]Z or [[]]Z

Valid-time tuples timestamped with indeterminate intervals have a graphical representation sim-
ilar to the one described above. The primary difference between the indeterminate and determinate
visualizations is that for indeterminacy, both the possible and definite extensionalizations must be
represented. We use different shadings to distinguish the regions in the two extensionalizations.

As an example, assume that the academic career of Jane at State University is given by the
tuple

< Jane, Assistant,[June 1 ~ June 3, June 7 ~ June 10] > .

Jane’s academic career, for the reference times [June 1, June 11], is graphically represented in
Figure 14. Different colors or patterns, as indicated by the graph’s key, are used to depict the
definite and possible information in this tuple. Note that the region of possible information is
never smaller than the region of definite information and that the valid time is independent of the
reference time (just as it is for determinate intervals) when the tuple has no variables.

21

VT

June 11

June 10

June 8

June 7

June 4

June 3

June 2

June 1

Taune
Tr8unt

RT

Possible
Definite

Jane, Assistant

Figure 14: A graphical representation of an indeterminate tuple

4.4 Now-relative Indeterminate Instants

To achieve the full benefit of indeterminate timestamp values, we proceed by introducing now-
relative indeterminate instants, which may be understood as generalizations of the ground, inde-
terminate timestamps presented above and of the now-relative instants presented earlier.

To exemplify and motivate the utility of this new type of instant, assume that today is July 9
and that Jane departed today. Assume also that her departure has not yet been recorded in the
database, and that there is at most a three day lag in recording a fact in the database. Jane’s tuple
in the database should not be that of Figure 13(d), but rather that shown in Figure 15(a) which is
more accurate. The state on July 10 is shown in Figure 15(b). (Recall that for simplicity all dates
are assumed to be in 1994 unless otherwise specified.) Note how the indeterminacy in the “to”
instant has decreased ever so slightly—on July 10 we know that Jane was employed on July 6. On
July 11, the indeterminacy disappears as we learn of Jane’s departure, as shown in Figure 15(c).
Each successive state is consistent with that preceding it, and each accurately records our current
knowledge of Jane’s status.

To accurately represent our continuously changing knowledge about Jane’s employment, we
need to combine the best features of now-relative instants and ground indeterminate values, into a
new kind of instant, which we call a now-relative indeterminate instant. An example is shown in
Figure 15(d). Here, the the “to” timestamp is such an instant.

Now-relative indeterminate instants provide a flexible means of precisely capturing our impre-
cise, but current-time dependent, knowledge of when a fact is valid. For instance, in the tuple given
in Figure 15(d), we are certain that Jane was an Assistant Professor starting on June 1, but our
knowledge of when she ceases to be an Assistant Professor is imprecise; all we know is that she was
definitely an Assistant Professor until three days ago and that it is possible that she will remain an
Assistant Professor until retirement on January 1, 2028. The “to” timestamp allows us to capture
this precisely.

22

FACULTY

VALID TIME

NAME | RANK | (from) | (to)
(a) | Jane Assistant || June 1 | July 6 ~ January 1, 2028 |
(b) | Jane Assistant || June 1 | July 7~ January 1, 2028 |

(c) | Jane | Assistant || June 1 | July 9 |

(d) | Jane | Assistant || June 1 | now — 3 days ~ January 1, 2028 |

Figure 15: Using indeterminate and now-relative indeterminate timestamps

Put differently, the lower bound of the “to” timestamp expresses, on a day-to-day basis, our
changing knowledge of when Jane was employed while the upper bound expresses our knowledge
of when she will definitely no longer be an Assistant Professor. Using a now-relative indeterminate
instant ensures that continual updates are not required, while capturing all of our knowledge of
exactly when Jane is employed by State University.

There is one wrinkle to this scheme. If a now-relative indeterminate instant appears in an
indeterminate interval, then the possible or definite information in the interval cannot exceed
the instant’s upper bound. (The upper bound cannot be now-relative, as that would result in
inconsistent information being added to the database solely as a side effect of the passage of time.)
So, for instance, the possible or definite information represented by Jane’s employment tuple shown
in Figure 15(d) cannot extend beyond January 1, 2028, even if today is after January 1, 2028. If
today is May 9, then the lower bound is May 9 and the tuple indicates that we expect Jane to be
(possibly) employed from June 1 to January 1, 2028. If today is January 1, 2050, then the upper
bound is January 1, 2028 and the tuple indicates that Jane was actually employed from June 1 to
January 1, 2028. In short, now-relative indeterminate instants capture the semantics of predictive
updates.

Now-relative, indeterminate instants are able to model the evolutionary character of temporal
databases. A real-life prediction situation is either confirmed or proven false as time progresses.
Similarly, as the reference time increases, values in the possible extensionalization of a tuple evolve
into definite values or are removed from the database. Consider the tuple of Figure 15(d). If the
reference time is May 9, then Jane will be possibly employed every day between June 1, 1994 and
January 1, 2028. However, for a reference time of April 1, 2028, the database records that Jane
has definitely been employed every day between June 1, 1994 and January 1, 2028.

As an example of the extensionalization, consider a valid-time tuple where a now-relative inde-
terminate instant appears in the timestamp as a “to” time. The tuple is transformed to a set of
ground tuples by either a possible or a definite extensionalization, [[]]Z or [[]]ft*, respectively. Both
extensionalizations are similar in that they use the semantics of now-relative determinate instants
presented in Section 4.2. First, the reference time, displaced by the span, is substituted for the
lower bound. Second, the new lower bound is checked to determine if it later than the upper bound.
If the new lower bound is later, then the new lower bound is changed to be the same time as the
upper bound. Third, if the upper bound is before the lower bound, the upper bound is replaced
by the lower bound. Finally, the tuple is expanded into a set of tuples. The possible and definite

23

extensionalizations have different expansions.

For clarity and as a precursor to the definition of the extensionalization of tuples with now-
relative indeterminate instants, we first extend the extensionalization mapping to cover temporal
values, the variable now, and now-relative instants.

Definition 4.9 [Possible Extensionalization of a Now-relative Indeterminate Tuple]

The possible extensionalization of the tuple 7' =< X, [e; ~ vly, €3 ~ viy], > where e; and e3 are
any of the timestamp values introduced in Definitions 4.1, 4.5, and 4.6 and v, and vt, are ground
values (we have only described timestamps of this form) at reference time rt, is defined as follows.

[7T.. =a {(X, vt rt.)] vt € [min((er)),,,, (vl2),e,), (ta),,]} i

Definition 4.10 [Definite Extensionalization of a Now-relative Indeterminate Tuple]
The definite extensionalization of the tuple T'=< X, [e; ~ vty €3 ~ vly], > at reference time rt, is
defined as follows.

[1]7.. =a {(X, vt rt.)] vt € [(otz),,., min({es),,. , (ota),.)]}. i

Note that a tuple with a now-relative indeterminate instant may yield no definite information or
may have the same possible and definite information content; it all depends upon when we observe
that tuple.

As an example, consider the possible extensionalization of the tuple shown in Figure 15(d) on
June 2, e.g.,

[< Jane, Assistant,[June 1, now — 3 days ~ January 1, 2028] >]]ime 5 -

The “from” time of June 1 is the same as the indeterminate value June 1 ~ June 1, and
min({(June 1), ., (June 1)),) = June 1. Similarly, (January 1, 2028)), ., = January
1, 2028. Thus, the result is

{(Jane, Assistant, June 1, June 2), (Jane, Assistant, June 2, June 2),. ..,
(Jane, Assistant, January 1, 2028, June 2)}.

The definite extensionalization, on June 2, expands the tuple into the empty set since Jane has
vet to be definitely employed.

The visualization of a tuple at the extensional database level with an now-relative indeterminate
time is similar to the visualization of a tuple with an indeterminate interval. Both the definite and
possible regions are plotted on the same graph but using different colors or patterns.

Figure 16 shows a graph of both the possible and definite extensionalizations of the tuple in
Figure 15(d) for every reference time between May 30 and January 5, 2028. Note that for all
reference times before June 4 the tuple does not contain any definite information, only possible
information. The definite information gradually increases as the reference time advances. On
January 4, 2028, and for all reference times thereafter, the possible and definite information for the
tuple are the same.

In Section 7, we demonstrate that now-relative indeterminate instants can be stored in the same
representation as indeterminate instants and non-relative instants, with the result that they impose
little space overhead. In addition, we demonstrate that the execution time overhead of now-relative
indeterminate instants is not excessive.

24

VT ‘
Jan. 4, 2058
Jan. 3, 2058
Jan. 2, 2058
Jan. 1, 2058
Dec. 31, 2057
°
°
°
June 5
June 4
June 3
June 2
June 1
May 31
May 30
=T =2 g g g e £ g
555555 5...558588¢%
[R R =S R X S| w B d L > o
© B Ll ST S SO SO N RT
N S B S 8 S
SQ & ® ® ® &
]
~
Possible
Definite
Jane, Assistant

Figure 16: A graphical representation of Jane’s possible and actual employment

4.5 Summary of Extensionalizations

Table 1 summarizes some of the valid-time extensionalizations (the most representative cases). Case

1 (the v stands for “valid-time” database) specifies the extensionalization of tuple timestamped
with a determinate interval, case v2 a now-relative interval, case v3 an indeterminate interval, and
case v4 a now-relative indeterminate interval. Note that the possible and definite extensionaliza-
tions in cases v1 and v2 are the same since the intervals are determinate.

Variable Database Extensional Database
vl | T =< X, vy, vty > [7],,. = {(X,vt,rt.) vty < vt < vty}
v2 | T =< X, [vty, now+n days | > [[T]]M {(X,vt,rt,)|vty <wvt <rt,£n}
v30P | T =< X, [vty ~ viy, vig ~ viy] > [T]]M {(X,vt,rt.)|vty < vt < vt}
v3F | T =< X, [vty ~ viy, vig ~ viy] > [T]]M {(X,vt,rt.)|vty < vt < wvty}
val | T =< X, [vt;, now + n days ~ vty] > [[T]]m {(X,vt,rt,)|vty < vt < min(rt. £n,vts)}
val | T =< X, [vty, now + n days ~ vty] > [[T]]M {(X,vt,rt,)|vty < vt < wvty}

Table 1: Extensionalization of valid-time databases.

4.6 Querying Variable Valid-time Databases

Thus far we have presented a framework for defining the meaning of database instances where the
timestamps of tuples may include a current-time relative variable. Further, we have defined the
semantics of variable valid-time databases that use all the existing and new timestamps. In the
process, we have demonstrated how the framework is used.

The next step is to enhance the query facilities of existing (non-variable) data models to support
queries on timestamps containing variables. The essential problem is what to do when encountering

25

a variable during query evaluation. Below, we describe a solution to that problem. Further, we
show how the framework may be utilized in defining algebraic operators on variable databases that
are consistent with the semantics of variable databases. Specifically, we consider the valid-time
timeslice operation.

When evaluating a user-level query, e.g., written in some dialect of SQL, it is common to
transform it into an internal algebraic form that is suitable for subsequent rule or cost-based query
optimization. As the query processor and optimizer are among the most complex components of a
database management system, it is important that the added functionality of current-time-related
timestamps necessitates only minimal changes to these components.

While many solutions may be envisioned, a solution that meets this requirement and is natural
in our semantic framework is to eliminate variables before they are seen. More specifically, when
a timestamp that contains a variable is used during query processing (e.g., in a test for overlap
with another timestamp), a ground version of that timestamp is created and is used instead. Thus,
only minimal, incremental changes to the query processor are needed. Existing components remain
unchanged. Only a new component that substitutes variable timestamps with ground timestamps
has to be added.

More specifically, we define a “bind” operator that is added to the set of operators already
present. When user-level queries are mapped to the internal representation, this operator will
be utilized. Bind accepts any valid-time tuple with variables as defined earlier in the paper. It
substitutes a ground value for each variable and thus returns a ground(but still variable-level) tuple.
The bind operator is defined below.

Definition 4.11 [Variable-level Valid-time Bind]
Given an arbitrary valid-time tuple 7' =< X, [e; ~ vty, €3 ~ vty] > and a reference time rt,, the
variable-level valid-time bind operation eliminates all variables is defined as follows.

bindyi, " (T) =4 < X, [(€)e, ~ (vt2))e. s Cea)e, ~ (vta),,] > i

This operation can be extended in the obvious way to an operator on sets of tuples, i.e., relations.
In the superscript, “V"V7.” the “V” indicates that this is a variable-level operator and the “¥V”
signifies that it is also a valid-time operator. Note that two tuples that have timestamps “[vt; ~ vt
vty ~ vly]” and “[vty, vly],” but are otherwise identical, have the same extensionalizations. Thus the
timestamps are equivalent, and therefore the definition above also covers determinate timestamps.

The outcome of a query on a variable database generally depends on the specific reference-
time argument given to the bind operator. To provide a foundation for understanding how to use
the bind operator when mapping user-level queries to algebraic equivalents, we must explore its
meaning.

The bind operator with reference-time argument ri, replaces each variable by its denotation or
value at time rt,. Put differently, the operator replaces each variable timestamp with a ground
timestamp that has the special property of having the same denotation, or value, as the vari-
able timestamp at the reference time rt,. At other reference times, the original and the ground
timestamps will generally not have the same denotation. This semantics may be expressed at the
extensional level as follows.

Definition 4.12 [Extensional-Level Valid-time Bind]
Given an arbitrary set S of extensional-level valid-time tuples of the form (X, vt,rt) and a reference
time rt,, the extensional-level valid-time bind operation is defined as follows.

bind2 " (S) =4 {(X,vt,rt) | (X,vt,rt,) €S A 1t € Tar} i

26

The “E” in the operator’s superscript indicates that this is an extensional-level operator. At the
extensional level, the bind operator chooses the meaning of a tuple at the indicated reference
time and propagates that meaning over every possible reference time, resulting in a reference-time
invariant meaning. To prove that this definition is correct, we need to show that given a tuple 7,
and a reference time rt,, [bind)," (T)] = bindL,"™ ([T]). This follows directly from the definitions.
For brevity, we omit the proof.

Intuitively, the bind operator sets the perspective of the observer, i.e., it sets the the reference
time as described in Section 3.2. Existing query languages generally assume that the perspective of
a user observing the database is the same as what we termed the query time or current transaction
time and denoted f.y,ren: in that section. However, as we shall see, a bind operator provides a basis
for added functionality.

Recall that the definition of query operators at the variable level is complex and that current
temporal data models have not satisfactorily resolved the complex problems involved. In our
approach, we first preprocess the variable-level database by binding timestamps to rt,, effectively
removing the variables. We can then apply any algebraic operators from an existing temporal query
language. It should be clear from the discussion above that the composition of bind with any of
these algebraic operators is well-defined, and the timestamps have the appropriate meaning.

To explore in more detail the interaction among the valid timeslice time, query time, and
reference time of a query, and to show how operators are defined within the semantic framework,
we now define several valid-time timeslice operators.

Valid-time timeslice is a fairly standard operation; some variant of timeslice is a component of
virtually all temporal algebras. Standard definitions of determinate and indeterminate timeslice
operators are given below. Note that these do not have to contend with variables; because of the
use of the bind operator, they can be defined solely on ground tuples.

Definition 4.13 [Variable-level Definite Valid-time Timeslice]

Let S be a set of tuples at the variable database level, i.e., a set of tuples of the form 7' =< X [vt; ~
vly, vtz ~ vty] >, where the vt; are ground values. The definite valid-time timeslice of S at valid
time vt, is defined as follows.

MYT(S) =4 {< X, [ota,vt,] > | 3T = < X, [vty ~ vty vtz ~ vty] > € S (vt € [vts,vts])}

Definition 4.14 [Variable-level Possible Valid-time Timeslice]

Let S be a set of tuples at the variable database level, i.e., a set of tuples of the form T' =< X [vt; ~
vly, vtz ~ vly] >, where the vt; are ground values. The possible valid-time timeslice of S at valid
time vt, is defined as follows.

Hft’:/’VT(S) =g {< X, [vt.,vt,] > | 3T = < X, [vty ~ vy, vt3 ~ vly] > € S (v, € [vly,0t4])} N

The superscript “PV:YT” of the first operator indicates that it considers only the definite infor-

mation contents, that it belongs at the variable level, and that it is a valid-time timeslice. Also,
recall that definite timestamps are special cases of indeterminate timestamps, which are then also
covered by the definition. The straightforward extensions of the operator to slice on valid-time
intervals and to take as input a set of tuples (i.e., a relation), are omitted for brevity. A timeslice
operator at the extensional level that satisfies the correctness criterion of the framework, specifi-
cally, Hft’*VT([[T]]D) = [I2YYT(T)], is given next. The proof of this statement is omitted for space
considerations.

27

Definition 4.15 [Extensional-level Valid-time Timeslice]
At the extensional database level, the valid-time timeslice of a set S consisting of tuples of the form

(X, vt, rt) is defined as follows.
HEYT(S) =4 {(X,vta,rt) | (X,vt,,rt) € S} |

Uts

Note that once the extensionalization mapping has been applied to a variable-level tuple, there is
no indeterminacy and thus only one extensional-level timeslice operator.

We are now in a position to explore the interaction of the important times (Section 3.2) by
using the new bind operator and existing (variable-level) timeslice operators. We will generally
consider only the definite version of the timeslice operator.

As an aside, observe that we cannot formulate the query to select employees from the faculty re-
lation who are employed on June 5 using only timeslice: 17,7 . (Faculty). With variables present in
timestamps, the operator is not well-defined. Consider the tuple T'=< Jane, Assistant, [June 1,
now] >. Whether or not Jane is in the result depends on the perspective of the queryer. The
impact of perspective in query evaluation is graphically illustrated in Figure 17. The left panel
of Figure 17 shows the extensionalization of 1" for reference times May 30 through June 8. In
the figure, the region chosen by a valid-time timeslice of June 5 is enclosed in dashed lines. The
(collective) result of the timeslice, from multiple perspectives, from May 30 until June 8, is shown
in the right panel of Figure 17. It is clear that Jane will not be in the result for perspectives with
a reference time before June 5. Hence, the timeslice operator alone in insufficient.

VT VT

June 8
June7
June 6

June 4

June 3
June 2

June 1

May 31
May 30
L LELEEEE E e EEEEEE
2 2333333 3 o 2 8 333333 3 3
8 3 BN WM OO N © RT 8 g N W A OO N © RT
Jane, Assistant Jane, Assistant
a) A timeslice on Jane’s employment b) The result of the slice

Figure 17: A graphical representation of a timeslice at June 5 on Jane’s employment

The bind operator sets the perspective and is combined with timeslice to formulate queries. In
the first three example queries given below, we assume that the database is to be observed from
the perspective of June 5. For all examples, the query time is assumed to also be June 5.

28

Who is employed on June 57

117, 5 (bindye (Faculty))
Who was employed on June 37

70 s (bind e 5 (Faculty))
Who will actually be employed on June 77

[ime 7 (bind e 5 (Faculty))
Tuples with a “to” time of now will not be in the result.
Who do we expect to be employed on June 77

[7ime 7 (bind e 7 (Faculty))

The best we can do to answer the query is to adopt a June 7 perspective of the database
and assume that there are no changes to the database between the current time and June 7.
Then all tuples with a “to” time of now will contribute to the result, since we “expect” such
employees to remain employed.

Who will possibly be employed on June 77

Y bind')" " . (Faculty))

June 7

We adopt a June 5 perspective and query about a possible future from that perspective.
Tuples with intervals with a “to” time of now ~ June 7 (or a later upper bound) will be in
the result, although those with a “to” time of now will not be in the result.

Who will definitely be employed on June 77
7. 7 (bindyg 5(Faculty))

Intervals with a terminating time of now ~ June 7 (or later) will not be in the result.

We have seen that the binding of now impacts the meaning of query results and that query

results must be interpreted with respect to a particular perspective. Existing query languages,
e.g., TSQL2 [SAA194], generally assume that the perspective and the query time coincide. This
assumption leads to a restriction in functionality, but it also simplifies the interpretation of answers.

5 Transaction-time Databases

The use of a current-time variable in the transaction-time dimension is not as fraught with problems
as its use in the valid-time dimension. The reason for this lies in the different meaning of transaction
time in a database. The valid time of a tuple indicates when it is considered valid, and, as such,
valid timestamps of tuples are generally provided by the users. In contrast, transaction timestamps
are supplied by the database management system itself. This is a consequence of the meaning of
transaction time: the transaction timestamp indicates when the tuple is current in the database.

29

Although several variable names, e.g., forever and now, have been used, it is our contention that
they all have the same meaning. Specifically, they are all employed as a “stop” timestamp that
indicates that the tuple stamped is current (from the “start” time) until the database is updated
to indicate otherwise. However, the various names used do not convey the intuitive semantics of
the variable in this dimension. A term more precise than now or forever for this meaning of “not
yet logically deleted or updated” is until changed—a fact is current in the database until changed.
It has no counterpart in valid time. Using wunti changed instead of now avoids also potential
confusion with now in valid time, although some authors have used wuntil changed in valid time
[WJLO1, WJL93]. Unlike the (valid-time variable) now, until changed can only be used as the
“stop” time; it is meaningless to use it as the “start” time.

5.1 Extensionalization of a Ground Transaction-time Tuple

We first examine the meaning of a tuple without variables in transaction time. The extensionaliza-
tion of a transaction-time tuple without variables differs from its valid-time counterpart, because
the semantics of transaction time does not allow future transaction times to be predicted in the
database. Hence, the extensionalization of such tuples must be restricted to ensure that no matter
when we look at the database, we can never see a “future” transaction time. Since the future de-
pends on when we observe the database, the reference time is used to constrain the transaction-time
in the expanded set of tuples.

In Definition 4.1, the denotation at any reference time of a ground valid-time instant was given
to be the instant itself. The same applies to ground transaction-time instants.

Definition 5.1 [Transaction-time Extensionalization of a Ground Tuple]

The transaction-time extensionalization of a tuple of the form 7" =< X, [tt, tt,] >, where X is
some set, of attribute values and ¢¢; and tt, are transaction-time instants, at the reference time rt,,
where tty < 1ty < teurrent, 18 defined as follows.

[7]5, = (X, 1t rt) | 2t € [(ttn),,,, (1)1} i

We use a TT

The visualization of a transaction-time tuple is similar to that of a valid-time tuple. Again, a
two-dimensional graph is used. The X-axis of the graph is the reference time, while the Y-axis is
the transaction time. However, unlike a valid-time tuple without variables, the transaction-time
interval for a tuple is not independent of the time at which we observe the tuple. Figure 18 depicts
the extensionalization of the transaction-time tuple < Jane, Assistant,[June 5, June 8] > for a
sequence of reference times, June 1 through June 11. Note that the depicted region has a “stair
shaped” feature which is a result of the constraint that the transaction time cannot exceed the
reference time.

superscript to differentiate this mapping from a valid-time extensionalization.

5.2 Semantics of “Until Changed”

The current-time variable in transaction time indicates that the associated fact is current in the
database until the fact is changed by a subsequent update. Substituting transaction time for valid
time in our running example yields the relation shown in Figure 19.

30

TT -
L

June 8
June 7
June 6
June 5
June 4
June 3
June 2

June 1

Taunt
gaunt
gaunt
yaunt
gaung
gaung
Laung
gaunt
6aunt
ot aunt
Traunt

RT

Figure 18: A graphical representation of a transaction-time tuple

FACULTY
TRANS TIME
NAME | RANK | (start) | (stop)
‘ Jane ‘ Assistant H June 1 ‘ until changed ‘

Figure 19: Using until changed in a transaction-time relation

Definition 5.2 [Denotation of Until Changed]
The denotation of the transaction-time variable until changed at a particular reference time rt,,
where tty; < rt, < teurrent, 18 defined as follows.

(until changed)) , =4 T, i

The extensionalization of a transaction-time tuple with the variable until changed as the value
of its “stop” time is obtained by generating tuples for each instant in the ground interval that
results from substituting until changed by rt,.. Thus, Definition 5.1 also applies when until changed

is allowed as a “stop” time.
To exemplify, recall that even when the database itself does not change at time ri,, its exten-
sional interpretation might be different. For example, consider the tuple

T =< Jane, Assistant,[June 5, until changed] > .

The timestamp specifies that the fact that Jane is an Assistant Professor was added to the database
on June 5 and has yet to be deleted or updated. The extensionalization at reference time June 5 is

{(Jane, Assistant, June 5, June 5)}.

31

Similarly, the extensionalization at reference time June 6 is
{(Jane, Assistant, June 5, June 6), (Jane, Assistant, June 6, June 6)}.

Hence, the semantics of the same tuple depends on when it is observed.

The visualization of a tuple with until changed is similar to the visualization of a tuple with-
out that variable discussed in Section 5.1. Figure 20 depicts the extensionalization of the tuple
< Jane, Assistant,[June 5, until changed] > for a sequence of reference times, June 1 through
June 11. The only difference is that the stair step continues until a reference time of ¢.,,ren:-

TT

Lurer = June 11

June 5

RT

Jane, Assistant

Figure 20: A graphical representation until changed

Table 2 summarizes the extensionalizations presented for transaction time. Case t1 (the t
stands for “transaction-time” database) applies to tuples with fully ground timestamp values only,
whereas Case t2 covers the case where until changed is the “stop” time.

Variable Database Extensional Database
t1 | 7 =< X, [iy, lls] > [7T,,. = {(X,tt, rt.)[tty < it < min(its, rt.)}
t2 | T =< X, [tt;, until changed] > | [T],,. = {(X tt,rt)|tt, <t < vt}

Table 2: Extensionalization of transaction-time databases

5.3 Querying Variable Transaction-time Databases

Section 4.6 illustrated how variable valid-time databases may be integrated into data models
that previously permitted only ground databases. The emphasis was on the querying of variable
databases. Although this section considers variable transaction-time databases, it has the same
purpose and is thus similar in structure. As we shall see, the different semantics of transaction
time, including the absence of indeterminacy, leads to different, simpler definitions.

32

The “bind” operator for transaction time eliminates occurrences of until changed in the “stop”
component of timestamps.

Definition 5.3 [Variable-level Transaction-time Bind]
Given a tuple T =< X, [tt;, es] >, where t; is a ground transaction time and e, is until changed
or a ground transaction time, the variable-level transaction-time bind operation is defined as follows.

bind" T (T) =y < X, ({10}, (e, 1> i

teurrent current

Again, this operation can be extended in the obvious way to relations. Transaction-time bind is
very similar to valid-time bind, but differs in one important respect. The bind"' "7 operator does not
accept any time argument, but always binds until changed to the query time or current transaction
time, teyrrent- This is because the transaction time of a tuple specifies which database state(s) it
belongs to in the trajectory of database states. A tuple with the timestamp of [tt;, until changed]
belongs to all of the database states from ¢¢; to the current state. Binding until changed to a time
other than the ¢,,,,.c,; could result in an incorrect trajectory since the tuple might not be in states
in which it should be. The transaction-time timeslice operator (defined below) is used to project
the states that are of interest in a query.

Since the bind"*? operator lacks a time parameter and is always applied before any other
operator, it is feasible to omit the operator and instead build it into the transaction timeslice
operator, as has been done in some variable-level transaction-time algebras [JM92]. However, it
would also need to be built into any additional operators, so to preserve the parallel with Section 4.6,
we choose not to do this. The definition of the extensional-level bind for transaction time is omitted
because it is very similar to Definition 4.12.

The standard transaction-time timeslice operator defined next selects tuples with a transaction
time that overlaps the time instant tt,, i.e., all information that was current at time ¢¢,, and restricts
the timestamps of qualifying tuples to ¢,.

Definition 5.4 [Variable-level Transaction-time Timeslice]

Let S be a set of tuples at the variable database level, i.e., a set of tuples of the form T =<
X, [tty, tt5] >, where tt; and tt, are ground transaction times. The transaction-time timeslice of S
at transaction-time ¢¢, is defined as follows.

I77(S) = {< X, [tta,tt] > | 3T = < X, [y, tts] > € S (tt. € [th, 112])} |

Definition 5.5 [Extensional-level Transaction-time Timeslice]
At the extensional database level, the transaction-time timeslice of a set S consisting of tuples of
the form (X, ¢, rt) is defined as follows.

Hg;TT(S) —df {(‘thtmrt) | (X7tt*7rt) € S} I

As with valid-time queries, a combination of bind and timeslice supports transaction-time
queries. When asking queries about a transaction-time database, there are two important times to
consider: (i) the transaction-time timeslice time, ¢t,, indicating that information is sought that was
current in the database at time ¢f,, and (ii) the query time, {.y rent, the time at which the query is
asked.

As a first example, we consider several timeslice operations on the tuple

T =< Jane, Assistant,[June 5, June 8] > .

33

The extensionalization of T is depicted in Figure 18 on page 31. For the following queries, it is
assume that t.,;pen;: 18 June 11.

o 11577 (bindVTT(T)) yields an empty result because the interval associated with 7' is before

the timeslice time—tuple 1" ceased to be current starting on June 9and was not current on
June 11.

o 11T (bindVTT(T)) yields tuple 7', but with “start” and “stop” times of June 7. This is so
because the information recorded by T" was current on June 7.

o 11T (bindVTT(T)) results in an empty result, since the timeslice instant of June 1 is before

the “start” time of the tuple, June 5. Put differently, the query requests information that
was current in the database prior to when 1" was inserted into the database.

The following queries further illustrate the use of the timeslice time in transaction-time queries; we
again assume that .y, pcn is June 11.

e According to the current state, who is employed?

1yt 11 (bind" " (Paculty))

e On June 6, who did the database record as being employed?
YT (bind ™" (Faculty))

In this query, the timeslice time is June 6, since the query is asks for the information current
on June 6.

6 Bitemporal Databases

A bitemporal relation supports both transaction and valid time [CI93, JCE*t94, SA85]. The com-
bination of these two temporal dimensions empowers the database to record time-dependent infor-
mation as well as earlier database states. Bitemporal databases thus combine the advantages of
valid-time and transaction-time databases. Yet, this greater flexibility comes at a cost: increased
complexity derives from the interactions between the two temporal dimensions which must be care-
fully considered. However, as we will see below, the logical framework that we have presented
here for expressing the semantics of current-time variables has been designed to make it relatively
straightforward to obtain the semantics of bitemporal databases. The interaction between the
the current-time variable for valid time, now, and transaction time, until changed, is coordinated
through the reference time. We will demonstrate one possible (and, we think, reasonable) semantics
for this combination, but we emphasize that the framework is general enough to allow the definition
of other, alternative semantics for these variables.

Below we first examine the extensionalization mapping for bitemporal databases. We then
explore pictorial representations for bitemporal databases and conclude with a discussion of queries
and their evaluation.

6.1 Extensionalization of Bitemporal Databases

The timestamp of a bitemporal tuple contains both a valid-time and a transaction-time component.
Since the valid-time component may be indeterminate, it is necessary to distinguish between a

definite and a possible extensionalization, [[]]fg’D and [[]]ff’P, respectively.

34

Definition 6.1 [Definite Extensionalization of a Bitemporal Tuple]

The definite extensionalization of a bitemporal tuple 7" of the form T =< X [vty, vts], [tt, tts] >,
where X is some set of attribute values and the timestamp [viy, vis], [tt1, t5] may contain any of
the variables introduced earlier, at the reference time rt, is defined as follows.

[I:T:I]BT,D =y

Tt

{(X, vt tt,rt) | (X, vt rts) € [< X, [vty, vta] > 007 A (Xt rt) € [< X [t tt] > 150

rt

Definition 6.2 [Possible Extensionalization of a Bitemporal Tuple]
The possible extensionalization of a bitemporal tuple 7" of the form 7" =< X, [vty, vis], [tty, tEs] >
at the reference time rt, is defined as follows.

[[T:I]BT,D =y

Tts

{(X, vttt rt,) | (X vty rt) € [< X, ot vte] > 1D A (Xt re) € [< X[t i) > 10 3

rt

The definitions show that the framework has been constructed so that the extensionalization of
bitemporal tuples is the combination of the extensionalizations for valid and transaction time. It
also shows how the reference time rt, serves as an essential coordination mechanism between the
valid and transaction time components of the timestamp: the same reference time appears in the
valid-time and in the transaction-time denotations. Although, it is possible and may be interesting
to consider situations where the two reference times differ, we have found that for all practical
purposes this coordination is desirable. Nevertheless, other kinds of coordination through the
reference time are possible. For example, instead of the standard Cartesian product used here, a
coordination mechanism that utilizes a step-wise cross product of the two temporal dimensions is
possible [CI94].

Another feature of the framework is that the uniform and component-wise treatment of time
dimensions makes it easy to include additional dimensions. To specify the semantics of a variable
database with additional dimensions, it is necessary to first specify the semantics of the variables
and tuples in that new dimension, e.g., as is done for the transaction-time dimension in Section 5.
Subsequently, the new dimension can be easily integrated with the other dimensions in a definition
similar to the one above. Thus, our framework can be extended to encompass multi-dimensional
temporal databases, for example temporally generalized [JS94], indexical [C1i93], parametric [GN93]
and spatio-temporal [ASS94] databases.

Tables 1 and 2 may be combined to cover the bitemporal extensionalizations. The combination
of Case vl from Table 1 and Case t1 from Table 2 gives the bitemporal extensionalization for
a tuple timestamped with a determinate valid time interval, [vi;, vls], and a transaction time
interval, [tt;,tt,], both without variables. Note that the transaction time in this case is restricted
to the “past” relative to the reference time, just as in transaction-time tuples. For example, the
extensionalization at reference time June 2 of the tuple

< Jane, Assistant,[June 3, June 10], [June 1, June 3] >
is
{(Jane, Assistant, vt,tt, June 2) | vt € [June 3, June 10| A tt € [June 1, min(June 2, June 3)]}.

In this example, the terminating transaction time, June 3, is constrained by the reference time,
June 2.

35

The graphical representation of bitemporal tuples is also a combination of the valid time and
transaction time graphs. The representation is three-dimensional; transaction time is the X-axis,
valid time is the Y-axis, and reference time is the Z-axis. To this point, the reference time has been
the X-axis, but making the reference time the Z-axis in the three-dimensional visualization results
in a better picture. The graph is displayed so that the Z-axis goes “into” the page.

A three-dimensional picture of bitemporal tuples allows us to represent the passage of time
as a spatial displacement, and provides a visual representation for interesting phenomena such as
history changes and predictions about the future, as well as incorporating the viewpoint of an
observer into these phenomena. It provides a uniform representation of both transaction time and
valid time. This makes explicit the homogeneous nature of these entities and enables a uniform
treatment of both time dimensions. As we will see below, the graphical representation shows the
subtle interaction between now, until changed, and the reference time. Variations of these graphs
have been independently explored [JSS94, JS92, CI94].

As an example, assume that the academic career of Jane at State University is given by the
tuple

< Jane, Assistant,[June 3, June 5], [June 1, June 4] > .

Here the fact that Jane was an Assistant Professor from June 3 to June 5 was recorded in the
database on June 1 and logically deleted on June 4, as it was found to be in error. Figure 21
depicts the extensionalization of this tuple over a sequence of reference times, from June 1 through

June 11.

« «
Ve Ve
VT // //
A s v
RT
June 10 ::::
«
Ve
Ve
Ve
Ve
June3| ‘
T \
| |
| |
| I .
]
5 -g:_', TT
@ 2
[N -

Figure 21: A graphical representation of Jane’s employment.

The combinations of the extensionalizations presented in Tables 1 and 2 are graphically depicted
in Figures 22 and 23. The dotted line vectorsin the graph represent directions of growth as either the
reference time, valid time, or transaction time extends to T. The evolutionary nature of temporal
databases, a key concept, comes through very clearly in the figures. Notice how the shaded areas
grow as reference time increases, most prominently for tuples containing variables, indicating an

36

accumulation of knowledge stored in the database. Note also how information in later reference
times is always consistent with that in earlier reference times.

Figure 22 illustrates the determinate cases. For example, the lower right corner of Figure 22
depicting the v2x t2 case, shows how now and until changed are bound to an increasing reference
time, resulting in a three-dimensional stair-shaped pattern. The tuple’s extensionalization grows
as time passes encompassing more points. In contrast, case vl x t1 depicts constrained growth,
as the tuple ceases to exist beyond transaction time ¢¢,. Note that, unless a tuple is known to
have been deleted from the database, its “transaction-stop time” is until changed, and hence it
has unlimited growth in the transaction-time dimension. This is true for the determinate cases
shown in Figure 22 as well as for the indeterminate cases of Figure 23. Notice for example, how
the possible and definite extensionalizations in cases v3” x t2 and v3” x t2, the upper right-hand
corner of Figure 23, remain constant in the valid-time dimension while growing in transaction-time.
In contrast, case v4” x t2 illustrates constrained growth, i.e., constant evolution up through time
vis.

6.2 Querying Variable Bitemporal Databases

In Sections 4.6 and 5.3, we illustrated how variable valid-time and transaction-time databases,
respectively, were integrated into data models that have yet to allow the use of current-time variables
in timestamps. We also explored the querying of variable databases, with an emphasis on the
interaction of the important times mentioned in Section 3.2.

This section has the same agenda as those two previous sections. In analogy with those sections,
we first to define “bind” and timeslice operators for bitemporal relations. However, the existing
bind and timeslice operators, developed for valid-time and transaction-time databases, are easily
generalized to apply to bitemporal databases. So rather than present new formal definitions for
the bitemporal operators, we indicate how the existing operators are generalized and subsequently
utilize these generalized operators. A bitemporal tuple differs from a valid-time tuple by having
a transaction time interval in its timestamp. The valid-time operators are generalized to corre-
sponding bitemporal operators by simply ignoring this extra timestamp. For example, the definite
bitemporal valid-time timeslice is defined by generalizing Definition 4.13 as follows.

Definition 6.3 [Variable-level Definite Bitemporal Valid-time Timeslice]

Let S be a set of tuples at the variable database level, i.e., a set of tuples of the form T =< X,
[vt) ~ viy, vtz ~ vy, [tt1,tts] >, where T is ground. The definite bitemporal valid-time timeslice
of S at valid time vi, is defined as follows.

HD,V,VT,BT(S) =y

Uty

{<)(7 ['Ut*, ’Ut*L [tth ttz] > | El T = < X, [Utl ~ ’Utz, ’Ut3 ~ ’Ut4j|7 [ttl, ttz] > € S ('Ut* & I:’Utg, Ut3])} I

The superscript “P>V'VT.BT” indicates that the operator considers only the definite information in
the tuple, belongs at the variable level, performs a timeslice in the valid-time dimension, and is
applicable to bitemporal tuples. In addition to this operator, the subsequent discussion will use the
operators IOV VBT IV.IT.BT jindV VI.BT and bind""TT-BT which are all similar generalizations
of previous definitions.

As with valid-time and transaction-time databases, queries are evaluated by combining bitem-
poral timeslice and bind operations. Also as before, valid and transaction times must be bound
before the bitemporal valid-time timeslice or bitemporal transaction-time timeslice, respectively,
can be applied.

37

4 4
Ve Ve
VT i /
v/ v/
RT
vez oo
4
Ve
/
/
v/
vtl | o
YA [
Ll
Ll
Ll \
1
b= b= ot
N M §TT
B
Attribute Values
Case vl x t1
f 1
/ /
VT / /
/ /
/(
/
s
e
vtl | o
YA |
I
I
(I ,
=R e
3
|
Attribute Values
Case v2 x t1

VT v
v/
7/
vz |
vtl |
-
I
I ,
= e
I 3 TT
I
Attribute Values
Case vl x t2
f 1
/ /
VT / /
/ /
/
/
vtl |
N
I
I ,
N i TT
[|
Attribute Values
Case v2 x t2

Figure 22: The bitemporal determinate cases

38

VT / ’

vt_4

vt_3

vt 2

vt 1

Tn|l———-
Znl-———
luauml

! TT
Possible
Definite

Attribute Values

Cases v3? x t1 and v3" x t1

v v
7 e
VT / /7
e e
RT
vez |
A
e
e
e
e
LS o
o [
1
Pl
Lol ,
= = o
o : TT

Possible
Definite
Attribute Vaues

Cases v4? x t1 and v4* x t1

VT /
/
via o
i3
iz —
(R
2R
[
|| ,
E: e
s ;i 1T
Possible
Definite

Attribute Values
Cases v3? x t2 and v3" x t2

Pl P
VT // //
/7 /7
/7 /7
w2 |-———-
7/
/
/7
/7
.
e
|1
I ,
= o
I g 1T
Possible
Definite

Attribute Values

Cases v4? x t2 and v4" x t2

Figure 23: The bitemporal indeterminate cases

To explore the interaction of times in queries on bitemporal databases, we consider a number
of queries on the simple database depicted in Figure 24 which shows that Jane’s employment tuple
was added to the database on June 2. Note that it contains an now-relative indeterminate “to”
time and “until changed” as the “stop” time. For the purpose of the example, we assume that
today is July 9. Thus, the transaction-time bind operator binds wuntil changed to July 9 in all
queries. The first four queries all include Jane in the result.

FACULTY
VALID TIME TRANS TIME
NAME | RANK || (from) | (to) (start) | (stop)

‘ Jane Assistant H June 1 ‘ (now — 3 days) ~ January 1, 2028 ‘ June 2 ‘ until changed ‘

Figure 24: A bitemporal relation

e As best known today, who was possibly a faculty member on July 77

P,V,.VT,BT (1 : V,VT,BT (yyV,TT,BT (}: iV, TT,BT
HJuly 7 (bdeuly 9 (HJuly o (bind (Faculty))))

In this query, we transaction timeslice to get only the most current information. The valid-
time bind ensures a perspective of today, and the valid timeslice retrieves those tuples that
were valid two days ago (on July 7).

e As best known today, who was definitely a faculty member on July 17

gy (bind gy 3 (0, " (bind" "5 (Faculty))))

As before, the lower bound of the “to” time is ground to July 6 (July 9 — 3 days). The
difference is solely in the valid timeslice; we require definite information, and so we use a
definite timeslice. Since July 1 is before July 6, Jane is in the result.

e As best known on July 1, who was definitely a faculty member on June 157

Mg 15" (bind " (W, " (bind ™" PT (Faculty))))

The transaction timeslice retrieves the information current on July 1. The valid-time bind
adopts this day as the perspective of the subsequent valid timeslice which retrieves information
about June 15. Since Jane’s tuple was current on July 1 and June 15 is more than three days
before July 1, Jane will be in the result.

e As best known today, who will we say on July 12 is possibly a faculty member on September 17

PV VT BT . V.VT BT vV, I'T,BT (- 1T, ’
HSeptember 1(blnd.]uly 12 (HJuly 9 (blndVTT BT(FG,C’Lthy))))

We first consider only current information. Then we adopt a valid-time perspective of July 12
to examine the database as it will appear on July 12 if no updates are made, i.e., our best
guess as to what will be current information on July 12. Finally, using that perspective, we
ask about possible information on September 1. Jane will thus be in the result.

40

In contrast to the queries above, the following three queries do not include Jane in the result.

e As best known today, who was definitely on the faculty of State University on July 77

M5y 7 (bind gy o™ (W s (bind" ™57 (Faculty))))

Here, the valid-time bind operation yields a ground “to” time of July 6 ~ January 1, 2028.
Since July 7 is after July 6, Jane is possibly, but not definitely, on the faculty.

e As best known on July 1, who was definitely a faculty member on July 17

M5y 7 (bind iy " (W1 (bind" 57 (Faculty))))

e As best known today, who will we say on July 12 is definitely a faculty member on Septem-
ber 17
U pemier 1 (bindyy vy (W, (bind" TP (Faculty))))

In most of the examples above, the transaction timeslice time and the valid-time bind time, or
reference time, are the same. Indeed, this is the typical and most useful scenario as the following
example makes clear. Suppose that today, July 9, we execute a transaction-time timeslice with time
argument February 1. This operation chooses the most up-to-date information as of February 1,
and disregards information that was not up-to-date on February 1 or was recorded at a later time.
The user’s perspective for subsequent operations using this information should naturally switch to
the frame of reference of the chosen information. Hence, for this example, it would be natural to
also bind now to February 1.

Yet, two of the queries given above illustrate that this in not a necessary restriction. Lifting it
leads to increased functionality, but also to queries that are conceptually more involved. Existing
query languages generally enforce this restriction.

We complete this discussion with another scenario that uses the various time variables, illus-
trating their interaction. Melanie downloads the AP News into her workstation each morning at
2 a.m. to save on telecommunications costs. Since she is very busy, she obtains all of her news from
this one source, which she reads during breakfast. On November 5, 1992, the day after the U. S.
presidential elections were held, she stored the tuple shown first in Figure 25.

PRESIDENTS
VALID TIME TRANS TIME
NAME (from) | (to) (start) | (stop)
Bill Clinton || now — 1 day ~ 1/20/93 | 1/20/93 ~ 1/19/2001 | 11/5/92 | 11/9/92
Dan Quayle || now — 1 day ~ 1/20/93 | 1/20/93 11/10/92 | until changed
Bill Clinton || 1/20/93 now ~ 1/19/2001 11/10/92 | until changed

Figure 25: A bitemporal presidential relation

The “start” time is the time the tuple was stored; the “stop” time was originally until changed
at the time she inserted it because the tuple had yet to be logically deleted (we explain below how
it became 11/10/92). The “from” time contains the (erroneous) assumption that if the President at
that time, George Bush, were incapacitated, Bill Clinton, the newly elected but not yet inaugurated
President, would be sworn in as President. In actuality, the Vice President, Dan Quayle, would

41

be sworn in and would serve until the inauguration on January 20, 1993. The one day lag is for
the delay of the news-feed; something could happen and Melanie would not know about it until
the next day. The “to” time incorporates the constitutional limitation of two four-year terms for a
President.

Five days later, on November 10, 1992, she realized her mistake, and corrected it by changing
the first tuple and introducing two more. It is at this time, that the “stop” time of the first tuple
was set to 11/10/92, signifying its logical deletion. The second tuple was inserted at this time to
indicate that it is really Vice President Quayle who would be President through inauguration day
in the event that President Bush were incapacitated. The third tuple correctly asserts that Bill
Clinton will assume the presidency on inauguration day and possibly remain President for eight
years.

To complete the example, assume that today is January 1, 1993. Consider the following queries.

e As best known today, who could possibly be President today?

PV VT BT . V.VvT BT vV, TT BT . V,TT,BT .
HJanuary 1, 1993(blndJanuary 1, 1993(HJanuary 1, 1993(blnd (Preszd.ents))))

This query results in the following set of tuples.

{< Dan Quayle, [1/1/93,1/1/93], [1/1/93,1/1/93] >}
e As was best known on November 9, 1992, who could possibly be President on January 1, 19937

PV VT BT . V,VT BT vV, TT BT - gV, TT BT s 7,
HJanuary 1, 1993(blndNovember 9, 1992(HNovember 9, 1992(blnd (Preszdents))))

This query results in the following set of tuples.

{< Bill Clinton, [1/1/93,1/1/93], [11/9/92,11/9/92] >}

e As was best known on November 9, 1992, who could possibly be President on Novem-
ber 6, 19927

PV VT BT . GV, VT BT v, TT BT . vV, TT,BT :
HNovember 6, 1992(blndNovember 9, 1992(HNovember 9, 1992(b7’nd (Preszdents))))

This query results in the empty set. Only the first tuple is in the transaction-time timeslice
result, and the “from” time of this tuple evaluates to November 8, 1992, two days after the
valid-time timeslice argument.

7 Timestamp Implementation

This paper has proposed four new current-time-related timestamps; namely, until changed, now,
now-relative instants, and now-relative indeterminate instants. In this section we demonstrate how
these timestamps may be efficiently represented and manipulated.

Elsewhere we have proposed timestamp formats for determinate instants and intervals [DS93a,
DS93d] and indeterminate values [Dyr94]. Following a quick review, the existing formats are
extended to also represent the new timestamp values, and it is shown that the now-relative formats
have only a minor impact on storage costs. We extend only the instant formats; intervals are
represented as a pair of bounding instants.

42

7.1 Representation of Determinate and Indeterminate Timestamps

An instant timestamp must meet several requirements. First, the timestamp must support a
multitude of ranges. Range is a measure of how much of a time-line can be represented. A
timestamp should be capable of storing times that range over just a few seconds to those that
range over the age of the universe. Second, it must support a variety of time granularities [DS94],
from those as large as a millennium to those smaller than a femtosecond. Third, the timestamp
must be capable of storing times both before and after a granularity anchor (an anchor is a point on
the time-line). Finally, since it is difficult to anticipate the demands of future language designers,
the format must allow for growth, primarily the addition of new timestamp types.

Determinate (32/64/96 hits)

3 28 ; 60 ; 2

—— e

I data data data |

E Son
type = 000

Figure 26: The determinate instant format

The determinate instant timestamp is shown in Figure 26. The dashed lines mark word bound-
aries. The number above a subfield is the size of that subfield, in bits. The size of the timestamp,
in particular, the size of the data field, varies depending on the range and granularity of the times-
tamp. We assume that the range and granularity are specified for the instant as part of a create or
modify statement and stored with the schema. Hence, the interpretation of the data field requires
information from the schema, provided by the query processor. Larger ranges and finer granu-
larities require more bits to represent, consequently the size of the data field, and, in turn, that
of the timestamp, varies. The one, two, and three word formats are depicted in the figure. Two
words should be sufficient for most applications. The two word timestamps can store a range of
historical times to the granularity of a microsecond, or times within a range of 36 billion years to
the granularity of a second. Three words, which can represent times over a range of 36 billion years
to a nanosecond, should take care of the few remaining applications.

To differentiate amongst the timestamp formats, each format has a type field. The type field
is stored in the high order portion rather than the low order portion because not every format is
the same size. The type field distinguishes special instants, such as beginning and forever, from
other instants. The special instant format is shown in Figure 27. Note that the timestamp is only
as long as the range and granularity dictates.

There are several formats to represent indeterminate instants. Without loss of generality, we

Special (32/64/96 bits)

35 24 <7 ; 64

| wasted wasted wasted I
L data
type = 001

Figure 27: The special instant format

43

will discuss only the chunked format shown in Figure 28.

Indeterminate, Chunked, Standard Distribtution (32/64/96/128 hits)

34 7 16 : 48 : 80 ; 112

data data data

I O S S
I_ sign
chunks
chunksize

distribution: uniform = 1, missing = 0
type = 100

Figure 28: The chunked format

The chunked format stores a lower bound, an upper bound, and a probability distribution (in
this paper we ignore the distribution). The lower bound is explicitly encoded in the chunked format,
however, the upper bound is implicitly encoded. The upper bound is composed of a chunk size and
a number of chunks. A chunk is a span, the length of which is specified by the chunk size field. The
upper support is computed by adding the number of chunks, each of size chunk size, to the lower
support. For example, to represent a period of indeterminacy of seven hours using chunks, the
timestamp would record that there are seven hour-sized chunks. The chunk sizes that can be used
depend on the granularity of the timestamp. Chunk sizes smaller than the granularity cannot be
used since the timestamp cannot store these times. One of the duties of the database implementor
is to build site-specific chunk size tables, one for each granularity.

7.2 Representation of Now-related Timestamps

In some sense, until changed and now are “special” instants, hence we need only add to this format,
shown in Figure 27, leaving the other formats unchanged. The variables until changed and now
are stored as special instants. Two new special instant values are allocated for the two variables
raising the total number of special instants to six.

Now-relative instants are a new format based on the determinate instant format. The now-
relative format is show in Figure 29.

Now-relative (32/64/96 bits)

3 28 60 ;)

I data data data -i
Lo
type =010

Figure 29: The now-relative instant format

Now-relative instants are of the form “now %+ span.” The span associated with the instant is

stored in the data field (just as spans are currently stored). The span value is stored to the range
and granularity of the other instant timestamps in that column. The sign bit indicates whether the
span is added or subtracted to now. Note that the now-relative format has a unique type field.

A now-relative indeterminate instant is quite a bit more complex. It is of the form “now =+
span ~ upper bound.” A now-relative indeterminate instant format must store an upper bound, a

44

span, now, and whether or the span is added or subtracted. Surprisingly, it is usually possible to
fit all of this information in the same space that a determinate instant requires, eight bytes in the
common case. We employ a variation of a chunked indeterminate format that has essentially the
same format, but a different interpretation. The new format is shown in Figure 30.

Now-relative Indeterminate, Chunked, Standard Distribtution (32/64/96/128 bits)

34 6 16 . 48 . 80 : 112
T data data data I
e
span added or subtracted
chunks
chunksize
distribution: uniform = 1, missing =0
type =101

Figure 30: The now-relative indeterminate instant format

A now-relative indeterminate instant has a different type field than an indeterminate instant since
there is no other way to distinguish between the two formats. The upper bound is explicitly encoded
in the data field, while the span is implicitly encoded in the chunking information. The now-relative
indeterminate format has two sign bits. The first sign bit indicates whether the span is added or
subtracted to now. The second sign bit positions the upper bound before or after the granularity
anchor point, just as does the sign bit for determinate instants.

If the chunking yields an inadequate precision, or the user wishes to associate a distribution
other than the missing or uniform distribution then more storage will be required. In this case, we
use variants of other indeterminate instant formats. These variants are essentially the same as the
indeterminate formats, but have a different type value and use a different interpretation of the fields
in the format. For brevity, we omit these variants. We also omit discussion of the nonstandard
distribution formats, which are slightly larger than the standard formats presented here [Dyr94].

As a point of comparison, the SQL-92 datetime format, which has a range of only 10,000 years
and a granularity of only one second, and which does not incorporate either indeterminacy or now-
relativity, requires twenty positions (80 bits). For most users, our eight byte (64 bit) format should
suffice.

7.3 Timestamp Operations

In this paper, we proposed adding bind operations for valid time, transaction time, and bitemporal
databases; no other operations are needed to support current-time-related modeling entities. The
bind operations have no significant impact on the run-time efficiency of a temporal database. The
transaction-time bind is very efficient. It simply replaces until changed with the current transaction
time. The valid and bitemporal bind operations are only slightly less efficient. For now-relative
instants (and now-relative indeterminate instants) these operations replace now with the reference
time and then displace that reference time by a span. The displacement costs one integer addition
operation.

Now-relative instants also add an extra comparison to interval constructors. As we observed
in Section 2.1.4, predictive updates could insert into the database intervals that end before they
start. For a tuple without variables, such intervals can be detected and eliminated when the tuple
is first inserted into the database. But a tuple with a variable might initially end before it starts,

45

and only later evolve into a valid interval. Consequently, during run-time each interval involving a
variable must be tested to ensure that the starting instant is before the terminating instant. This
test needs be performed only once per interval per query.

8 Summary and Research Directions

The overall conclusion of this paper is a recommendation that timestamps involving current-time
variables, that is, now, until changed, now-relative, and now-relative indeterminate timestamps, be
used for timestamping database facts with their valid and transaction times. A summary of the
most important contributions of this paper as well as refinements to the overall conclusion follow.

First, this paper provides a formal basis for defining the semantics of databases with variables.
The use and generality of the framework was demonstrated by giving a semantics for valid-time,
transaction-time and bitemporal databases with all existing variables. Apart from specifying rea-
sonable semantics for such databases, this exercise demonstrates two important properties of the
framework. The first property is that it is capable of capturing the semantics of a wide range of
variables. The second is that the semantics of a multi-dimensional database may be specified as
a coordinated combination of the semantics of the constituent one-dimensional databases. The
reference-time dimension in the framework provides the coordination mechanism. For example, the
semantics of variable bitemporal databases was specified very easily by using the already specified
semantics for valid-time and transaction-time databases. This property makes it relatively easy to
specify the semantics of multi-dimensional databases.

Second, without current-time variables, temporal databases provide inadequate support for their
applications. The paper demonstrates that existing variables, such at now and until changed, are
indispensable in temporal databases. It also identifies situations were even these variables are inad-
equate, and introduces new now-relative and now-relative indeterminate instants that provide the
desired support. The semantics of databases with variables are also defined within the framework.

Third, a foundation for the querying of variable databases from existing temporal query lan-
guages was presented. The paper provides algebraic “bind” operators for valid-time, transaction-
time, and bitemporal databases, and it shows how these are used in order to permit existing query
languages to access variable databases. As a first step during query processing, the bind opera-
tion is applied to variable databases, thus temporarily replacing all variables with ground values
appropriate for the processing of the query at hand. What are appropriate ground values follows
quite easily when the semantics of the variable databases have been defined within the framework.
This approach encapsulates the handling of variables in a single operator. It also requires only
minimal changes to the query processor: support for one new operator has to be added, but all
other components remain unchanged.

Fourth, compact formats are provided for the physical representation of the variables. The
paper extends an existing timestamp representation scheme to also include compact formats for
the variables, and it is shown that the presence of variable timestamps do not have significant,
adverse effects on query processing performance.

The simplest variable is a distinguished valid-time value now (and the analogous transaction-
time value until changed). Supporting these variables requires essentially no space, but engenders
several modeling problems, as discussed in Section 2. Now-relative instants require minimal space,
specifically one bit to distinguish them from non-relative instants, and add some modeling power.
Incorporating indeterminacy increases the modeling capability further, yet adds from 13 bits to 3
words to the representation of a timestamp, depending on how finely the user wishes to model the
indeterminacy. Indeterminate now-relative instants require no additional space over non-relative

46

indeterminate instants, and solve all the problems listed in Section 2.

These four observations provide the rationale for the conclusion that variable databases are
viable. A number of secondary, but noteworthy, contributions also deserve mention. The paper
resolves the meaning of the use of variables in existing temporal data models. A graphical notation
with two or three dimensions used throughout the paper proved to be helpful when describing the
semantics of variable databases. The complex interactions of current time, reference time, transac-
tion time, and valid time within queries and variable databases were investigated in detail. These
interactions were not thoroughly understood or explicated in existing bitemporal data models. The
concept of “perspective” within queries was illustrated. Perspective adds the ability to bind the
valid-time variable now to times other than the current time. Supporting this notion within a
query languages enhances its functionality when querying variable databases.

This framework has implications for database query language design. The user-defined time
types available in SQL-92 could be extended to support now-relative and indeterminate non-relative
variables. The TSQL2 language [SAA194] does so, and also supports those variables for valid and
transaction time. In TSQL2 the “bind” operation is implicit; NOBIND is provided to store variables
in the database.

There are several directions for future research. The precise semantics of several temporal
models proposed in the literature could profitably be examined in light of the framework presented
here. In defining the semantics for bitemporal databases, we have chosen but one possible way of
combining the semantics of valid-time and transaction-time databases; other possible combinations
of these two temporal dimensions might also prove useful. In addition, the use of the graphical
representation of temporal relations at the user interface—for displaying the results of queries and,
e.g., for the assertion of temporal integrity constraints—seems to us a promising one for further
research. Finally, new kinds of variables, such as here for spatial and spatiotemporal databases,
should be investigated, as an extension of the framework introduced here.

9 Acknowledgments

Partial support for Curtis Dyreson and Richard Snodgrass was provided by the National Science
Foundation through grants IRI-8902707 and IRI-9302244, the IBM Corporation through Contract
#1124, and the AT&T Foundation. Partial support for Christian S. Jensen was provided by the
Danish Natural Science Research Council through grants 11-9675-1 SE and 11-0061. Nick Kline
provided helpful comments on a previous draft.

References

[ASS94] K. K. Al-Taha, R. T. Snodgrass, and M. D. Soo. Bibliography on Spatiotemporal
Databases. International Journal of Geographical Information Systems, 8(1):95-103, January-
February 1994.

[ABM84] G. Ariav, A. Beller, and H. L. Morgan. A Temporal Data Model. Technical Report
DS-WP 82-12-05, Decision Sciences Department, University of Pennsylvania, December 1984.

[BG89] G. Bhargava and S. Gadia. Achieving Zero Information Loss in a Classical Database En-
vironment. In International Conference on Very Large Databases, pages 217-224, Amsterdam,
August 1989.

47

[BL92] M. A. Bassiouni and M. J. Llewellyn. A Relational-calculus Query Language for Historical
Databases. Computer Languages, 17(3):185-197, 1992.

[BZ82] J. Ben-Zvi. The Time Relational Model. PhD thesis, University of California at Los Angeles,
1982.

[CC87] J. Clifford and A. Croker. The Historical Relational Data Model HRDM and Algebra
Based on Lifespans. In Proceedings of the IFEFE International Conference on Dala FEngineering,
pp. 528-537, Los Angeles, February 1987.

[CCT93] J. Clifford, A. Croker, and A. Tuzhilin. On Completeness of Historical Relational Query
Languages. ACM Transactions on Database Systems, 19(2):64-116, March 1994.

[C1i93] J. Clifford. Indexical Databases. In Advanced Database Systems, Lecture Notes in Computer
Science 759, Springer-Verlag, 1993.

[CI93] J. Clifford and T. Isakowitz, On The Semantics of Transaction Time and Valid Time in
Bitemporal Databases. In R. T. Snodgrass, editor, Proceedings of the ARPA/NSF International
Workshop on an Infrastructure for Temporal Databases, pp. 1.1-1.17, Arlington, TX, June 1993.

[C194] J. Clifford and T. Isakowitz, On The Semantics of (Bi) Temporal Variable Databases. In
Proceedings of the Fourth International Conference on Frlending Database Technology, pp. 215—
230, Cambridge, England, March 1994.

[CT85] J. Clifford and A. U. Tansel. On an algebra for historical relational databases: Two views.
In S. Navathe, editor, Proceedings of ACM SIGMOD International Conference on Management
of Data, pp. 247-265, Austin, TX, May 1985.

[CW83] J. Clifford and D. S. Warren. Formal Semantics for Time in Databases. ACM Transaction
On Database Systems, 8(2):214-254, 1983.

[DS93a] C. E. Dyreson and R. T. Snodgrass. Timestamp Semantics and Representation. Informa-
tion Systems, 18(3):143-166, 1993.

[DS93b] C. E. Dyreson and R. T. Snodgrass. Valid-time Indeterminacy. In Proceedings of the
International Conference on Dala Engineering, pp. 335-343, Vienna, Austria, April 1993.

[DS93d] C. E. Dyreson and R. T. Snodgrass. A Timestamp Representation for TSQL2. A TSQL2
Commentary. September 1994, 21 pages.

[DS94] C. E. Dyreson and R. T. Snodgrass. Temporal Granularity and Indeterminacy: Two Sides
of the Same Coin. Technical Report TR 94-06, University of Arizona, Departmentn of Computer
Science, Tucson, AZ, February 1994.

[Dyr94] C. E. Dyreson. Valid-time Indeterminacy. Ph.D. thesis, The University of Arizona. October
1994, 187 pages.

[DW90] C. J. Date and C. J. White. A Guide to DB2, volume 1, 3rd edition. Addison-Wesley,
Reading, MA, September 1990.

[EWK90] R. Elmasri, G. Wuu, and Y. Kim. The Time Index — an Access Structure for Temporal
Data. In International Conference on Very Large Dalabases, Brisbane, Australia, August 1990.

48

[Fin92] M. Finger. Handling Database Updates in Two-dimensional Temporal Logic. Journal of
Applied Non-Classical Logics, 2(2), 1992.

[Gad88] S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal
Databases. ACM Transaction On Database Systems, 13(4):418-448, 1988.

[GN93] S. Gadia and S. Nair. Temporal Databases: A Prelude to Parametric Data. In A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors, Temporal Databases:
Theory, Design, and Implementation, chapter 2, pp. 28=66. Benjamin/Cummings, 1993.

[JCE*94] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia (editors).
A Consensus Glossary of Temporal Database Concepts. ACM SIGMOD Record, 23(1):52-65,
March 1994.

[JM90] C. S. Jensen and L. Mark. A Framework for Vacuuming Temporal Databases. Technical
Report CS-TR-2516/UMIACS-TR-90-105, University of Maryland, Department of Computer
Science, College Park, MD, August 1990.

[JM92] C. S. Jensen and L. Mark. Queries on Change in an Extended Relational Model. IEEE
Transactions on Knowledge and Data Engineering, 4(2):192-200, April 1992.

[JS92] C. S. Jensen and R. T. Snodgrass. Temporal Specialization. In F. Golshani, editor, Pro-
ceedings of the IFEFE International Conference on Data Engineering, pp. 594-603, Tempe, AZ,
February 1992.

[JS94] C. S. Jensen and R. T. Snodgrass. Temporal Specialization and Generalization. [EEFE
Transactions on Knowledge and Data Engineering, 6(6), December 1994, to appear.

[JSS92] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending Normal Forms to Temporal
Relations. TR 92-17, University of Arizona, Computer Science Department, July 1992.

[JSS94] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Data Models via a
Conceptual Model. Information Systems, to appear, December 1994.

[K1i93] N. Kline. An Update of the Temporal Database Bibliography. ACM SIGMOD Record,
22(4):66-80, December 1993.

[Lip79] W. Lipski, Jr. On Semantic Issues Connected with Incomplete Information Databases.
ACM Transactions on Database Systems, 4(3):262-296, September 1979.

[LJ88] N.A. Lorentzos and R.G. Johnson. Extending Relational Algebra to Manipulate Temporal
Data. Information Systems, 13(3):286-296, 1988.

[Mon74] R. Montague. Formal Philosophy: Selected Papers of Richard Montague. Yale University
Press, New Haven, 1974.

[MS93] J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1993.

[NA89] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Language.
Information Sciences, 49:147-175, 1989.

[Rei84] R. Reiter. Towards a Logical Reconstruction of Relational Database Theory. In On Con-
ceptual Modelling, pp. 191-233. Springer Verlag, 1984.

49

[Rod92] J. F. Roddick. Schema Evolution in Database Systems — An Annotated Bibliography.
SIGMOD Record, 21(4):35-40, December 1992.

[SA85] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In S. Navathe, editor,
Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 236-246,
Austin, TX, May 1985.

[SAA*94] R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline, K. Kulkanri, T. Y. C. Leung, N. Lorentzos,
J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 Language Specification. ACM
SIGMOD Record, 23(1):65-86, March 1994.

[Sar90] N. L. Sarda. Algebra and Query Language for a Historical Data Model. The Computer
Journal, 33(1):11-18, February 1990.

[Sno87] R. T. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on Database
Systems, 12(2):247-298, June 1987.

[Sno93] R. T. Snodgrass. An Overview of TQuel. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory, Design, and Implemen-
tation, chapter 6, pp. 141-182. Benjamin/Cummings, 1993.

[S92¢c] M. D. Soo and R. T. Snodgrass. Mixed Calendar Query Language Support for Temporal
Constants. TemplS Technical Report No. 29, Revised May 1992.

[Syk64] J. B. Sykes, editor. The Concise Ozford Dictionary. Oxford University Press, Oxford,
England, 1964.

[Tan90] A. U. Tansel. Modelling Temporal Data. Information and Software Technology, 32(8):514~
520, October 1990.

[TK88] S. Thirumalai and S. Krishna. Data Organization for Temporal Databases. Technical
report, Raman Research Institute, India, Bangalore, India, 1988.

[WJLI1] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing With Granularity of Time in Tem-
poral Databases. In Proceedings of the 3rd Nordic Conf. on Advanced Information Systems
Engineering, Trondheim, Norway, May 1991.

[WJL93] G. Wiederhold, S. Jajodia, and W. Litwin. Integrating Temporal Data in a Heterogeneous
Environment. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass,
editors, Temporal Databases: Theory, Design, and Implementation, chapter 22, pp. 563-579.
Benjamin/Cummings, 1993.

[YC91] C. Yau and G. S. W. Chat. TempSQL — a Language Interface to a Temporal Relational
Model. Information Sc. & Tech., pp. 44—60, October 1991.

50

