Update in TSQL2

September 16, 1994

A TSQL2 Commentary

The TSQL2 Language Design Committee

Title Update in TSQL2
Primary Author(s) T. Y. Cliff Leung, Christian S. Jensen and Richard T. Snodgrass

Publication History September 1994. TSQL2 Commentary.

TSQL2 Language Design Committee

Richard T. Snodgrass, Chair University of Arizona
rts@cs.arizona.edu Tucson, AZ

Tlsoo Ahn AT&T Bell Laboratories
ahn@cbnmva.att.com Columbus, OH

Gad Ariav Tel Aviv University
ariavg@ccmail.gsm.uci.edu Tel Aviv, Israel

Don Batory University of Texas
dsb@cs.utexas.edu Austin, TX

James Clifford New York University
jcliffor@is-4.stern.nyu.edu New York, NY

Curtis E. Dyreson University of Arizona
curtis@cs.arizona.edu Tucson, AZ

Ramez Elmasri University of Texas
elmasri@cse.uta.edu Arlington, TX

Fabio Grandi Universita di Bologna
fabio@deis64.cineca.it Bologna, Italy

Christian S. Jensen Aalborg University
csj@iesd.auc.dk Aalborg, Denmark

Wolfgang Kéfer Daimler Benz
kaefer/fuzi.uucp@germany.eu.net Ulm, Germany

Nick Kline University of Arizona
kline@cs.arizona.edu Tucson, AZ

Krishna Kulkarni Tandem Computers
kulkarni_krishna@tandem.com Cupertino, CA

T.Y. Cliff Leung Data Base Technology Institute, IBM
cleung@vnet.ibm.com San Jose, CA

Nikos Lorentzos Agricultural University of Athens
eliop@isosun.ariadne-t.gr Athens, Greece

John F. Roddick University of South Australia
roddick@unisa.edu.au The Levels, South Australia

Arie Segev University of California
segev@csr.lbl.gov Berkeley, CA

Michael D. Soo University of Arizona
soo@cs.arizona.edu Tucson, AZ

Suryanarayana M. Sripada European Computer-Industry Research Centre
sripada@ecrc.de Munich, Germany

Copyright © 1994 T. Y. Cliff Leung, Christian S. Jensen and Richard T. Snodgrass. All rights reserved.

Abstract

This document proposes syntax and informal semantics for update in TSQL2.

1 Informal Definition

1.1 Insertion

Here is an informal specification on TSQL2 modification statements. We consider a valid-time employee table as
an example.

CREATE TABLE Employee (Name CHAR(10), Dept CHAR(10), Salary INTEGER)
AS VALID

Next, a tuple is inserted which records Ben’s salary of 30K and indicates that he was in the Toy department
in January of 1993 and from April 1, 1993 until the end of time (forever). Conceptually, the table shown next
results.

Name Department | Salary \

[1 Jan 1993, 31 Jan 1993] U

Ben Toy 30 [1 Apr 1993, forever]

Suppose that we then record that Ben was in Book department from February 1, 1993 until February 28,
1993.

INSERT INTO Employee
VALUES (’Ben’, ’Book’, 30) VALID PERIOD ’[1 Feb 1993, 28 Feb 1993]°

Note that the use of valid clause is similar to its use in valid-time projection—it specifies when the fact
is/was valid. After the insertion, the following table results.

Name Department | Salary \

[1 Jan 1993, 31 Jan 1993] U
[1 Apr 1993, forever]
Ben Book 30 [1 Feb 1993, 28 Feb 1993]

Ben Toy 30

Note that inserting new tuples is allowed even if there exists a value-equivalent tuple in the table whose time
element overlaps with the new tuples, unless explicit constraints prohibit this type of insertion. In this situation,
the two tuples will be coalesced, i.e., a single, value-equivalent tuple is created which has as its timestamp the
union of the valid-time elements of the two argument tuples. The next example illustrates this.

INSERT INTO Employee
VALUES (’Ben’, ’Book’, 30) VALID PERIOD ’[15 Feb 1993, 15 Mar 1993]°

This insertion produces the following table.

Name Department | Salary \

[1 Jan 1993, 31 Jan 1993] U
Ben Toy 30 [1 Apr 1993, forever]
Ben Book 30 [1 Feb 1993, 15 Mar 1993]

Tuples may be inserted into a table even without the VALID clause. In such cases, the inserted tuples will
be assigned a default valid-time element. This default is specified as part of the table definition.

If no default valid-time element is specified for the table, an element [present, now] is assumed. For
example,

INSERT INTO Employee
VALUES (’Ben’, ’Sales’, 30)

results in this table when issued on March 20, 1993.

Name Department | Salary \

[1 Jan 1993, 31 Jan 1993] U
Ben Toy 30 [1 Apr 1993, forever]
Ben Book 30 [1 Feb 1993, 15 Mar 1993]
Ben Sales 30 [20 Mar 1993, now]

Insert statements with subqueries are treated as above. For example, the following statement inserts tuples
of all employees currently in the Toy department.

INSERT INTO NewDept
SELECT Name, ’Newtoy’, Salary
VALID PERIOD ’[1 Feb 1993, 31 Dec 19931’
FROM Employee
WHERE Dept = ’Toy’

1.2 Delete Statement

There are two different situations, depending on whether or not the VALID clause is used. First, let us consider a
delete statement with the VALID clause.

Suppose that Ben was not an employee during PERIOD ’[1 Feb 1993, 15 Mar 1993]°.

DELETE FROM Employee
WHERE Name = ’Ben’
VALID PERIOD ’[1 Feb 1993, 15 Mar 1993]°

The information to be deleted is that in tuples with Name value Ben and valid sometime during the specified
interval. Thus, for tuple that satisfy the WHERE condition, those parts of their elements that overlap with the
interval [1 Feb 1993, 15 Mar 1993] are deleted.

Note that deletion may (or may not) result in empty valid-time elements (when the original element is
covered by the element specified in the VALID clause).

A tuple with with an empty valid-time element is removed from the table—mo tuple can have an empty
valid-time element as it contains no information. Also observe that the original elements of tuples are not required
to cover the valid-time element specified in the VALID clause. For example, if the original element is [1 Mar 1993,
31 Mar 1993], the resulting time element is [16 Mar 1993, 31 Mar 1993].

As another example, the following delete statement asserts that Ben no longer works in Toy department,
effective April 1, 1993.

DELETE FROM Employee
WHERE Name = ’Ben’ AND Dept = ’Toy’
VALID PERIOD ’[1 Apr 1993, forever]’

Like in SQL2, no tuple will be removed and an error code is returned if no tuple satisfies the matching
qualification.

Finally, we consider the case where the delete statement does not include a VALID clause.

DELETE FROM Employee
WHERE Name = ’Ben’

This delete statement contains no explicit VALID clause, but uses implicitly a default valid-time element
for deletion. The default [present, forever] is assumed, and the statement is thus equivalent to the following.

DELETE FROM Employee
WHERE Name = ’Ben’
VALID PERIOD(CURRENT_DATE, TIMESTAMP ’forever’)

1.3 Update Statement

Updating non-time attributes is treated the same as regular SQL2 update. For example, the following statement
changes Ben’s department from 'Toy’ to 'Book’:

UPDATE Employee
SET Dept TO ’Book’
WHERE Name = ’Ben’ AND Dept = ’Toy’

Note that the valid-time elements of qualifying tuples remain unchanged. Thus, updating a tuple can be
modeled as deleting the original tuple and inserting a tuple with new data values, except that the valid-time
element value comes from the original tuple.

Updating the valid-times of tuples requires the use of the VALID clause. For example, the following statement
changes Ben’s department from 'Toy’ to 'Book’ effective during [1 May 93, 31 May 93].

UPDATE Employee
SET Dept TO ’Book’ VALID PERIOD ’[1 May 93, 31 May 93]°
WHERE Name = ’Ben’ AND Dept = ’Toy’

In this case, updating a tuple can be modeled as deleting the original tuple and inserting a tuple with new
data values including the new valid-time element as specified in the VALID clause.

Acknowledgements

This work was supported in part by NSF grants ISI-8902707 and ISI-9302244, IBM contract #1124 and the
AT&T Foundation. In addition, support was provided by the Danish Natural Science Research Council under
grants 11-1089-1 SE and 11-0061-1 SE.

A DModified Language Syntax

The organization of this section follows that of the SQL2 document. The syntax is listed under corresponding
section numbers in the SQL2 document. All new or modified syntax rules are marked with a bullet (“»”) on the
left side of the production.

Where appropriate, we provide disambiguating rules to describe additional syntactic and semantic restric-
tions. We assume that the reader is familiar with the SQL2 proposal, and that a copy of the proposal is available
for reference.

A.1 7.1 <row value constuctor>

A tuple can now include a valid time.

<row value constructor> ::=
<row value constructor element>

. <left paren> <row value constructor list> <right paren> [<valid value>]
<row subquery>

<valid value> =
° VALID { <element value expression> | <interval value expression>
| <event value expression> ‘ <event set value expression> }

A.2 Section 13.7 <delete statement: searched>

The production for the non-terminal <delete statement: searched> is augmented with an additional, optional
clause. This clause references the non-terminal <valid clause> defined for the SELECT statement.

<delete statement: searched> ::=
DELETE FROM <table name>
[WHERE <search condition>]
. [<valid value>]

Additional general rules:

1. If T is a valid-time table, and the <valid value> is omitted, then the default valid value specified in the
<table definition> is assumed. If there was no default value specified, then the interval
PERIOD (CURRENT_DATE, TIMESTAMP °’forever’))

is assumed.

A.3 Section 13.10 <update statement: searched>

<update statement: searched> ::=
UPDATE <table name>
SET <set clause list>
. [<valid value>]
[WHERE <search condition> |

