Vacuuming in TSQL2

September 16, 1994

A TSQL2 Commentary

The TSQL2 Language Design Committee

Title Vacuuming in TSQL2

Primary /—\uthor(s) Christian S. Jensen

Publication History September 1994. A TSQL2 Commentary.

TSQL2 Language Design Committee

Richard T. Snodgrass, Chair

rts@cs.arizona.edu

Ilsoo Ahn
ahn@cbnmva.att.com
Gad Ariav
ariavg@ccmail.gsm.uci.edu
Don Batory

dsb@cs.utexas.edu
James Clifford
jcliffor@is—4.stern.nyu.edu
Curtis E. Dyreson
curtis@cs.arizona.edu
Ramez Elmasri
elmasri@cse.uta.edu
Fabio Grandi
fabio@deis64.cineca.it
Christian S. Jensen
csj@iesd.auc.dk
Wolfgang Kafer
kaefer)fuzi.uucp@germany.eu.net
Nick Kline
kline@cs.arizona.edu
Krishna Kulkarni
kulkarni_krishna@tandem.com
T. Y. Cliff Leung
cleung@vnet.ibm.com
Nikos Lorentzos
eliop@isosun.ariadne-t.gr
John F. Roddick
roddick@Qunisa.edu.au
Arie Segev
segev@csr.lbl.gov
Michael D. Soo
soo@cs.arizona.edu
Suryanarayana M. Sripada
sripada®@ecrc.de

University of Arizona
Tucson, AZ

AT&T Bell Laboratories
Columbus, OH

Tel Aviv University

Tel Aviv, Israel

University of Texas

Austin, TX

New York University

New York, NY

University of Arizona
Tucson, AZ

University of Texas
Arlington, TX

Universita di Bologna
Bologna, Italy

Aalborg University
Aalborg, Denmark

Daimler Benz

Ulm, Germany

University of Arizona
Tucson, AZ

Tandem Computers
Cupertino, CA

Data Base Technology Institute, IBM
San Jose, CA

Agricultural University of Athens
Athens, Greece

University of South Australia
The Levels, South Australia
University of California
Berkeley, CA

University of Arizona
Tucson, AZ

European Computer-Industry Research Centre

Munich, Germany

Copyright (© 1994 Christian S. Jensen. All rights reserved.

Abstract

Updates, including (logical) deletions, to temporal tables that support transaction time result in insertions
at the physical level. Despite the continuing decrease in cost of data storage, it is still, for various reasons, not
always acceptable that all data be retained forever. Therefore, there is a need for a new mechanism for the
vacuuming, i.e., physical deletion, of data when such tables are being managed.

We propose syntax and informal semantics for vacuuming of data from temporal tables in TSQL2 which
support transaction time. The mechanism allows—at schema definition time, as well as later, during the life
span of a table—for the specification of so-called cut-off points. A cut-off point for a table is a timestamp
that evaluates to a time instant. The timestamp may be either absolute or a bound or unbound now-relative
timestamp. Conceptually, the cut-off point indicates that all data, current in the table solely before the (current
value of the) timestamp, has been physically deleted. Vacuuming based on cut-off points is an example of a more
general notion of vacuuming where arbitrary subsets of data may be physically deleted.

1 Introduction

Base tables supporting transaction time are ever-growing because all logical updates, including deletions, trans-
form into insertions at the physical level. This contrasts snapshot tables where logical and physical deletion
coincide. Logical deletion in TSQL2 is covered in a separate commentary. As there is a need for physical deletion
capabilities in snapshot tables (and valid-time tables), there is also a need for such capabilities in temporal tables
supporting transaction time (i.e., transaction-time tables and bitemporal tables).

This commentary is divided into two parts. In the first, the general notion of vacuuming and associated
concepts are introduced and motivated. It is shown that straightforward physical deletion may adversely affect
the usefulness of query results and that special attention thus should be devoted to the design of appropriate vac-
uuming facilities. We then give reasons why disciplined vacuuming is a highly desirable capability. Subsequently,
the important concepts of vacuuming are presented by means of a larger example and a survey. In the second
part, a specific design of vacuuming capabilities for TSQL2 is presented’. The goal has been to design minimal
facilities that are easily implemented and yet provide adequate functionality.

2 Motivation and Introduction to the Concept of Vacuuming

Support for transaction time brings with it the potential for accessing any past database state. Physical deletion,
by its very nature, limits this potential, and while this may be desirable, care should be taken to avoid an adverse
impact on the utility of the data that is retained in the database.

To get an initial understanding of some of the aspects of vacuuming, consider a scenario where we are
studying an author’s perception of a particular historical phenomenon. Our source is a new printing of the
author’s one-hundred year old diary. Now consider four possible cases.

1. It is guaranteed that our new printing has the same content as had the original diary.

In this case, our source is reliable and we can trust its contents.

2. The publisher removed from the new printing certain parts of the author’s original description of the
historical phenomenon, but described clearly what was removed.

L An earlier design was presented in the TSQL2 tutorial that appeared in ACM SIGMOD Record, Vol. 23, No. 3,
September, 1994.

In this situation, our source may or may not be of less use to us. If we are not interested in the aspects
that were removed, the source is as valuable as in the first case. If we are interested in the aspects that
have been removed, the source has lost value, and we will find the omissions unfortunate.

3. We know that the publisher may have removed parts of the author’s original description of the historical
phenomenon.
In this case, the source is unreliable and may be of little or no value to us. It may have value, as we know
that it may be inaccurate only by omission. Still, without knowledge of the type of omission (e.g., omission
of complete paragraphs or omission of words that distort the meaning of individual sentences), much care
must be taken to avoid being mislead.

4. Without informing us and in conflict with current practice, the publisher has removed certain parts of the
author’s description of the historical phenomenon.
This case is highly problematic. We believe that the source is accurate, but it is not. Thus, the source is
now potentially worse than no source at all.

The publisher’s removal of material is in principle similar to physical deletion from a temporal database. The first
case corresponds to a temporal database system that does not support physical deletion. Here, it is guaranteed
that the past states of the database are retained unmodified and never change. In terms of the example, once
text is entered into the diary, it remains there, and we know that the diary is complete.

As will become clear, it is, however, necessary for a temporal database system to support vacuuming
capabilities. Then we would like a database system to behave as in the second case, rather than the third and
fourth cases.

It now becomes interesting to investigate trade-offs between specific types of removals and their effect on
the utility of the remaining text. For example, if the publisher is allowed to remove individual words such as
“not” and “never,” the text may become incomprehensible or misleading (it lacks safe interpretations). It may
be better to restrict deletions to complete paragraphs or larger textual units. The ease with which removals are
explained to the reader is important. Another important issue is exactly how the deletions should be reported
to the reader.

It is part of the task of designing vacuuming facilities to choose functionality that is sufficiently powerful,
is easily described to the user, and has a minimal effect on the utility of the data that is retained.

Below, we first outline the reasons why physical deletion is necessary and then explore in more detail some
problems and solutions [JM90] when designing vacuuming facilities.

Many reasons exist why flexible physical deletion is necessary. In the example, deletion from the original
diary may be necessary for these reasons.

o Without reductions, the existing diary is very lengthy and boring. Sections concerning the author’s opinions
on local politics are of no interest to the general readership.

o While an interesting diary, the publisher has strict page limits that necessitate omissions.

e Certain material in the diary must be omitted to respect confidentiality or national security interests.

In a general database context, there are also good reasons for physical deletion. In many installations,
ever-growing tables will eventually outgrow the mass storage devices available (e.g., magnetic disks). In order
to guarantee continuous operation, physical deletion capabilities are necessary. It must be possible to delete
data that are no longer needed, or when additional space needs to be freed for more important data. Next, the
efficiency of query processing generally degrades as tables grow [AS86]. For this reason, means of controlling the
table sizes are highly desirable. Finally, many countries have strict laws that require the ability to delete certain
records of previous history (while requiring that other records be retained). Customers may demand that no
information about them exists in some database. Other laws may require that certain records be kept for a fixed

duration of time. For example, information related to personal income tax must, in some countries, be retained
by the citizens for five years. Business policies also pose similar requirements.

In correspondence with the first case in the diary scenario, a database systems supporting transaction time
and without physical deletion has a very desirable property: any query that is not now-relative [DSJ93] will
always return the same answer independently of when it is issued (a now-relative query is simply a query that
includes a now-relative timestamp, i.e., a timestamp that is evaluated to a different value when evaluated at
different times). When physical deletion is introduced, it should be clear that this property no longer holds.

When designing a vacuuming facility, two different approaches may taken to “minimize the damage.”

e The system can attempt to guarantee that unless the contrary is explicitly indicated, query results are
not affected by vacuuming [JM90]. With this approach, users are maximally shielded from the fact that
vacuuming may occur and may affect query results. Assuming that an attempt is made to not vacuum any
useful data, most users need not know that vacuuming occurs at all.

Query modification techniques [Sto75] and algorithms for testing equivalence among query expressions
[ASU79] may be utilized to implement this functionality efficiently.

What type of notification, then, should be given when a query result may be affected by vacuuming? Again,
there are several options. For simplicity, we consider only interactive queries.

— The system could simply refuse to evaluate the query on the grounds that vacuuming may have
affected the result. Since the result could still be useful, this option seems too restrictive.

— The system could return the result, but also notify the user that the result may be affected by
vacuuming. With this design, the user can inspect the descriptions of what has been vacuumed,
interpret the query on that basis, and perhaps issue additional queries. For this to be a good option,
descriptions of what has been vacuumed should be easily accessible. It seems appropriate for the
system to retain, accumulate, and organize this type of information. That would ensure easy access
and completeness.

— The system could return the result and also provide the user with queries that are “similar” to the
original query, but that are not affected by vacuuming. This is the most user-friendly, but also the
most complex solution. With this solution, the user may not need to inspect potentially complicated
descriptions of what has been vacuumed, but may choose to ignore vacuuming if one of the system-
proposed queries are satisfactory.

Techniques for query specialization and generalization [Cha90, Mot84] that generalize query modifi-
cation and equivalence preserving transformations may be utilized here.

e The system makes no guarantees and offers minimal assistance. It requires the users to be up-to-date with
the vacuuming that has been performed on the database and to always take this information into consider-
ation when formulating and interpreting queries. As was the case above, the system should automatically
retain, accumulate, and organize the descriptions of what has been vacuumed.

Above, users did not need to worry about vacuuming unless explicitly told to by the system. Here, the
user must check any query with respect to what has been vacuumed.

When it is possible to make complex vacuuming specifications and when queries are generally not affected
by vacuuming, the first approach may be preferable. However, when only simple vacuuming specifications are
allowed, the second, simpler approach seems acceptable.

A few additional issues should be mentioned. First, not all deletion specifications are appropriate. A
specification stating that data between one and two years old should be vacuumed is an example. Data more
than two years old cannot be deleted, and data not yet two years old will eventually become two years old and can
therefore not be deleted. In consequence, nothing can be deleted and the specification is at best useless. Next,
deletion specifications should not delete data needed by other specifications, integrity constraints, and views.

The actual physical deletion is performed by an asynchronous vacuuming demon according to the specifi-
cations. While vacuuming logically has eager semantics, any degree of eagerness or laziness can be adopted for

the actual physical removal of base data, and a variety of conditions triggering the demon can be employed. This
high degree of flexibility makes it possible to achieve efficient vacuuming implementations.

3 Using Cut-off Points for Vacuuming in TSQL2

Cut-off points provide basic vacuuming. We first present the required language extensions, then discuss the
properties of the vacuuming facilities.

3.1 Language Extensions for Vacuuming

We initially consider specification of vacuuming at schema-definition time [RS87]. Then we consider specification
of vacuuming after schema-definition time [JM90]. We base the presentation on a sample table, defined as follows
on August 1, 1994.

CREATE TABLE EmpDep
(Name CHARACTER (30) NOT NULL,
Dept CHARACTER (30) NOT NULL)
AS TRANSACTION YEAR (2) TO DAY;

We have created a table EmpDep with two attributes recording in which departments employees work. This table
is declared as a transaction time table. Transaction-time timestamps are to the underlying granularity of DAY,
with a range of 100 years.

Next, assume that the following updates are performed.

On August 4, 1994:
INSERT INTO EmpDep
VALUES (’Jake’, ’Ship’)
On August 9, 1994:
INSERT INTO EmpDep
VALUES (’Kate’, ’Load’)
On August 19, 1994:
UPDATE EmpDep
SET Dep TO ’Load’
WHERE Emp = ’Jake’ AND Dep = ’Ship’
On August 22, 1994:
INSERT INTO EmpDep
VALUES (’Kate’, ’Ship’)

Conceptually, this results in the following instance (seen as of 8/25/94).

Emp Dep T

Jake Ship || {8/5/94,8/6/94,8/7/94, ...,8/19/94]}

Jake Load || {8/20/94,8/21/94,8/22/94, ...,8/25/94, uc}
Kate Load || {8/10/94,8/11/94,8/12/94, ...,8/25/94, uc}
Kate Ship || {8/23/94,8/24/94, 8/25/94, uc}

In this instance, “uc” is a special symbol that indicates that the information recorded by the tuple is still current,
i.e., current “until changed.” The symbol allows the system to currectly update the instance with additional
time values as time advances [JS92, JS93]. With this example available, we proceed by considering a sample
specification of a cut-off point (assume that EmpDep has not yet been created).

CREATE TABLE EmpDep
(Name CHARACTER (30) NOT NULL,
Dept CHARACTER (30) NOT NULL)
AS TRANSACTION YEAR (2) TO DAY
VACUUM NOBIND(DATE ’now - 7 days’);

A cut-off point of NOBIND(DATE ’now - 7 days’) has been specified, meaning that only data current within the
most recent seven days is available to queries.

Vacuuming is a logical notion which is independent of the particular representation chosen for the temporal
table. Logically, facts with transaction times that overlap a cut-off point lose those transaction times that are
before the cut-off point, and facts that have transaction times completely before the cut-off point are removed.
Logically, the table will contain no transaction times before the cut-off point. Thus, with the above specification
in effect, on August 29, 1994, the sample table will have the following contents.

Emp Dep T

Jake Load || {8/22/94,8/23/94,8/24/94, ...,8/29/94, uc}
Kate Load || {8/22/94,8/23/94,8/24/94, ...,8/29/94, uc}
Kate Ship || {8/23/94,8/24/94,8/25/94, ...,8/29/94, uc}

While unbound now-relative cut-off points generally seem more useful for schema definitions than bound
now-relative and absolute cut-off points, bound now-relative and absolute cut-off points may also be used. For
example, VACUUM DATE ’August 3, 1994’ in a schema definition issued on August 1, 1994, will result in a table
that does not retain any data until August 3, 1994.

The default VACUUM clause is VACUUM DATE ’now’, a bound now-relative cut-off point. Then, if part of a
schema definition issued on August 1, 1994, now will evaluate to that date meaning that the table will not contain
data current before the time it is created. Thus, if no VACUUM clause is present, no vacuuming is done. Specifying
an bound now-relative or absolute cut-off point that is before the time bound to DATE ’now’ generates a warning
and is otherwise ignored. Specifying a VACUUM clause for other tables than transaction time and bitemporal tables
results in an error.

It follows from the above that any transaction time and bitemporal table has associated exactly one cut-off
point. This time is recorded in an appropriate system table.

In a system with vacuuming, it is possible that the same query yields different results when issued before
and after vacuuming. However, when vacuuming is specified only at schema definition time, the complication is
completely avoided. This is so because the user has never had access to data that was later deleted. Note that
this proposal does support the specification of vacuuming after schema definition time.

Vacuuming may be implemented by query modification and should pose no performance problems. When
computing a query, the system simply replaces all references to tables that have been vacuumed by expressions
that compute what is left according to the cut-off points. For example, consider a query that retrieves the salary
record of Jake from the EmpDep table. Assume that the table was created on August 1, 1992, and that its cut-off
point is April 1, 1993. Then the original query is simply modified to a new query that retrieves the part of Jake’s
salary record that was current during and after April 1, 1993.

With this approach, the system can perform the actual physical deletion when this is most convenient
without affecting the semantics of the vacuuming specifications. In the extreme, no deletions need be performed
at all. Often doing no physical deletions defeats the purpose. All data related to facts current only before the
cut-off point or data related alone to those parts of timestamps of facts that are before the cutoff point may be
deleted. What can be physically deleted clearly depends on the physical representation chosen for the table.

We next consider the specification of vacuuming after schema-definition time. This is done using the ALTER
clause.

As an example, assume that the following vacuuming specification takes effect on August 31, 1994.

ALTER TABLE EmpDep
VACUUM NOBIND (DATE ’now - 7 days’)

The meaning follows the same rules as defined above. From August 31, 1994, this specification will have
the same effect as had the earlier now-relative specification at schema-definition time.

With the exception that this type of vacuuming may be specified any time after the table is defined, the
functionality is the same as before.

Subsequent vacuuming replaces existing vacuuming specifications and must be at least as restrictive. Thus,
it is not immediately possible to relax vacuuming of EmpDep to retain the facts pertaining to the two most recent
weeks, 1.e., to issue

ALTER TABLE EmpDep
VAGUUM NOBIND(DATE ’now - 14 days’)

This specification cannot be honored because data pertaining to the period between one and two weeks ago may
already have been deleted. Instead, it is possible to issue this vacuuming specification.

ALTER TABLE EmpDep
VACUUM DATE ’now - 7 days’

In this specification now is bound when the specification is issued. So at the time it is issued, this specification is
exactly as restrictive as the specification it replaces and is thus allowed. Note also that the specification, as time
passes, allows more data than than did the earlier, unbound now-relative specification. Consequently, seven days
later it possible to issue a new specification as follows.

ALTER TABLE EmpDep
VAGUUM NOBIND(DATE ’now - 14 days’)

This way, an unbound now-relative vacuuming specification may be replaced by a less restrictive, unbound
now-relative specification.

When transaction time support is added to a table after it initial creation, i.e., using an ALTER ...ADD
TRANSACTION clause, the default cut-off point is set to the time when the ALTER clause takes effect.

3.2 Properties of the Proposal

Vacuuming is specified on a per table basis. For each table, exactly one cut-off point is recorded in the system
catalog. Only data current after the cut-off point is available to queries. Both absolute and now-relative cut-off
points may be specified. A now-relative cut-off point is of the format DATE ’now =+ span’ where span is some
span, i.e., duration of time. (In SQL terminology, a span is an INTERVAL.) Now-relative spans may be left unbound
using the NOBIND function as follows: NOBIND(DATE ’now =+ span’). In this case, the value of the cut-off point
changes as time advances.

The cut-off point of a table is initially set to the time when the table was created. A vacuuming specification
may change a cut-off point to a time that is either not before the current cut-off point or is after the current
time, at the time the specification takes effect.

For example, with the current cut-off point being NOBIND (DATE ’now - 14 days’), an ALTER statement
that takes effect on August 31, 1994, may change the cut-off point to DATE ’August 17, 1994’ or to NOBIND (DATE
'now - 7 days’). Assuming that the present time is August 31, 1994, a current cut-off point of DATE ’September
15’ may be replaced by a new cut-off point, DATE ’September 1, 1994’

Vacuuming of a table may be specified at any time during the lifespan of the table.

In summary, the flexibility with respect to what can be vacuumed is restricted to a practical minimum.
Vacuuming is specified solely in terms of the transaction times of tuples, and it is possible only to vacuum data
currently earlier than a chosen cut-off point. It is not possible to vacuum, e.g., all information for a particular
employee or group of employees, just as it is not possible to vacuum, e.g., salary information for all employees
not currently employed.

Yet, with these restrictions, vacuuming is still useful. In addition, this limited functionality of specifications
provides simplicity to other aspects of vacuuming.

It is easy to keep record (in the data dictionary) of the vacuuming that has been specified for a table. For
each table, exactly one cut-off point needs to be recorded at any time. By the same token, it is easy for users to
comprehend what vacuuming has been specified for a table.

As another consequence, it is easy to (re-)specify vacuuming for tables. To prepare a correct vacuuming
specification, it is necessary only to pick a cut-off point that is either not before the current cut-off point or is
after the current time.

More importantly, we have been able to exploit the fact that, with the restrictions we have imposed, the
effect of vacuuming on the results of queries is also relatively straightforward.

Without going into detail, a general, user-friendly system would be designed so that users need not worry
at all about what has or has not been vacuumed. The system would be capable of detecting when vacuuming
may have made a difference to the result of a query and of communicating this to the user in a convenient and
effective manner. For an interactive user, the system could inform the user about what vacuuming specifications
may have affected the result of the query, or it could provide the user with a list of queries similar to the original
query and which are not affected by the vacuuming.

By allowing only cut-off points, we have been able to choose a simpler design. Specifically, we require users
to know about the cut-off points (as stored in the system tables) for all tables and to then be able to decide
whether or not (and how) queries may be affected by vacuuming.

Finally, efficient implementation appears unproblematic. By a simple application of query modification
techniques that database systems generally already support, it is possible to implement vacuuming specifications
in a simple and efficient manner.

Briefly, the system uses the cut-off points to modify queries on vacuumed tables so that data that has been
specified as vacuumed are excluded from consideration when computing the result. This is similar to the type of

query modification that is employed when views are used in queries. To modify a query that uses a view, the view

name is simply replaced by its definition. To modify a query on a vacuumed table, the name of the vacuumed
table is simply replaced by the query expression that yields the part of the table that has not been vacuumed,
i.e., the part of the table that is after the most recently specified cut-off point. Since vacuuming expressions are

very simple, this added query modification step is also very simple. This query modification strategy ensures that
vacuuming specifications are given the right semantics, and it also allows the system to do the actual deletion of
data asynchronously, e.g., when system load is low.

Acknowledgements

Discussions with Richard Snodgrass helped greatly in making various design decisions leading to a minimal,
SQL-compatible design. | am also very thankful for enlightening discussions with the additional members of the
TemplS group, Curtis Dyreson, Michael Soo, Nick Kline, and Michael Bohlen.

This work was supported in part by the Danish Natural Science Research Council under grants 11-1089—
1 SE and 11-0061-1 SE.

References

[AS8&6] I. Ahn and R. T. Snodgrass. Performance Evaluation of a Temporal Database Management System.
In Proceedings of the 1986 ACM SIGMOD Conference, pages 96-107, Washington, DC, May, 1986.

[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among Relational Expressions. SIAM Journal
of Computing, 8(2):218-246, May 1979.

[Cha90] S. Chaudhuri. Generalization as a Framework for Query Modification. In Proceedings of the Sizth
International Conference on Data Engineering, pages 138-145, February 1990.

[DS92] C. E. Dyreson and R. T. Snodgrass. Time-stamp Semantics and Representation. Technical Report
TR 92-16a, Department of Computer Science, University of Arizona, July 1992.

[DSJ93] C. E. Dyreson, R. T. Snodgrass, and C. S. Jensen. On the Semantics of “now” in Temporal Databases.
TemplS Technical Report 42, Department of Computer Science, University of Arizona, April 1993.

[JM90] C. S. Jensen and L. Mark. A Framework for Vacuuming Temporal Databases. Technical Report CS-
TR-2516/UMIACS-TR-90-105, Department of Computer Science, University of Maryland, College
Park, MD, August 1990.

[JS92] C. S. Jensen and R. T. Snodgrass. Proposal of a Data Model for the Temporal Structured Query
Language. TemplS Technical Report 37, Department of Computer Science, University of Arizona,
Tucson, AZ, July 1992.

[JS93] C. S. Jensen and R. T. Snodgrass. The TSQL2 Data Model. Commentary, TSQL2 Design Committee,
1993.

[Mel90] J. Melton (ed.). Solicitation of Comments: Database Language SQL2. American National Standards
[nstitute, Washington, DC, July 1990.

[Mot84] A. Motro. Query Generalization: A Technique for Handling Query Failure. In Proceedings of the First
International Workshop on Fzpert Database Systems, pages 314-325, October 1984.

[RS87] L. Rowe and M. Stonebraker. The Postgres Papers. Technical Report UCB/ERL M86/85, University
of California, Berkeley, CA, June 1987.

[Sto75] M. Stonebraker. Implementation of Integrity Constraints and Views by Query Modification. Memoran-

dum, ERL-M514, Electronics Research Laboratory, College of Engineering, University of California,
Berkeley 94720, March 1975.

A Modified Language Syntax

The organization of this section follows that of the SQL-92 standard. The syntax is listed under corresponding
section numbers in the SQL-92 document. All new or modified syntax rules are marked with a bullet (“e”) on
the left side of the production.

Where appropriate, we provide disambiguating rules to describe additional syntactic and semantic restric-
tions. We assume that the reader is familiar with the SQL-92 standard, and that a copy of the standard is
available for reference.

A.1 Section 5.2 <token> and <separator>
One reserved word was added.

<reserved word> 1=
. VACUUM

A.2 Section 11.3 <table definition>

The production for the non-terminal <table definition>> was previously augmented with an additional, optional
clause. Here, that clause is extended with a <vacuuming definition>.

<table definition> ::=
CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table-name>
<table elements>
[<temporal definition>]
. [<vacuuming definition>]
[ON CcOMMIT { DELETE | PRESERVE } ROWS]

One production is added.

<vacuuming definition> ::=
. VACUUM <datetime value expression>

Additional general rules:

1. The <vacuuming definition> is only allowed when the table supports transaction time.

2. If <vacuuming definition> is not specified, VACUUM TIMESTAMP CURRENT TIMESTAMP is assumed (the de-
fault).

A.3 Section 11.10 <alter table statement>

The <alter table action> is augmented with the ability of changing vacuuming definitions.

<alter table action> ::=
. <alter vacuuming definition>

<alter vacuuming definition> ::=

. VACUUM <datetime value expression>

Additional syntax rules:

1. For the <cast valid definition>, T shall be a valid-time or bitemporal table.

Additional general rules:

1. The <datetime value expression> must, when the <alter table statement> is issued, evaluate to a time
value that is either not before the current cut-off point or is after the current time.

2. When an <alter table statement> with an <add transaction time> clause, but with no <alter vacuum-
ing definition>, is applied to a table that does not support transaction time, the time the <alter table
statement> takes effect is used as the cut-off point of the altered table.

A.4 Section 21.3.8 TABLES base table

ALTER TABLE TABLES ADD COLUMN
VACUUM_CUT-O0FF TIMESTAMP

10

