Now in TSQL2

September 26, 1994

A TSQL2 Commentary

The TSQL2 Language Design Committee

Title Now in TSQL2

Primary Author(s) James Clifford, Curtis Dyreson, Richard T. Snodgrass,
Tomés Isakowitz and Christian S. Jensen

Publication History April 1993. TemplS Technical Report #42.
September 1994. TSQL2 Commentary.

TSQL2 Language Design Committee

Richard T. Snodgrass, Chair University of Arizona
rts@cs.arizona.edu Tucson, AZ

Tlsoo Ahn AT&T Bell Laboratories
ahn@cbnmva.att.com Columbus, OH

Gad Ariav Tel Aviv University
ariavg@ccmail.gsm.uci.edu Tel Aviv, Israel

Don Batory University of Texas
dsb@cs.utexas.edu Austin, TX

James Clifford New York University
jcliffor@is-4.stern.nyu.edu New York, NY

Curtis E. Dyreson University of Arizona
curtis@cs.arizona.edu Tucson, AZ

Ramez Elmasri University of Texas
elmasri@cse.uta.edu Arlington, TX

Fabio Grandi Universita di Bologna
fabio@deis64.cineca.it Bologna, Italy

Christian S. Jensen Aalborg University
csj@iesd.auc.dk Aalborg, Denmark

Wolfgang Kéfer Daimler Benz
kaefer/fuzi.uucp@germany.eu.net Ulm, Germany

Nick Kline University of Arizona
kline@cs.arizona.edu Tucson, AZ

Krishna Kulkarni Tandem Computers
kulkarni_krishna@tandem.com Cupertino, CA

T.Y. Cliff Leung Data Base Technology Institute, IBM
cleung@vnet.ibm.com San Jose, CA

Nikos Lorentzos Agricultural University of Athens
eliop@isosun.ariadne-t.gr Athens, Greece

John F. Roddick University of South Australia
roddick@unisa.edu.au The Levels, South Australia

Arie Segev University of California
segev@csr.lbl.gov Berkeley, CA

Michael D. Soo University of Arizona
soo@cs.arizona.edu Tucson, AZ

Suryanarayana M. Sripada European Computer-Industry Research Centre
sripada@ecrc.de Munich, Germany

Copyright © 1994 James Clifford, Curtis Dyreson, Richard T. Snodgrass, Tomés Isakowitz and Chris-
tian S. Jensen. All rights reserved.

Abstract

“Now” is a distinguished timestamp value used by many temporal data model proposals. In this
paper, we propose a new kind of event, a now-relative event, that more accurately captures the
semantics of “now.” We discuss query language constructs, representation, and query processing
strategies for such values. We demonstrate that these values incur no storage overhead and nominal
additional query execution cost. The related concepts of “infinite future” and “infinite past” are also
considered.

1 Introduction

Nowis an English noun meaning “at the present time” [18]. Now is also a distinguished timestamp value
in many temporal data model proposals. In this commentary, we give precise, but informal, semantics
for this familiar term and propose representations, and query language constructs for supporting now in
TSQL2. We also explore the related concepts of “infinite future” and “infinite past.”

In general, we treat now as a variable that is assigned a specific time during query or update
evaluation. The time that is assigned to the variable depends upon when the query or update is evaluated.
We call the time assigned to the variable now the reference time as it is specific to the reference frame of
the observer; in the case of now the observer is the query (or update). Now appears in SQL-92 though
the reserved words CURRENT DATE, CURRENT_TIME, and CURRENT_TIMESTAMP.

This discussion of now adds to the set of temporal values and types developed elsewhere [7, 17]. In
particular, now is a distinguished kind of datetime, rather than a interval or period. A datetime is a fixed
point on an underlying time-line whereas a period is an anchored segment of the time-line demarcated by
two datetimes. An interval is the duration between two datetimes, an unanchored segment of the time-
line. Two distinguished datetimes currently exist: beginning, which is the earliest time on the underlying
time-line (valid or user-defined time), and forever, which is the latest time.

2 Now in User-defined and Valid Time

A common use of now is to indicate that a fact is valid until the current time [1, 2, 8, 9, 12, 13, 19, 23].
For example, suppose that Jane began working as a faculty member for State University on 06/01/94.
Figure 1 shows the relevant tuple from the university’s employment history (the FACULTY1 relation).
Jane started working as an Assistant professor at State University on 06/01/94, as indicated by the
“valid time” attribute (for the examples in this paper we assume a timestamp granularity of one day).
The variable now, appearing as the terminating datetime in the valid-time period for Jane’s employment
tuple, represents a currently unknown future time when Jane will stop working for State University. The
result of a query that requests the current faculty members will include Jane.

The informal semantics of this value is that Jane is a faculty member until we learn otherwise. As
the current time inexorably advances, the interpretation of now also changes to reflect the new current
time. Some authors have called this concept “until changed” instead of “now” [21, 22], but the semantics
is the same.

Other data models use forever or oo as the terminating period datetime, as shown in Figure 2
[3, 15, 16, 20]. Forever is the largest representable timestamp value, that is, the one furthest into the

FACULTY1
NAME | RANK || VALID-TIME

| Jane | Assistant || ’[06/01/94 - now]’ |

Figure 1: Jane’s employment tuple

FACULTY2
NAME [RANK _|| VALID-TIME

| Jane | Assistant || ’[06/01/94 - forever]’ |

Figure 2: Jane’s employment tuple with a large upper bound

future. This value admits that we do not know when Jane will depart the company, and so assumes that
she will be working forever.

One limitation of using forever is that it is overly optimistic: forever is a long time into the future!
In SQL and in IBM’s DB2, forever is about 8,000 years from the present [5, 11]; in our more liberal
proposal, it is approximately 18 billion years from the present time [6]. Hence, to assert that Jane will
be employed until forever is most assuredly incorrect (others have also noted that a terminating time
of oo or forever, has erroneous implications for the future [12]). A related limitation is that when Jane
departs from the company, forever must be revised with the date of her departure; but the revised date
will be an entirely separate time, unrelated to forever.

An alternative way to view this problem is that there is a difference between the actual and expected
times of a fact. On a day-to-day basis, we expect Jane to remain employed. A database that uses forever
as the terminating time of her employment tuple (very optimistically) records her expected employment,
while a database that uses now records only her actual employment, the time she has worked to the
current time.

2.1 Why use Now?

Suppose that instead of using the variable now as the terminating time in the tuple in Figure 1, we use
a ground time, i.e., a particular date. Then as time advances and Jane remains an Assistant professor
at State University, the terminating time on Jane’s tuple must be updated each day to record when she
worked. While this representation is faithful to our knowledge at any point in time, it is it is unrealistic
to assume that the terminating time will be continuously updated as time advances. It is also unclear
who should do the updating, as the database has no indication of which timestamp values are stable and
which are continuously changing. For these reasons, it is more convenient to use the variable now.

2.2 Now-relative Datetimes

In this section we introduce a new kind of datetime, called a now-relative datetime. A now-relative
datetime is a datetime that is located at a given offset from, or relative to, now, or the reference time.
Now-relative datetimes are a proper subset of the general notion of a parameterized datetime. We show

FACULTY3
NAME | RANK || VALID-TIME

| Jane [Assistant || ’[06/01/94 - (now + 3 days)]’ |

Figure 3: Using a now-relative datetime

below that now-relative datetimes are very useful.

The terminating time in Jane’s employment tuple shown in Figure 1 is a now-relative datetime.
For this datetime, the offset is a zero-length interval. By using now-relative datetimes, we can more
accurately record our “actual” knowledge of Jane’s employment with State University.

As an example, assume that all changes to the faculty database are made 3 days prior to when
they take effect, then Jane’s employment should extend from when she was hired to 3 days after now
as shown in Figure 3. Here the terminating timestamp value is a rather complex datetime. It is an
expression involving the variable now and a interval, in this case, 3 days, indicating the punctuality of
updates. We recommend support for only those now-relative datetimes that indicate an offset from now,
e.g., support for the addition operator. Now-relative datetimes involving multiplication (or division),
such as DATE ’2#*now’, are not included in this proposal.

An interval is the duration between two datetimes, an unanchored segment of the time-line.

The processing of a now-relative datetime is quite interesting. First the variable now is bound to
the reference time. Next, the arithmetic involving the interval (if any) is performed. In essence, the
processing of a now-relative datetime is a non-relative datetime, calculated by substituting the reference
time for now and subtracting (or adding) the interval. Finally the resulting tuple is used as expected in
the query. For example, consider the processing of the tuple in Figure 3 on 07/09/94, e.g.,

< Jane, Assistant,' [06/01/94 — now + 3days]’ > .
First now is bound to the reference time, 07/09/94. Next the interval arithmetic is performed:
07/09/94 + 3 days = 07/12/94,

resulting in the tuple
< Jane, Assistant,’' [06/01/94 — 07/12/94'] > .

The resulting tuple is then used in the rest of the query. The variable now is always ground prior to its
use in a query. This is because the TSQL2 semantics is based upon tuples without variables, (especially,
the semantics of arithmetic operations). We do not currently propose extending the semantics to support
“unground” tuples or values.

2.3 An Aside: Forever and Beginning

The symbol forever used in a tuple has the following interpretation: forever = co. Here, 0o is a special
time in the temporal universe that is greater than any other time in that universe. As a consequence,
we point out that the symbol forever is in fact not a variable, but a constant. The special symbol
beginning is treated similarly (as —o0).

FACULTY4
NAME | RANK || VALID-TIME

| Jane [Assistant || *[06/01/94 - 06/13/94]’ |

Figure 4: Executing the insert with |now|

3 Now at Run-time

Now is always bound to the current reference time when used in a query. There is one important
exception to this maxim, the nobind () function discussed below. First consider the query given below.

SELECT NAME, RANK
FROM FACULTY
WHERE DATE ’now’ OVERLAPS VALID(FACULTY)

(CURRENT DATE is equivalent to DATE ’now’.) This query retrieves all the current employees, that is, all
those employee tuples that overlap DATE ’now’ in valid-time. The semantics of the temporal variable
[now| in the query requires that it be bound to the time when the query is evaluated. Thus for example,
if the query is evaluated on July 9, then this query is equivalent to:

SELECT NAME, RANK
FROM FACULTY
WHERE DATE °07/09/1994° OVERLAPS VALID(FACULTY)

Note that the query might subsequently be evaluated at some other date, for example July 31, at which
time the variable DATE ’now’ would be bound to that time.

We do, however, provide a function that prevents now from being bound during evaluation of a
query or update. The function is called nobind(). nobind() is a signal to the compiler to suspend
generation of the “code” that binds a temporal value. nobind () can only appear in the target list of an
insert or modify statement, and will generate a compile-time error if it appears elsewhere. We do not
currently allow nobind () to appear in a select. To emphasize the difference between nobind () and its
absence, consider the following three insertions.

INSERT INTO FACULTY VALUES (Jane, Assistant, PERIOD(DATE ’June 1’, NOBIND(DATE ’now’)))
INSERT INTO FACULTY VALUES (Jane, Assistant, PERIOD(DATE ’06/01/1994°, DATE ’now’))

INSERT INTQ FACULTY VALUES (Jane, Assistant, PERIOD(DATE ’now’, NOBIND(DATE ’now’)))

Assume that all three updates were performed on June 13. The first update will store the tuple shown in
Figure 1; the second update will store the tuple shown in Figure 4; and the third, Figure 5. In general,
nobind () supports the insertion of now-relative datetimes, intervals, and periods into the database;
without nobind () these temporal values would be bound during execution of a query or update.

FACULTY5
NAME | RANK || VALID-TIME

| Jane | Assistant || ’[06/13/94 - now]’ |

Figure 5: Executing the insert with the period from DATE ’now’ to NOBIND(DATE ’now’)

FACULTY
NAME | RANK || TRANS-TIME

| Jane | Assistant || ’[06/01/94 - now]’ |

Figure 6: Jane’s employment tuple in a transaction-time relation

4 Now in Transaction Time

The transaction time concept that heretofore has been labeled with “now” is somewhat simpler than the
valid time concept of now. The problem with now in transaction time is that the concept is misleadingly
called “now.”

Transaction time denotes the time period between a fact being stored in the database and the fact
being (logically) deleted from the database [14]. It is an orthogonal concept to valid time, in that it
concerns the history of the database, as opposed to the history of the enterprise being modeled.

Transaction-time timestamps are supplied automatically by the DBMS during updates (valid-time
timestamps are generally supplied by the user). Specifically, insertions initialize the starting transaction
time to the “current time” and the terminating transaction time to now. (There is an additional require-
ment that the transaction time be consistent with the transaction serialization order.) Updates change
the terminating time of now to the value of the current transaction time. Hence, in transaction-time
relations, deletion is logical. The information is not physically removed from the relation, rather it is
tagged as no longer current by having a terminating time different from now. Physical deletion never
occurs in a transaction-time relation.

As an example, consider the transaction-time relation shown in Figure 6. The distinct semantics
of transaction time yields a different interpretation of this relation as compared with the one shown in
Figure 1. The start of the transaction time period indicates that this tuple was stored in the database
on 06/01/94, e.g., the database first became aware that Jane was a faculty member on that date. The
period ends at now, indicating that we still believe that Jane is an Assistant professor at State University.
When we learn on 07/10/94 that Jane left State University, we will logically delete this tuple by changing
the period to ’[06/01/94 - 07/10/94]°.

4.1 The Label “Now” in Transaction Time

In transaction time, a tuple timestamped with a terminating transaction time of now means that this
tuple has not yet been logically deleted [23]. But the label “now” actually obscures this meaning. Strictly
speaking, it implies that every current tuple was deleted by the current transaction! In Figure 6, if the
current time is 07/09/94, then a strict interpretation of a terminating time of “now” suggests that the

FACULTY
NAME | RANK || TRANS-TIME

| Jane | Assistant ” ’[06/01/94 - forever]’

Figure 7: Using forever in a transaction-time relation

FACULTY
NAME | RANK _|| TRANS-TIME

| Jane | Assistant H ’[06/01/94 - until changed]’|

Figure 8: Using until changed in a transaction-time relation

terminating time is 07/09/94 (we used exactly the same interpretation for “now” in valid time). This is
not what was intended.

4.2 The Label “Forever” in Transaction Time

As with valid time, some data models address this problem by using “forever” instead of “now,” as
shown in Figure 7 [15, 3, 4, 20]. And as before, we immediately encounter other difficulties. The strict
interpretation of this tuple is that a transaction executing a (very) long time in the future will logically
delete this tuple from the relation. In the meantime, it will remain in the database. If, on 07/10/94, it
becomes known that Jane has left State University, then we logically delete this tuple by changing the
terminating time to 07/10/94. Such a change is inconsistent with the previous terminating time, thus
implying that the label “forever” is not an adequate solution. In this one sense, “now” is somewhat more
appropriate.

4.3 The Label “Until Changed” in Transaction Time

A more precise label than “now” or “forever” for the transaction-time concept of “not yet logically
deleted” is “until changed.” The most recent transaction for a fact is considered the current state of that
fact, until changed by some later transaction. Querying the current state, i.e., in a rollback operation,
considers all tuples with a terminating time of until changed, and no other tuples. We advocate using
the label “until changed” instead of the label “now” in transaction time to make clear the special,
transaction-time specific meaning of now, and to ensure that updates are consistent with, and in fact
a refinement of, currently stored information. For our running transaction-time example, this would
appear as shown in Figure 8.

“Until changed” is a distinguished transaction-time literal, appearing in a datetime or period
constant. It has no counterpart in valid time (using “until changed” instead of “now” avoids potential
confusion with “now” in valid time, although some authors use “until changed” in valid time [21, 22]).
Also, it can only be used as the terminating transaction time; it is nonsensical to use it as the starting
time.

We emphasize that until changed is not a different variable than now, merely a different label for

the same variable. The label expresses the unique, transaction time semantics for the variable now.

5 Summary

In temporal databases now is a commonly used value. In this document we developed the concept of a
now-relative datetime, outlined timestamp formats to store now-relative datetimes, and considered the
impact of now-relative datetimes on query processing.

We propose that support for now be added to TSQL2. This support requires few changes to the
data model, now will be handled by simply replacing it with the reference time during query or update
evaluation. We allow an interval “offset” to be coupled with now resulting in a now-relative datetime
which is indispensable to modeling some kinds of temporal information. We also advocate use of the
unary function NOBIND() to distinguish the mention of now from its use in a query. We further noted a
difference in the transaction-time and valid-time uses of now. To highlight this difference we recommend
using “until changed” as the transaction-time label for now and “now” as the valid-time label. The
naming convention is enforced by each calendar during input and output of temporal constants. Finally,
we anticipate that timestamp operation efficiency will remain high, even for these complex datetimes.

In closing, we note that adding now to TSQL2 requires no schema level or syntax changes to the
language and minimal changes to the temporal algebra. Some changes must be made to the timestamp
representation and operations, but these changes were planned for in the initial timestamp design.

Acknowledgements

This work was supported in part by NSF grants ISI-8902707 and ISI-9302244, IBM contract #1124 and
the AT&T Foundation.

References
[1] G. Ariav, A. Beller, and H.L. Morgan. A temporal data model. Technical Report DS-WP 82-12-05,
Decision Sciences Department, University of Pennsylvania, December 1984.

[2] M.A. Bassiouni and M.J. Llewellyn. A relational-calculus query language for historical databases.
Computer Languages, 17(3):185-197, 1992.

[3] J. Ben-Zvi. The Time Relational Model. PhD thesis, University of California at Los Angeles, 1982.

[4] G. Bhargava and S. Gadia. Achieving zero information loss in a classical database environment. In
International Conference on Very Large Databases, pages 217-224, Amsterdam, August 1989.

[5] C. J. Date and C. J. White. A Guide to DB2, volume 1, 3rd edition. Addison-Wesley, Reading,
MA, September 1990.

[6] C. E. Dyreson and R. T. Snodgrass. Timestamp semantics and representation. Information Systems,
18(3):143-166, 1993.

[7] C.E. Dyreson and R.T. Snodgrass. The TSQL2 Timestamp Representation. Technical report,
TSQL2 Design Committee, 1993.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

A

R. Elmasri, G. Wuu, and Y. Kim. The time index - an access structure for temporal data. In
International Conference on Very Large Databases, Brisbane, Australia, August 1990.

S. K. Gadia. A homogeneous relational model and query languages for temporal databases. Trans-
action on Database Systems, 13(4):418-448, December 1988.

C.S. Jensen, J. Clifford, S.K. Gaida, A. Segev, and R.T. Snodgrass. A glossary of temporal database
concepts. ACM SIGMOD Record, 21(3), September 1992.

J. (ed.) Melton. Solicitation of Comments: Database Language SQL2. American National Standards
Institute, Washington, DC, July 1990.

S. B. Navathe and R. Ahmed. A temporal relational model and a query language. Information
Sciences, 49:147-175, 1989.

N. Sarda. Algebra and query language for a historical data model. The Computer Journal, 33(1):11—
18, February 1990.

R. Snodgrass and I. Ahn. A taxonomy of time in databases. In SIGMOD, pages 236-246, Austin,
TX, May 1985.

R. T. Snodgrass. The temporal query language tquel. Transactions on Database Systems, 12(2):247—
298, June 1987.

R. T. Snodgrass. An Overview of TQuel, chapter 6. Benjamin/Cummings, 1993.

M. Soo, C.E. Dyreson, and R. Snodgrass. User-defined time in tsql2. Technical report, TSQL2
Design Committee, 1993.

J. B. Sykes, editor. The Concise Ozxford Dictionary. Oxford University Press, Oxford, England,
1964.

A U Tansel. Modelling temporal data. Information and Software Technology, 32(8):514-520, October
1990.

S. Thirumalai and S. Krishna. Data organization for temporal databases. Technical report, Raman
Research Institute, India, Bangalore, India, 1988.

G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with granularity of time in temporal databases.
In Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering, Trondheim, Norway, May
1991.

G. Wiederhold, S. Jajodia, and W. Litwin. Integrating temporal data in a heterogeneous environ-
ment. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal
Databases. Press, 1993.

C. Yau and G. S. W. Chat. Tempsql — a language interface to a temporal relational model. Infor-
mation Sc. & Tech., pages 44—60, October 1991.

Modified Language Syntax

The organization of this section follows that of the SQL2 document. The syntax is listed under corre-
sponding section numbers in the SQL2 document. All new or modified syntax rules are marked with a
bullet (“e”) on the left side of the production.

Where appropriate, we provide disambiguating rules to describe additional syntactic and semantic
restrictions. We assume that the reader is familiar with the SQL2 proposal, and that a copy of the
proposal is available for reference.

A.1 Section 5.2 <token>

One reserved word was added.

<reserved word> ::=
. | NOBIND

A.2 Section 5.3 <literal>

No new syntax is introduced, but the allowable datetime, interval, and period literals is expanded to
support indeterminate values.

<datetime string> ::=

. <determinate datetime string>

. <now-relative datetime string>

. <indeterminate now-relative datetime string>

. <now-relative with indeterminate datetime string>

<interval string> ::=
. <now-relative interval string>

Additional syntax rules:

1. A <datetime string> is any sequence of characters not containing a single <quote>.

Case:

e The value of a <datetime string> is the special value until changed if the <datetime string>
is identical to the value of the until_changed_string property.

e The value of a <datetime string> is the special value now if the <datetime string> is identical
to the value of the now_string property. This special value, when bound in an executed
statement, is identical to the value of CURRENT_TIMESTAMP.

e Let A be a valid <determinate interval string>, representing the interval B. Let C be a string
consistent with the sign_format property, which can include references to the field sign. If
the value of the now_relative_datetime_format property, with the now field replaced with the
value of the property now_string, the determinate_interval field replaced with A, and the sign
field replaced with C, is identical to the <datetime string>, then the value represented by
the <datetime string> is the now-relative datetime now + B or now - B, dependening on
whether the sign field value is 0 or 1.

e Let A be a valid <now-relative datetime string>, representing the datetime B. Let C be
a valid <determinate datetime string>, representing the datetime D. Let E be a string

consistent with the distribution_format property, which can include references to the field
distribution_name. If the value of the indeterminate_now_relative_datetime_format property,
with the now_relative_datetime field replaced with B, the determinate_datetime field replaced
with D, and the distribution field replaced with E, is identical to the <indeterminate now-
relative datetime string>, then the value represented by <indeterminate now-relative datetime
string> is the indeterminate now-relative datetime with lower support B, upper support D,
and distribution as named in E.

Let A be a valid <indeterminate interval string>, representing the interval B, with lower
support C, upper support D, and distribution E. Let F be a string consistent with the
sign_format property, which can include references to the field sign. If the value of the
now_relative_with_indeterminate_interval_datetime_format property, with the now field replaced
with the value of the property now_string, the indeterminate_interval field replaced with A,
and the sign field replaced with F, is identical to the <now-relative with indeterminate date-
time string>, then the value represented by the <now-relative with indeterminate datetime
string> is the indeterminate datetime with lower support now + C or now - C depending on
whether the sign field value is 0 or 1, upper support D, and distribution E.

2. An <interval string> is any sequence of characters not containing a single <quote>.

Case:

e Let A be a valid <determinate datetime string>, representing the datetime B. Let C be a

string consistent with the sign_format property, which can include references to the field sign,
whose value is restricted to being 1. If the value of the now_relative_interval_format property,
with the now field replaced with the value of the property now_string, the datetime field
replaced with A, and the sign field replaced with C, is identical to the <now-relative interval
string>, then the value represented by the <now-relative interval string> is the now-relative
interval now - B.

A.3 Section 6.14 <datetime value function>

The nobind function is added.

<datetime value function> ::=

NOBIND <left paren> <datetime literal> <right paren>
NOBIND <left paren> <column reference> <right paren>

Additional general rules:

1. A NOBIND function can only appear in the target list of an insert or modify statement. Any other
use of a nobind will generate a compile-time error.

B Section 6.7?7 <interval value function>

The nobind function is added.

10

<interval value function> ::=
. NOBIND <left paren> <interval literal> <right paren>
. NOBIND <left paren> <column reference> <right paren>

Additional general rules:

1. A NOBIND function can only appear in the target list of an insert or modify statement. Any other
use of a nobind will generate a compile-time error.

C Section 6.77 <period value function>
The nobind function is added.

<period value function> ::=
. NOBIND <left paren> <period literal> <right paren>
. NOBIND <left paren> <column reference> <right paren>

Additional general rules:

1. A NOBIND function can only appear in the target list of an insert or modify statement. Any other
use of a nobind will generate a compile-time error.

C.1 Section 13.7 <delete statement: searched>
Additional general rules:

1. If T is a valid-time table, and the <valid value> is omitted, then the default valid value specified
in the <table definition> is assumed. If there was no default value specified, then the interval

PERIOD(TIMESTAMP CURRENT_TIMESTAMP, NOBIND(TIMESTAMP ’now’))

is assumed.

C.2 Section 13.9 <update statement: positioned>
Additional general rules:

1. If T is a transaction-time or bitemporal table, the transaction time of the appended or update
tuple is PERIOD (TIMESTAMP CURRENT_TIMESTAMP, NOBIND(TIMESTAMP ’until changed’)).

11

C.3 Section 13.10 <update statement: searched>
Additional general rules:

1. If T is a transaction-time or bitemporal table, the transaction time of the appended or update
tuple is PERIOD(TIMESTAMP CURRENT_TIMESTAMP, NOBIND(TIMESTAMP ’until changed’)).

12

