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1 Introduction

TSQL2 is a declarative query language, and as such, requires a procedural (algebraic) equivalent for
implementation. In this document, we describe such an algebraic language. We undertook this design in
order to show that TSQL2 can be implemented efficiently, with minimal extension of existing techniques.

As TSQL2 provides a consistent extension of SQL-92, we had a parallel goal in the construction of
this algebra. Namely, whenever possible, we extend, rather than modify, the snapshot relational algebra
to accommodate the TSQL2 data model. This extension is performed to allow the use of established
optimization strategies and evaluation algorithms. In addition, we have the somewhat conflicting goal of
completeness, i.e., any query expressible in TSQL2 should be implementable as an algebraic expression.
We informally demonstrate how TSQL2 language clauses are supported in the algebra.

We first describe an algebra for the conceptual data model underlying TSQL2 [SAA194]. As
TSQL2 supports six types of relations, snapshot, valid-time state, valid-time event, transaction time,
bitemporal state, and bitemporal event, we describe six corresponding operator sets. This algebra is
minimal in that each defined operator is used by some construct in the language. We also show how
language constructs map to the algebra, thereby providing an informal demonstration that the algebra
has sufficient expressive power to implement the language.

With this (conceptual) algebra in hand, we continue by describing a representational algebra that
supports the conceptual semantics, but is better suited for efficient query processing. We assume a 1NF
tuple-timestamping data model, thereby allowing the adaptation of well-understood storage organization,
query optimization, and query evaluation techniques. The correspondence between the conceptual and
representational algebras is described.

The algebra represents a single, but important, portion of a database management system (DBMS)
supporting TSQL2. We briefly discuss how such a DBMS can be realized. As with the algebra, we start
with a conventional DBMS architecture and minimally extend it with temporal support, thereby using
established technologies and algorithms whenever possible.

The remainder of the paper is organized as follows. In Section 2, we define the conceptual algebra
using the tuple relational calculus. The description of the algebra is organized around the specific data
models supported by the language. A brief discussion of additional operators that can be defined in terms
of the core operators in provided in Section 3. In Section 4, we examine the expressive power of the defined
algebra, and informally argue that the algebra has sufficient power to express most TSQL2 queries. We
also argue that the algebra is minimal in the sense that each algebraic operator is necessary to implement
some language construct. In Section 5, we discuss implementation. We show how the semantics of the
conceptual algebra can be supported in a INF data model that is well-suited for query evaluation, and
argue that efficient support for the semantics of the conceptual model can be achieved. We then address
the larger question of how to construct a DBMS architecture supporting TSQL2. Limitations and future
improvements of the algebra is the subject of the last section.

2 Conceptual Algebra

In this section, we describe an extended relational algebra that supports TSQL2. This extended algebra
operates on conceptual relations as described in the TSQL2 data model commentary [JSS94].
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Figure 1: Snapshot Operators

As stated above, a goal of this design is completeness. We describe the support for each of the six
TSQL2 relation types, snapshot, valid-time state and valid-time event, transaction time, and bitemporal
state and bitemporal event, beginning with the snapshot model.

Throughout the paper we use the following conventions. Operators superscripted with ¥S or V®
denote valid-time state or valid-time event operators, respectively; similarly, the superscript ™ indicates
a transaction-time operator, and the superscripts % and B® indicate bitemporal state and bitemporal
event operators, respectively.

2.1 Snapshot Support

The snapshot algebra described here serves two purposes. First, it is used to implement queries on
snapshot databases, as supported by the base SQL-92 language. Second, it provides a set of base
operators that we later extend, and augment, with temporal support.

2.1.1 Formalization

Following Maier [Mai85], a relation schema R is a set of attribute names {A;, Ao, ..., A, }. Corresponding
to each attribute name A;, 1 < i < n, is a set D; called the domain of 4;. We define D = D; x Dy X ...X
D,,. A relation r on schema R, sometimes denoted as r(R), is a finite set of mappings 1, 2, ..., T

from R to D. Hence r = {x1,%2,...,2;}. Note that r is a set, hence Vi,5,1 < ,j <k, i# j = z; # z;.

2.1.2 Snapshot Operators

Figure 1 lists the operators on snapshot relations. In the figure, X represents a set of attribute names
in R, £(X) is a set of expressions involving X, P is a predicate on expressions over the attributes of R,
and N is a relation name. The operators are named projection, selection, Cartesian product, left-outer
join, union, difference, and rename, respectively. Tuple calculus definitions of these operators are found
elsewhere [Mai85].

2.2 Valid-Time Support

In this section, we modify the snapshot algebra just defined to support valid time, thereby producing a
valid-time algebra. As TSQL2 supports two varieties of valid-time relations, namely, valid-time state and



valid-time event relations, we define a set of operators for each. We begin by extending the formalization
of snapshot relations to incorporate valid time.

2.2.1 Formalization

A valid-time relation schema R = {A;, A,, ..., A,|V} is a finite set of explicit attribute names {4, A, . . .,
A} and a distinguished timestamp attribute V. Corresponding to each attribute name A;, 1 <i <,
is a set D; called the domain of A;. We define D = Dy x Dy x ... x D,,. We use T, to represent the set
of all valid times, and denote the power set of T, by P(T}). The domain of V is P(T,).

We use R¢ to represent the explicit attributes of R, i.e., R® = {41, Aa,...,A,}. A relation r on
schema R, denoted as r(R), is a finite set of mappings 1, 2, .. ., ) from R® to D, where associated with
each z;, 1 <14 <k, is a non-empty timestamp attribute t; € P(T,). Hence r = {z1]| t1, 22| t2, ..., k| tr }-
As in the snapshot model, Vi, j,1 <i,j < k, i # j = z; # x;, i.e., tuples with identical explicit attribute
values, so-called value-equivalent tuples, are disallowed.

ExAMPLE: Consider a valid-time relation schema Emp = {Name, Dept | V}. Let the domain of the
Name attribute be the set {Al, Bill} and the domain of the Dept attribute be the set {Ship, Load}.
Then Emp® = (Name, Dept), and the domain of Emp®, D, is the Cartesian product {Al, Bill} x {Ship,
Load}.

For the valid-time attribute, let the domain of valid-times be isomorphic to the natural numbers
{0, 1, ... }. Then the domain of V= P({0,1,...}).

Figure 2 shows a relation Employee(Emp).

| Name Dept | v |
Al Ship | {10,...,15,20,...,25}
Al Load | {21,...,24}
Bl  Load | {35,...,45)

Figure 2: Employee Relation

Each tuple in the relation represents a single fact and when that fact was true in the modeled reality.
For example, the first tuple records the fact that Al worked for the Shipping department from times 10
through 15 and again from times 20 to 25. Notice that the timestamp associated with this tuple is truly
a set of chronons (representing a union of maximal time periods), rather than a contiguous period of
time.

Notice also that the relation obeys the restriction that value-equivalent tuples are disallowed. None
of the three tuples share the same values on both their Name and Dept attributes. O

Notationally, we use the subscript p to represent a predicate on R, and the subscript r to represent a
function on the distinguished timestamp attribute V. All of the attribute-dependent functions of TSQL2
(and, consequently SQL-92), including those on user-defined time, are permitted within the operator
subscripts p and g. Capital letters A, B, and C (possibly subscripted) represent individual attributes
of R°. Similarly, capital letters X, Y, and Z represent subsets of R®. Lower case letters z, y, and z
(possibly subscripted) represent tuples in 7.



2.2.2 Valid-Time State Operators

Figure 3 lists the valid-time state operators. In the figure, vs represents a valid-time state relation, bs
represents a bitemporal state relation (defined in Section 2.4.1), and s represents a snapshot relation.

TE(x),F P V5 > US

o) 1 vs = Us

Mp i ¥S X - X US = US
N pop it US X U8 > US
UYS :vs X vs = vs

—VS i vs X vs = Us

PN’ 1 vS = Us

AT V5B i ys — bs
SNY®:vs — s

SLp® :vs — ws

Figure 3: Valid-Time State Operators

In comparison to the snapshot operators in Figure 1, we note that seven of the ten operators
are generalizations of their snapshot counterparts; only three additional operators not having snapshot
analogs are introduced. (In the operator set, the valid-time theta-join replaces the snapshot Cartesian
product as a base operator.)

Let X C R° be a subset of the explicit attributes of relation schema R. The valid-time projection
operator has two subscripts: a set of expressions £(X) to project, and an expression F' evaluating to a
valid-time element, which produces the timestamp of the result tuple. The expressions £(X) correspond
to the expressions present in the SELECT clause of a TSQL2 query. In the following definition, we use
E(z[X]) to mean the expressions £(X) evaluated using the attribute values of tuple z.

T ix),p(r) = {21EOHD [ Tz € v (o€ (X)] = E(2[X])A F(2[V]) C 2[V))A
Vzy, € r (E(z1[X]) = 2[E(X)] = F(z1[V]) C 2[V])A
Vit € 2[V] 3z2 € r (E(z2[X]) = 2[E(X)] At € F(z2[V]))A
z[V] # 0}

—

As the projection may produce value-equivalent tuples on £(X), the second line collapses each set of
value-equivalent tuples into a single result tuple. We term this process coalescing. The timestamp of the
result tuple is produced by the applying the function F' to the timestamps of each of the value-equivalent
tuples, and then unioning the results. The last line ensures that no spurious chronons are introduced.

In general, other operators, such as the slice operator SLy® (defined below), may produce non-
coalesced results. Technically, this violates the restriction that value-equivalent tuples are not allowed in
the data model. However, the presence of value-equivalent tuples is generally restricted to intermediate
query results. The projection operator can always be applied when a coalesced result is needed.



ExAMPLE: Let F' compute the intersection of a tuple’s valid time with the set {14,...,22}. Using the
Employee relation of Figure 2, the result of W}’f\,ame} VALID(Emplogee) N {14,... 22}(Employee) is shown below.

| Name | \Y% |
| Al | {14,15,20,21,22} |

The first two tuples in Figure 2 contribute to the single result tuple. The result is coalesced by the
projection. The last tuple in Figure 2 does not produce an output tuple since the resulting timestamp is
empty. O

Let P be a predicate on R. Then the selection of P on r, ¢}?, is defined as follows.
o (r)={z|z€r ANP(2)}

The valid-time selection operator is identical to its snapshot counterpart.

The valid-time theta-join, M}, is an n-way join of the n input relations ry, 7y, ..., rp. A result
tuple representing the concatenation of the input tuples z;, 1 < i < n, is produced if the predicate P is
satisfied. The timestamp of the result tuple is computed by the function F.

N};?}’;" (ri,79,...,rn) = {2t | 3zy€rm Iy €7y ...z, €1y
(P($1|t1, 1172|t2, e ,.’L‘nltn)/\
2[R§] = 21 [RS] A ... A 2[RE] = 2 [RE]A

2[V] = F(a1[V], 22[V], ..., 2a[V]) A 2[V] # 0)}

where m = X7, | R¢|

The valid-time natural join is defined in terms of this operator by specifying the identity function for P
and set intersection for F', and using valid-time projection.

ExampLE: To illustrate the valid-time theta-join we introduce a new relation Manages with schema
(Dept, MgrName | V). The contents of the Manages relation is shown below.

| Dept MgrName | )Y |
Ship George {11,...,22}
Load Dan {24,...,36}

Esr,r?ployee.Dept:Manages.Dept,VALID(Employee) N VALID(M anages) (Employee’ Manages)
produces a relation showing employees and their managers, by linking the relations through their com-
mon Dept attributes. The result of this expression is as follows. Using intersection for the timestamp
computation finds precisely those time periods when an employee worked for a department managed by
some manager.

The expression x



| Name Employee.Dept Manages.Dept MgrName | v |

Al Ship Ship George {11,...,15,20, 21, 22}
Al Load Load Dan {24}
Bill Load Load Dan {35,36}

For the family of outer-join operators, we only discuss the valid-time left outer-join, 71 =X’y v 72.
The right and full variants can be defined in a similar manner. Two tuples z; € r; and x5 € 2 produce
one or two output tuples, if they satisfy the predicate P. If P evaluates to TRUF then a result tuple is
generated which is the concatenation of z; and z,, with the result of F(z1[V], z3[V]) as the timestamp
value. A second result tuple is also produced. The explicit attribute values of this tuple are set to
the attribute values of x1, however, null values replace the attribute values of 5. The timestamp of
the resulting tuple is set to F'(z1[V],z2[V]). (In most cases, F' will be the difference function on the
argument timestamps.)

1 =N}?F,F’ ro = {Z(|R§|+‘R§‘+l) | dzi€ ridas € TQ(P(Z’1|t1,.’L'2|t2)/\
((z[R1] = =1 [Ri] A 2[R5] = 22[R5] A 2[V] = F(21[V], 22[V])V
(2[Ri] = m1[Ri] A 2[RS] =L A2[V] = F'(21[V], 22[V])) A 2[V] # 0)) }

To define the union operator, UYS, let both r; and ro be instances of R.

r UYSry = {2t | (32 € r; Jy € r2 (2[R?] = y[RE] A 2[R°] = 2[R°] A 2[V] = z[V] Uy[V]))V
(32 € 11 (2[B°] = 2[R°] A (=3y € ra(y[R°] = 2[R°])) A 2[V] = 2[V]))V
(Fy € r2 (2[R°] = y[R] A (=37 € ri (2[R°] = y[R])) A 2[V] = y[V]))}

The first line coalesces value-equivalent tuples in 7; and r3. The second line accounts for tuples in ry
that have no value-equivalent tuples in r5. The third line handles the symmetric case.

With r; and r» defined as above, valid-time state difference is defined as follows.

r =VSry = {2 |3z € ry ((2[R?] = z[R*])A
((By €2 (2[R°] = y[R] A 2[V] = 2[V] — y[V]) A 2[V] # D)V
(—3y € r2 (2[R°] = y[R*]) A 2[V] = z[V])))}

The last two lines compute the valid-time element, depending on whether a value-equivalent tuple may
be found in 5.

The operator py® accepts a valid-time state relation as an argument and returns the same relation
renamed to the subscript N. It is used when the same relation is referenced through different correlation
names.

The ATV®®S operator transforms a valid-time state relation into a bitemporal state relation.
(Bitemporal relation schemas are defined in Section 2.4.1.) Each tuple in the input relation produces
exactly one output tuple, whose timestamp is constructed as the cross product of the current transaction
time and the valid time of the input tuple.



In the following definitions, the function bi_chr computes the set of bitemporal chronons from the
set of argument transaction times and the set of argument valid times. The symbol ¢; denotes the current
transaction time.

bi_chr(T,V) ={(t,v) |[teTAveV}
AT VSRS (p) = {2+ | 3z € r(2[R¢] = 2[R®] A 2[T] = bi_chr({c:},z[V])}

The SN V® operator transforms a valid-time state relation into a snapshot relation, by simply re-
moving the timestamp associated with each input tuple.

SNYS(r) = {2 | 3z € r(2[R°] = 2[R°])}

For each tuple z € r, the slice operator SLy® generates possibly many result tuples, each value-
equivalent to z, and timestamped with a maximal period contained in z[V]. (As noted above, this
operator violates the restriction against value-equivalent tuples. The projection operator may be sub-
sequently applied to coalesce the result.) In this operator, the subscript p specifies that the operator
performs partitioning; it is not a predicate as for the selection and join operators.

Prior to defining the slice operator, we first derive the maximal periods from z[V]. The predicate
isContiguous determines if the valid-time element v is a set of contiguous chronons contained in the
valid-time element V.

TRUE it Vt € V(min(v) <t < maz(v) =t € v)

isContiguous(v, V) :{ FALSE otherwise

The function maxPeriods produces the maximal periods in the argument valid-time element V'
using isContiguous to determine the corresponding contiguous valid-time elements contained in V. In
the following definition, the functions min and maz return the smallest and largest chronons, respectively,
in their argument sets.

maxPeriods(V) = {[min(v), maz(v)] | isContiguous(v, V) A =3’ (isContiguous(v', V) Av C v')}

with the restriction that V¢ € V Jv € maz Periods(V)(min(v) <t < maz(v))

The first conjunct ensures that generated periods correspond to contiguous chronon sets in V. The
second conjunct ensures that the periods are maximal. The restriction ensures that no information is
lost.

The slice operator simply replicates the explicit attribute values of the tuples in the argument
relation and attaches a timestamp from the set of maximal periods.

SLYS(r) = {2 | 3z € r v € mazxPeriods(x[V])(2[R¢] = z[R¢] A 2[V] = v)}



ExampLE: Using the Employee relation of Figure 2, the result of SL5®(Employee) is shown below.

| Name Dept [ V |
Al Ship 10,15
Al Ship | [20,25
Al Load | [21,24
Bill  Load | [35,45

Notice that the tuple (Al, Ship, {10,...,15,20,...,25}) produces two tuples in the sliced relation cor-
responding to the two maximal periods [10,15] and [20,25] contained in its timestamp. The remaining
tuples each contribute a single tuple to the result since only a single maximal period is contained in their
timestamps. O

2.2.3 Valid-Time Event Operators

In the valid-time event model, the timestamp V associated with each tuple is a set of valid-time instants,
rather than a union of periods as in the valid-time state model. Hence, instants play the analogous role to
periods in the valid-time state model. In particular, the slicing operations on valid-time event relations
create a group of value-equivalent tuples each stamped with a single instant from the timestamp of the
input tuple.

With this slight distinction, the valid-time state and valid-time event operators are identical. Fig-
ure 4 summarizes the valid-time event operators. In the figure, ve represents a valid-time event relation,
be represents a bitemporal event relation (defined in Section 2.4.1), and s represents a snapshot relation.

VE .
TE(x),F Ve = ve

op 1 ve = ve

Mpj: Ve X - X ve — ve
=X P it VE X Ve = ve
UY® : ve x ve — ve

—VE 1 ve X ve — ve

PN" T ve = ve

AT VEEE : ve — be

SNY® :ve = s

SLy® : ve — ve

Figure 4: Valid-Time Event Operators

Comparing Figure 3 and Figure 4, we note that for each valid-time event operator, there is a
corresponding valid-time state operator. As the definitions of the valid-time event operators are nearly
identical to those of their valid-time state counterparts (modulo the appropriate superscripts, i.e., V2
rather than vV, and P® rather than ®%), we omit their definitions.

2.3 Transaction-Time Support

The algebra defined in the previous section supports valid-time which models changes in the real-world.
We now address the orthogonal issue of supporting transaction-time, which models the update activity



of the database. Unlike valid-time, there is no notion of event associated with transaction-time. Hence,
we define a single algebra for transaction-time relations.

As before, we begin by extending the snapshot formalization of Section 2.1.1, and continue by
discussing the semantics of the operators.

2.3.1 Formalization

A transaction-time relation schema R = {4;,As,...,A,| T} is a finite set of explicit attribute names
{41, A,,...,A,} and a distinguished timestamp attribute T. Corresponding to each attribute name A4;,
1 <i < mn,isaset D; called the domain of 4;. We define D = Dy x Dy X...x D,. We use T; to represent
the set of all transaction times, and denote the power set of T; by P (7). The domain of T is P(T3).

We use R to represent the explicit attributes of R, i.e., R® = {41, Aa,...,A,}. A relation r on
schema R, sometimes denoted as r(R), is a finite set of mappings x1, x2, ..., xx from R® to D, where
associated with each z;, 1 < i < k, is a non-empty timestamp attribute t; € P(1;). As for the valid-time
models, no value-equivalent tuples may be present in the relation, i.e., Vi, j,1 < i,j <k, i # j = x; # z;.
Hence r = {.’E1| t1;$2| t2, . ,.Z'k| tk}

All operators on transaction-time relations are superscripted with ™. The subscript p represents a
predicate on R; the subscript p represents a function on the distinguished timestamp attribute T.

2.3.2 Operators

Figure 5 shows the transaction-time operators. In the figure, ¢ represents a transaction-time relation,
and s represents a snapshot relation.

W;(X),F:t_)t
op:t—t

Mppit XXt =t
HNpppitxt—t
UT:txt—t
—Titxt—t
pyit—t
SN™:t—s
SLT:t—t

Figure 5: Transaction Time Operators

In comparison with the snapshot operators in Figure 1, we note that all transaction-time operators
except one are generalizations of some corresponding snapshot operator. The additional operator, SN,
transforms a transaction-time relation to a snapshot relation. Furthermore, we note that the set of
transaction time operators is a “subset” of the set of valid-time state or valid-time event operators, i.e.,
there is an analogous valid-time state operator for each transaction-time operator. As the semantics of
the transaction-time operators are nearly identical to the valid-time operators, modulo the timestamp
attribute name and the proper superscripts, we omit their definitions.



2.4 Bitemporal Support

Having defined operators for both valid-time and transaction-time relations, we now synthesize these
operators into operators that accept bitemporal relations as input.

As before, we begin by formalizing bitemporal relations. We then define operators on bitemporal
relations.

2.4.1 Formalization

A bitemporal relation schema R = {A4;,A4,,...,A,| T} is a finite set of explicit attribute names
{41, A,,...,A,} and a distinguished timestamp attribute T. Corresponding to each attribute name
A;, 1 <i<mn,is aset D; called the domain of A;. We define D = Dy x Dy x ... x D,. Let T; be the
set of all transaction times, and T, be the set of all valid times. We use P(T; x T,) to denote the power
set of the set of bitemporal chronons. The domain of T is P(T; x Ty).

We use R to represent the explicit attributes of R, i.e., R® = {41, Aa,...,A,}. A relation r on
schema, R, sometimes denoted as r(R), is a finite set of mappings x1, 2, ..., Zx from R® to D, where
associated with each z;, 1 < i < k, is a non-empty timestamp attribute t; € P(T; x T3,). We add the
explicit restriction that Vi, 5,1 <4,j <k, i #j = z; # ;. Hence r = {z1] t1, 22| t2,..., Tr| tr }.

In the following, the subscript p represents a predicate on R, and the subscript r represents a

function on the valid-time component of the distinguished timestamp attribute T.

2.4.2 Bitemporal Operators

Figure 6 shows the bitemporal state and bitemporal event operators. In the figure, bs represents a
bitemporal state relation, be represents a bitemporal event relation, vs represents a valid-time state
relation, ve represents a valid-time event relation, and t represents a transaction-time relation.

| Bitemporal State

Bitemporal Event |

T2(x),F - b8 = bs TZ(x),F * be = be

op 1 bs — bs o’ : be — be
N‘}?}?:bsx---xbs—)bs N?}":bex---xbe—)be
Npp gt bs X bs — bs Hp .t be X be — be
UPS : bs X bs — bs UPE : be X be — be
—BS: bs x bs — bs —BE : be x be — be
PN 1 bs — bs PN be — be

SN®%VS . bs — vs SN®®VE : be — ve
SNBST . bs — ¢ SN®®T :be — ¢

SL™® : bs — bs SL®" : be — be

SLg® : bs — bs SLE® : be — be

Figure 6: Bitemporal Operators
Comparing the operator set in Figure 6 to the previously defined operator sets shows that all of the

bitemporal operators are either direct generalizations of their snapshot counterparts, or generalizations
of the few additional operators defined for valid-time or transaction-time relations.
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In the following, we define the operators that differ from the valid-time state operators of Sec-
tion 2.2.2. The definitions of the remaining operators are easily generalized from the valid-time opera-
tors. As the definitions of the bitemporal state and bitemporal event operators are identical, modulo the
appropriate superscript, we omit the definitions of the bitemporal event operators.

The bitemporal theta-join is an n-way join. A result tuple representing the concatenation of the
input tuples x;, 1 < ¢ < n, is produced if the predicate P is satisfied. The valid time of a result tuple
is produced using the function F. If the intersection of the transaction time components of the input
tuples is non-empty then the timestamp of the result tuple is produced by the cross-product of this
intersection with the result of F. Otherwise, the transaction time of the result tuple defaults to the
current transaction time.

The function computeTrans returns the argument set of transaction times, if it is non-empty.
Otherwise, the singleton set containing only the current transaction time is returned.

T ifT#0

computeTrans(T) ={ {ct} otherwise

The timestamp of a result tuple is produced by the Cartesian product of the result of computeTrans on
the intersection of the transaction times of the input tuples, and the result of F'.

S n e
Mp g (P17, ) = {2Z=BDH | 3 e T2y €7y ... T2, €y

(P(.’L’lltl, .’L’Qltg, .. ,.’Enltn)/\
2[R§] = z1[RS) A 2[RS] = za[R§) A ... A z[RE] = 2, [RE]A
A[T] = bi_chr(T", V'))}

where T" = computeTrans(TRANSACTION(z; [T]) N TRANSACTION(z2[T]) N ... N TRANSACTION(z,[T]))

and V' = F(VALID(z[T]), VALID(z[T]), . . ., VALID(2,[T]))

Using bitemporal state projection and set intersection for F', it is possible to define the bitemporal state
natural join in terms of this operator.

For the family of outer-join operators, we only discuss the bitemporal state left outer-join. The
right and full variants can be defined in a similar manner. Two tuples z; € r; and z3 € r2 produce
one or two output tuples, if they satisfy the predicate P. If P evaluates to TRUE then a result tuple is
generated which is the concatenation of 1 and x2, with the result of F'(VALID(z[T]), VALID(z2[T])) as
its valid time. A second result tuple is also produced if z1[T] — z2[T] # 0. The explicit attribute values
of this tuple are set to the attribute values of x1, however, null values replace the attribute values of
x2. The valid time of the resulting tuple is set to F'(VALID(z1[T]), VALID(22[T])). Normally, F’ is the
difference function on timestamps.

r1 ZNIIBD?F,F/ ro = {Z‘RTH_‘R;H_I) | dzi€ ridas € T‘2(P(.’L‘1|t1,$2|t2)/\
((2[R{] = z1[R{] A 2[RS] = 2[RS] A 2[T] = bichr(T", V"))V
(2[Rf] = m1[R{] A 2[R5] =L Az[T] = bichr(T',V")) A 2[T] # 0)}

where T" and V' are as defined for the bitemporal theta-join, and V" = F'(VALID(z;[T]), VALID(z»[T])).

11



The SN ®%V® operator transforms a bitemporal state relation into a valid-time state relation, by
simply removing the transaction times associated with each input tuple.

SNP5VS(r) = {z(®*1) | 3z € r(2[R¢] = z[R¢] A 2[V] = {v ]| 3(t,v) € z[T]})}

The SN ®°7T operator transforms a bitemporal state relation into a transaction-time relation, by
simply removing the valid times associated with each input tuple.

SN®T(r) = {2("*t1) | 3z € r(2[R°] = 2[R*] A 2[T] = {t | 3(t,v) € z2[T]})}

The slice operators SL®® and SLp® generate possibly many result tuples from a single input tuple.
Each result tuple is value-equivalent to the input tuple. In the case of SL®°, the result tuples are
timestamped with a maximal transaction-time period and the valid-time element corresponding to that
transaction time. For SL5®, each result tuple is timestamped with a maximal non-overlapping rectangle
in bitemporal space.

In the following we use the meets and overlaps operators as defined in the language definition commentary
[SAATO4].

SLES(r) = {2(®*2) | 3z € r(2[R¢] = x[R?] A bi_chr(2[T], 2[V]) Cz[T])}

with the added restrictions that

Vz1,22 € SL®(r)(21[R®] = 22[R¢] = —(21[T] meets 22[T] A 21[V] = 25[V])A =(21[T] overlaps 25[T]))
Vz € rVt € z[T] 3z € SL®*(r)(2[R?] = z[R¢] A t € bi_chr(2[T],2[V]))

The first restriction ensures that the transaction-time periods are maximal, for a constant valid-time
element. The second restriction ensures that no information is lost by the operation.

SLES(r) = {z(™*?) | 3z € r(2|R¢] = z[R®]Abi_chr(2[T],z[V]) C z[T])}

with the added restrictions that

Vz1,22 € SLE®(r)(21[R®] = 22[R?] = (bi-chr(z1[T], 22[V]) N bi_chr(22[T], 22[V]) = OA
z1[T] meets 23[T] = 21[V] # z2[V]A
21[T] overlaps z2[T] = —(21[V] meets z2[V]))

Vz € rVt € z[T] 3z € SLp® (r)(2[R?] = 2[R¢] At € bi_chr(2[T], 2[V]))

The first restriction ensures that the resulting bitemporal rectangles do not overlap, that the transaction-
time periods are maximal (for a constant valid-time period), and that the valid-time periods are in fact
maximal. The second restriction ensures that no information is lost by the operation.

12



2.5 Summary

We have defined a conceptual algebra for TSQL2 implementation. The algebra consists of six operators
sets, one for each of the relation types supported by TSQL2. A salient feature of the algebra is that most
of the operators are simple generalizations of existing snapshot operators. Specifically, all but three of
the valid-time state and valid-time event operators, one of the transaction time operators, and four of
the bitemporal state and event operators are generalizations of corresponding snapshot operators.

A consequence of this design is that implementation of the algebra is able to make use of existing,
and well-understood, snapshot query optimization and evaluation techniques. As most operators are
snapshot extensions, adaptation of existing techniques is simplified. Moreover, since only a few new
operators are added we minimize the additional effort needed to extend query optimization to accom-
modate these operators, as well as the number of new query evaluation algorithms needed by the query
processor.

3 Extended Operators of the Conceptual Algebra

The following are useful valid-time operators that can be expressed in terms of the core operators de-
scribed in the previous section. Similar definitions are easily constructed for the transaction-time and
bitemporal models.

Let 1 and r5 be valid-time state or valid-time event relations on schemas R; and R,, respectively,
and let X = R{ N RS be the attributes they have in common.

The valid-time Cartesian product 71 X r5 is defined in terms of the 2-way valid-time theta-join as
follows.

V,2

v — ,
71 X7 T2 =T1 X rpyEyALID(r, ) VALID(rs) |2

With r; and r, valid-time relations over schemas R; and R,, respectively, as before, the 2-way
valid-time natural join of r; and ry, r; ®V:2 7y is defined as follows. (As before, ID denotes the identity
function.)

v,2 — .V v,2
L WTTT2 = 71'R‘;UR;,ID('FI M Ar=r2.A1A...AT1.Am=r2.Ap VALID(r1 ) VALID(r2) r2)

Valid-time intersection is defined using valid-time relational difference.
1 nv r9 =11 -V (Tl -V TQ)

Valid-time slice returns the set of tuples valid during a particular chronon. This operator is defined
in terms of a selection on a valid-time relation r. We define two variants of this operator. In the first,
result tuples retain the valid-time element associated with the original tuples.

7 (r) = 7R (0 oyrvars VALID(r) (r))
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In the second variant, the timestamp is removed, thereby producing the snapshot relation valid during
a particular chronon.

72 (r) = SN(0 oyerraps VALID(r) (r))

4 Expressive Power

The defined algebra is able to implement many of the common TSQL2 queries. However, there remain
language features, namely data definition statements and temporal aggregation constructs, that are not
yet supported by the algebra. We are currently adding support for temporal aggregates.

For this version of the algebra, we now examine its expressive power with respect to TSQL2. Our
purpose is to informally demonstrate that the algebra has the following properties.

1. The operator set is minimal, in the sense that each defined operator is necessary for some linguistic
construct.

2. Each TSQL2 construct has some corresponding algebraic operator, thereby demonstrating that the
algebra is complete.

We limit the discussion to the bitemporal state algebra, one of the two most complex variants of
the algebra. Similar arguments are easily constructed for the remaining operator sets.

4.1 Necessity

In this section, we show that each bitemporal state operation has a corresponding linguistic construct in
TSQL2, thereby demonstrating that this operator set is minimal. Throughout this section, we use the
bitemporal state relation Employee = (Name, Dept | T) to illustrate the discussion. Additional schemas
and relations are introduced as necessary.

4.1.1 Projection Operator

The bitemporal state projection operator is used both to implement projection in the SELECT clause, and
to implement restructuring, if specified, in the FROM clause.

For example, consider the query “What are the names of all employees and when did they work
for the company?” This query can be expressed in TSQL2 as follows.

SELECT Name
FROM Employee

14



Translation of this query into the bitemporal state algebra is straightforward. The corresponding alge-
braic expression is shown below. The slice operator, SL®®, produces value-equivalent tuples from each
conceptual tuple, where the bitemporal slices associated with the value-equivalent tuples form a cover
of the bitemporal region associated with the original tuple. The selection operator is used to apply the
default transaction-time restriction of now. The projection operator, 7%, projects the name and valid-
time associated with each value-equivalent tuple, and coalesces the resulting relation on the restructuring
attribute, Name.

BS BS BS
Tr{Name},ID(UTRANSACTIUN(Employee) overcaps wow (OL (Employee)))

4.1.2 Selection Operator

The selection operator is used to implement restriction in TSQL2. Several language clauses, including
the GROUP BY, HAVING, and WHERE are dependent on the selection operator. We show how the selection
operator is used to implement the WHERE clause.

Consider the query, “What are the name of employees who were employed by the company sometime
during 1992 as known by the database on January 1, 1994?” This query restricts the result to those
tuples in the Employee relation that were valid during 1992 and current in the database as of January
1, 1994. This query is expressible in TSQL?2 as follows.

SELECT Name

FROM Employee

WHERE VALID(Employee) OVERLAPS PERIOD ’1992° AND
TRANSACTION (Employee) OVERLAPS DATE ’1994-01-01°

The above WHERE clause is translated into a selection operator whose predicate is the conjunction of
conditions as stated in the WHERE clause. In particular, the operands of the predicate can involve TSQL2
defined operations such as VALID and TRANSACTION. The result relation is then projected on the Name
attribute.

(SL®®(Employee)))

BS BS
7r{Na.me},lD (UVALID(Employee) OVERLAPS PERIOD /1992’ A TRANSACTION(Employee) OVERLAPS DATE /1994 —01—01’

4.1.3 Join Operator

To illustrate the join operator, we introduce an additional bitemporal state relation, Manages. The
Manages relation has schema (Dept, MgrName | T).

Consider the query “Who was John’s manager when John worked for the Toy department?” This
is expressed in TSQL2 as follows. As before, this query uses the default value, now, for transaction-time
selection.

SELECT MgrName

FROM Employee, Manages

WHERE Employee.Dept = ’Toy’ AND Employee.Name = ’John’ AND
Manages.Dept = Employee.Dept

15



This query is implemented in the algebra by joining the Employee and Manages relations. The
Manages relation is first restricted to only the tuples current in transaction time. Similarly, the Employee
relation is restricted to the current tuples recording when John worked for the Toy department. The
result is produced by matching tuples from the restructured relations that overlap in valid time.

BS
1 NMana es.Dept=Employee.Dept , VALID( Employee) N VALID(Manages T2
9

where

SL®®(Manages))

— ~4BS
T2 = OName=" John' ADept='T oy’ ATRANSACTION( M anages) OVERLAPS I\IUW(

— ~BS
T1 = OTRANSACTION(Manages) OVERLAPS wow(

SL®%(Employee))

The previous example illustrated a 2-way join. Within a TSQL2 query, the interaction of the VALID
clause and the WHERE clause may require that the full power of the n-way theta-join be used. Consider the
following query, which uses the additional bitemporal state relation Salary with schema (Name, Amount
| T). (This query does not compute a useful result—we were unable to derive a meaningful query that
required a multi-way join. Our only purpose here is to demonstrate the expressive power of the algebra.)

SELECT SNAPSHOT E.Name, M.MgrName, S.Amount

FROM Employee(PERIOD) AS E, Manages(PERIOD) AS M, Salary(PERIOD) AS S

WHERE VALID(E) OVERLAPS VALID(S) AND VALID(S) OVERLAPS VALID(M) AND
VALID(E) MEETS VALID(M)

Notice that it is not possible to compute this query as a series of 2-way joins. Suppose we were to first
join the Employee and Salary relations (i.e., attempting to satisfy the predicate VALID(E) OVERLAPS
VALID(S)). The timestamp of the resulting relation must contain both the timestamp of the Employee
tuple (to evaluate the conjunct VALID(E) MEETS VALID(M)) and the timestamp of the Salary tuple (to
evaluate the conjunct VALID(S) OVERLAPS VALID(M)). As the join expression is incapable of returning
multiple timestamps, this query cannot be written as a series of 2-way join expressions. The remaining
cases (first joining Manages and Employee or first joining Manages and Salary) are similar. We therefore
use a 3-way join to compute this query.

SNVS(SNBS’VS(W?%.Name,M.Mngame,S.Amount},lD NIB’?F (T17T2’T3)))

where

P = VALID(E) OVERLAPS VALID(S) A VALID(S) OVERLAPS VALID(M) A VALID(E) MEETS VALID(M)
F =VALID(E) N VALID(M) N VALID(S)

= J’?;ANSACTIUN(Employee) OVERLAPS N[]W(SLBS (pE(EmplOyee)))
ry = ope (SL**(pm (M anages)))

TRANSACTION(M anages) OVERLAPS NOW
—_ BS BS
T3 = OTRANSACTION(Salary) OVERLAPS NOW (SL**(ps(Salary)))
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4.1.4 Owuter-Join Operator

Consider the query “Show all employees and their managers, as well as all employees when they did not
have managers.” We use this query to illustrate the outer-join operator. The query may be posed in
TSQL2 as follows.

SELECT E.Name, M.MgrName
FROM Employee AS E, Manages AS M
WHERE E.Dept = M.Dept

UNION

SELECT E.Name, NULL AS M.MgrName
VALID VALID(E) - VALID(M)

FROM Employee AS E, Manages(Dept) AS M
WHERE E.Dept = M.Dept

The first query matches an employee and the managers he or she has had. The valid time of resulting
tuples defaults to the intersection of the valid times of the matching tuples. The second query determines
the times when an employee did not have a manager.

We use the outer-join operator to compute this query. First the relations are restricted to now,

the default transaction time. The outer-join, producing the union of the two TSQL2 subqueries, is then
computed, and the desired attributes are projected.

BS BS
7r{E.Name,M.Mngame},lD(7'1 M B Dept=M. Dept,VALID(E) NVALID(M),VALID(E) —VALID(M) r2)

where

Tl = ORANSACTION(E) OVERLAPS NOW (p (SL™ (Employee)))
Ty = 0. (P53 (SL®* (M anages)))

BS
TRANSACTION(M) OVERLAPS NOW

4.1.5 Union Operator

As an example of the union operator, consider the query “What are the names of the employees and
managers who worked, sometime, for the Toy department, as best known now?” Assuming that the Name
and MgrName attributes of the Employee and Manages relations, respectively, are union-compatible, this
query is expressible in TSQL2 as follows.
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SELECT Name

FROM Employee

WHERE Dept = ’Toy’
UNION

SELECT MgrName

FROM Manages
WHERE Dept = ’Toy’

This query is expressible in the algebra by first restricting the relations, then projecting the desired
attributes, and performing the union.

T uBs T2

where

L= W]{als\lngame},lD (G%SeptZ’Toy’/\TRANSACTIUN(Employee) OVERLAPS NOW (SLBS (Manages)))
(SL®®(Employee)))

— BS BS
r2 = ”{Name},lo(UDeptzlToy'ATnANSACTIUN(Employee) OVERLAPS NOW

4.1.6 Difference Operator

As a similar example to the previous one, consider the query “What were the names of the employees
at any time in their careers when they were not managers?” A TSQL2 formulation of this query is the
following.

SELECT Name
FROM Employee

EXCEPT

SELECT MgrName
FROM Manages

This query is expressible in the algebra as follows.

BS

r—rre

where

— BS BS BS
= Tr{Mngame},lD(UTRANSACTIUN(Employee) overLars now (L~ (Employee)))
BS

i BS BS
r2 = ﬂ-{Name},ID(UTRANSACTION(Manages) overuaps wow (SL (M anages)))
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4.1.7 Rename Operator

The rename operator py’ allows a relation to be referenced by a different name. It is used in the FROM
clause where a relation, possibly restructured, may be given a correlation name used by the remainder
of the query. An example of the p}7 was given in Section 4.1.4.

4.1.8 At Operator

The ATV®®® operator promotes a valid-time state relation to a bitemporal state relation, by creating
bitemporal elements from the valid-time elements associated with the input tuples. As such it is not a
bitemporal operator, but we illustrate its use here for completeness.

Suppose we have a valid-time state relation Salary = (Name, Amount | V), and we wanted to
compute the bitemporal relation showing every employee’s salaries and departments. Such a query could
arise, for example, as an intermediate result in a larger computation, e.g.,

SELECT Employee.Name

FROM Employee, Salary

WHERE TRANSACTION (Employee) OVERLAPS PERIOD(DATE ’Beginning’, DATE ’Forever’) AND
Employee.Name = Salary.Name

We could compute this query by promoting Salary to a bitemporal state relation, current as of now, and
then joining the input relations.

(P52 (ATV®®3(Salary), SL®® (Employee))

Employee.Name=Salary.Name,VALID(Employee) N VALID(Salary)

4.1.9 Snapshot Operator

The snapshot operator is the opposite of the AT operator. It transforms a bitemporal state relation into
a valid-time state relation, by removing the transaction-time component associated with each bitemporal
chronon.

Suppose we wanted to list all of company’s current employees. This is an example of a important
class of queries, as it references the current state of the database.

SELECT SNAPSHOT Name
FROM Employee
WHERE VALID(Employee) OVERLAPS DATE ’NQOW’

We could implement this query by selecting the qualifying tuples, and then using the snapshot
operator to remove the timestamp attribute.

{Name} (SNY* (SN®*Y* (o, (SL™*(Employee)))))

TRANSACTION( Employee) OVERLAPS NOW A VALID(Employee) OVERLAPS NOW
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4.1.10 Slice Operators

The slice operators implement slicing and partitioning in the FROM clause. Specifically, if the FROM clause
does not specify a partitioning (i.e., either PERIOD for state relations or INSTANT for event relations)
then one of the slice operators SL®° or SL®® is used. If a partitioning is specified then one of the slice
operators SLg® or SL5" is used.

Sections 4.1.1 to 4.1.9 showed examples of the SL > operator. As an example of the SLg® operator,
consider the query “Who has worked continuously for the same department for more than one year?”

SELECT Name
FROM Employee (PERIOD)
WHERE INTERVAL (VALID(Employee)) > INTERVAL ’1-0’ YEAR TO MONTH

Specifying PERIOD in the FROM clause slices the Employee relation on transaction time as well as parti-
tioning it on valid time. Graphically, tuples in the input relations are replicated and timestamped with
maximal rectangles covering their respective bitemporal elements. This is implemented by the following
algebraic expression.

(SLp® (Employee)))

BS BS
7T{N ame},ID (UTRANSACTIUN(Employee) OVERLAPS NOW A INTERVAL(VALID(Employee)) > INTERVAL ’1-0’ YEAR TO MONTH’

4.2 Sufficiency

In this section, we enumerate each of the major linguistic clauses in TSQL2 and show the corresponding
algebraic equivalents. This demonstration provides an informal proof that the algebra has sufficient
expressive power to implement TSQL2. As before we limit the discussion to the bitemporal state operator
set. Similar arguments are easily constructed for the remaining data models.

Throughout, we use the Employee relation defined in the previous section to illustrate the discus-
sion.

4.2.1 SELECT Clause

The TSQL2 SELECT clause allows arbitrary expressions over the attributes of a relation to be projected
as the result of a query. The projection operators are the algebraic analogs of the SELECT clause.
The bitemporal state projection operator, %°, also allows the projection of arbitrary expressions. For
example, assuming that the FROM clause partitions the Employee relation by period, the following SELECT
clause returns the names for each employee and their associated bitemporal rectangles.

SELECT Name, VALID(Employee), TRANSACTION(Employee)

Assuming that any associated FROM clause does not rename the Employee relation, this SELECT clause is
translated into the projection operator as follows.

BS
7TName,VALID(En'Lployee) , TRANSACTION( Employee),ID
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4.2.2 VALID Clause

The VALID clause, and its variant the VALID INTERSECT clause, perform valid-time projection, i.e., it
specifies the valid-time associated with result tuples generated by a query. For example, consider the
following VALID clause.

VALID PERIOD(DATE ’1972-01-01’, DATE ’1972-12-31’)

This clause sets the valid time of all result tuples to the specified period.

The VALID and VALID INTERSECT clauses are supported by the bitemporal state projection op-
erator, Tp°p where the subscript p denotes a function computing the valid-time associated with result
tuples. Assuming that the set X of attributes is named in the select list, the VALID clause from above
would be implemented as follows.

BS
7rX, PERIOD(DATE ’1972-01-01,DATE ?1972-12-31")

Implementation of the VALID INTERSECT clause is similar, the only difference being that the re-
sulting timestamp is the temporal intersection of the timestamp attribute and a temporal expression.
For example, consider the following VALID INTERSECT clause.

VALID INTERSECT PERIOD(DATE ’1972-01-01’, DATE ’1972-12-31°)

Assuming a single relation r is named in the FROM clause, this VALID clause is implemented by the
following projection operator.

BS
TX, VALID(7) N PERIOD(DATE ’1972-01-01’ ,DATE *1972-12-317)

4.2.3 FROM Clause

The FROM clause specifies the relations, the form of those relations, and the names used to refer to rela-
tions, in a query. The FROM clause may specify that a bitemporal relation either be sliced on transaction
time, or sliced both on transaction time and valid time, and then partitioned on valid time. In addition,
by using the AS modifier a correlation name may be applied by which the relation will be referred to in
the remainder of the query.

These two operations, slicing and slicing with partitioning, and correlation name assignment, are
implemented using the slicing operators SL®® and SLg®, and the rename operator p®3, respectively. For
example, consider the following FROM clause which specifies that the Employee relation is to be sliced on
transaction time and referred to by the correlation name E.
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FROM Employee AS E

This clause is supported by first slicing the relation and then renaming it to the correlation name.

pe(SL®%(Employee))

Similarly, consider the FROM clause, FROM Employee (PERIOD) AS E, where both slicing and parti-
tioning are specified. In the algebra, first the slice operator with partitioning is used. The relation is
then renamed to the specified correlation name.

pE(SLE® (Employee))

4.2.4 WHERE Clause

Syntactically, the WHERE clause is a series of boolean expressions connected by the boolean operators AND,
OR, and NOT. The effect of this clause is to restrict the query result to those tuples that match the given
condition.

For queries or subexpressions involving a single relation, the selection operator, o03’, is the algebraic
analog of the WHERE clause. As the predicate P in the selection operator is purposefully left unspecified,

it is straightforward to see that this operator is powerful enough to implement the WHERE clause.

For example, consider the following WHERE clause restricting tuples from the Employee relation.

WHERE Employee.Name = ’John’ AND VALID(Employee) OVERLAPS DATE ’1992-01-01°

This WHERE clause can be implemented using the selection operator as follows.

O Employee.Name='John' AVALID( Employee) OVERLAPS DATE *1992-01-01’ ATRANSACTION(Employee) OVERLAPS wow(Employee)

If the FROM clause names more than one input relation, then the WHERE clause is implemented by
a combination of selections and joins. As the bitemporal join operator is an n-way join, it may handle
an arbitrary number of relations. We showed, in Section 4.1.3, an example of a WHERE clause involving
three relations which required a 3-way theta-join.

4.2.5 GROUP BY Clause

The GROUP BY clause creates groups of tuples sharing some attribute value, either explicit or temporal.
The GROUP BY clause is simply implemented by generating a series of selection expressions, one per group,
so that a tuple belongs to a group if it qualifies according to the corresponding selection expression. For
example, consider the following GROUP BY clause.
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GROUP BY VALID(Employee) USING 1 month LEADING 1 month TRAILING 1 month

This clause creates a group for each month where a tuple belongs to a group if it falls within the period
from one month prior to one month after a given month. Let the months be month;, months, ...,
month,,. Then we can determine if a tuple belongs to a group with the following series of n selection
operators, 1 < i < n.

BS
GVALID(T) OVERLAPS PERIOD(BEGIN(month;)—INTERVAL ’0:1’ YEAR TO MONTH,END(month;)+INTERVAL ’0:1° YEAR TO MONTH) (7‘)

Omitting the LEADING or TRAILING clauses would simplify the generated predicate. Also, grouping on
explicit attributes is simpler since LEADING and TRAILING specifications are not allowed for non-time
attributes. Grouping on user-defined time can be implemented identically to the above.

4.2.6 HAVING Clause

The HAVING clause eliminates groups produced by the GROUP BY clause from further consideration in the
query. As the form of the predicate in the HAVING clause is identical to that of the WHERE clause, the
discussion in Section 4.2.4 suffices.

4.3 Summary

In this section, we demonstrated two qualities of the algebra. First, we showed that the algebra has no
superfluous operators by demonstrating that each bitemporal state operator has a linguistic counterpart.
This quality is important since a small operator set simplifies query optimization and evaluation, making
implementation of the algebra practical. Second, we showed, for each bitemporal linguistic construct,
a corresponding algebraic expression, thereby demonstrating that the algebra has sufficient expressive
power to implement TSQL2. Sufficient expressive power is an obvious requirement of any algebra sup-
porting TSQL2.

Together, these qualities imply that the defined conceptual algebra is powerful enough to handle
the rich semantics of TSQL2, without undue additional complexity during query optimization. In the
next section, we discuss in more detail how the algebra may be efficiently implemented.

5 Implementation

The conceptual model and algebra are not meant for physical implementation due to the N1INF nature
of the model. We therefore show how the semantics of the conceptual algebra can be supported with a
INF representational model and accompanying algebra.

In the bitemporal state representational model, tuples have associated four distinguished times-
tamp attributes, Ty, Te, V,, and V., denoting when the fact was current in the database, as well as
when the fact was valid in the real-world, respectively. (The simpler bitemporal event model has three
timestamps, while valid-time state, valid-time event and transaction-time models have two, one, and two

23



ﬁ'g(X),F:’I'—)'I‘
op:T —T

Npp il X...Xr =7
=MNppF T XT—T
Uirxr—=r
—irXr T
PN T =T

C:r—or

SL:r—>r

Slp:r —>7r

Figure 7: Representational Algebra

timestamps, respectively.) Collectively, the four timestamps represent a rectangle in bitemporal space.
A single conceptual tuple is represented by possibly many value-equivalent representational tuples which
collectively have the same information content. The 1NF nature of this representation allows the use,
or adaptation of, many well-established query optimization and evaluation techniques. We use snapshot
equivalence [JSS94] to comparing the semantics of conceptual and representational instances.

We define a polymorphic representational algebra that supports all variants of temporal relations.
A single algebra is desirable since a small number of operators simplifies query optimization, the cost
modeling associated with query plan generation, as well as the expense of programming query evaluation
algorithms. Moreover, our goal is to define a representational algebra that not only supports the full
semantics of the conceptual algebra, and hence TSQL2, but also is efficiently implementable with minimal
extension of conventional query evaluation techniques. Therefore, in the following, when we discuss
implementation of the representational operators, we concentrate on the extensions that need to be made
to the well-understood snapshot evaluation algorithms in order to support the temporal representational
operators.

For a given conceptual algebra expression, correctness requires that some combination of represen-
tational operators returns a snapshot equivalent result, given snapshot equivalent operands. As notation,
we distinguish representational operators and instances with a hat, e.g., 6 and 7, and snapshot equiva-

. S
lence is denoted as = .

The representational operators are shown in Figure 7. As can be seen, only a single operator, the
coalescing operator C, does not have a conceptual analog. This operator is required due to the presence
of value-equivalent tuples in the representation. Also, we note that the polymorphism of the operators
are supported in large part by parameterizing the timestamp computation functions, F', associated with
the projection, theta-join, and outer-join operators.

In many instances, correctness does not require that that the representational tables be coa-
lesced. For bitemporal tables, value-equivalent tuples may have overlapping rectangles; for valid-time and
transaction-time tables, value-equivalent tuples may have overlapping periods. Some of the operators,
however, require that their input(s) be coalesced, and some are more efficient if their input(s) are also
clustered on the explicit attributes. We note such circumstances in the following analysis.

In the remainder of this section, we enumerate the representational operators, show how they
support the semantics of the conceptual operators, and briefly discuss some evaluation trade-offs.
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5.1 Projection Operator

The representational projection operators are nearly identical to their snapshot counterpart. They differ
only in the addition of the timestamp computation function F', which supports the TSQL2 VALID clause
and computes the valid-time associated with a result tuple.

Some of the functions F' and the expressions in £(X) may require that the representation be
coalesced. Consider the valid-time state projection operator. It may be the case that an expression
in £(X) or the function F' requires the entire timestamp of the conceptual tuple, e.g., for a INTERVAL
operation, present in either the SELECT list or the WHERE clause. To support the equivalent semantics
in the representation, it is necessary to materialize the conceptual timestamp from the possibly many
value-equivalent representational tuples. We use the coalescing operator C shown in Figure 7 to do this.
Specifically, let  and 7 both be relations of the appropriate type, i.e., valid-time event, valid-time state,
transaction time, bitemporal event, or bitemporal state, and let r = #. Furthermore let Te(x),F be the
matching conceptual projection operator. Then the semantics of the conceptual projection operators are

N

implemented in the appropriate representational models as 7¢(x),r () = Te(x),r (C(7)).

We note that for many common queries prior coalescing of the input relation is not required.
For example, for projection operations that do not reference the timestamps of input tuples, i.e., only
explicit attributes appear in the select list, F' is the identity function. Clearly, in such circumstances the
coalescing operation can be omitted.

Furthermore, even if the timestamp of input tuples is referenced, it is often the case that the
conceptual timestamp need not be materialized. For example, if the VALID INTERSECT clause is used
with an period literal, e.g., VALID INTERSECT PERIOD ’1993’, then the representational tuples can be
processed one at a time, without first coalescing.

In addition to the conceptual projection operators, a simple variation of the representational pro-
jection operators support the conceptual AT operators, which promote valid-time relations to bitemporal
relations. Consider the valid-time state at operator, AT >"°, Here the representational relation is pro-
jected on all explicit attributes, and, in addition the timestamp of the resulting tuple is computed using
the current transaction time. Similar remarks apply to the family of conceptual snapshot operators, SN.

5.2 Selection Operator

Implementation of the representational selection operator ¢ p is essentially the same as that of its snapshot
counterpart. The distinction is that, depending on the form of the predicate P, the input relation may
require prior coalescing. For example if P contains the INTERVAL operation, then the timestamps of the
conceptual tuple must be materialized from the representation. Again, we use the coalescing operator
to accomplish this. Formally, with r and 7 defined as above, we implement the appropriate conceptual

selection operator op as op(r) = 6p(C(7)).

We note that for many predicates prior coalescing is not required. For example, if P references
only the explicit attributes of R then the coalescing operation can be eliminated.
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5.3 Join Operator

As with the previous operators, representational theta-join supports predicates over explicit as well as
timestamp attributes, and its semantics are essentially the same as the snapshot theta-join, with the
addition of the timestamp computation function F.

The comments for the selection operator also apply to the processing of the predicate in the join
operator. Consider the valid-time state theta-join, xp’. The computation of the function F' may
require the entire valid-time element associated with a conceptual tuple. This valid-time element must
be materialized from the multiple timestamps associated with the value-equivalent tuples representing the
conceptual tuple. Coalescing of the input relation may be required, prior to join evaluation. However,
for many common operations, such as temporal intersection, N, it is possible to iterate through the

timestamps in succession, generating the resulting periods.

Semantically, the temporal outer-join operators are implemented using the representational outer-

join and coalescing operators, i.e., X p (r1,...,72) = &EF(C(TAI), ..., C()).

We note that efficient implementation of temporal joins is challenging for two reasons. First,
the predicates associated with temporal join operations are usually inequality predicates, rather than
the equality predicates prevalent in snapshot databases. Second, as temporal relations may be many
times larger than snapshot relations, efficient evaluation is especially important, as the cost of naively
computing a Cartesian product is prohibitive.

Several approaches have been proposed for implementing temporal joins. Several exploit ordering
of the input tables to achieve higher efficiency. Most approaches should be applicable to the semantics of
the operators defined here and to this representational data model. If the underlying tables are ordered,
coalescing can be handled in a manner similar to that for projection. We believe that the multiway
joins will rarely be required. As evidence, all 152 queries defined in the TSQL2 evaluation commentary
[Sno94] (representing the TSQL2 implementation of the consensus temporal query test suite [Jen93]) can
be evaluated using 2-way join algorithms.

5.4 OQOuter-Join Operator

As with the previous operators, representational outer-join, =X p i p, supports predicates over explicit
as well as timestamp attributes, and its semantics are essentially the same as the snapshot outer-
join, with the addition of the timestamp computation functions F' and F'. Semantically, the temporal
outer-join operators are implemented using the representational outer-join and coalescing operators, i.e.,

S ~/ . A ~/ A
1 =Xp g Ty = C(1)=Xp g C(13).

Many of the same comments on the theta-join implementation apply to the representational outer-
join. However, the semantics of the outer-join requires that the input relations be coalesced. To see this,
consider the query “Who, if anyone, was Ed’s manager for the departments in which he was employed?”
We must determine not only the periods during which Ed had a manager, but also those times when Ed
did not have a manager. This is most easily accomplished if the input tuples are coalesced into, or at
least clustered, on their explicit attribute values. Moreover, the timestamp computation function F' may
require the entire valid-time element associated with a conceptual tuple.
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5.5 Union Operator

The representational union operator is identical to its snapshot counterpart. The result of a union of
temporal relations is simply the set union of the input relations. Note that the result is not coalesced,
as overlapping value-equivalent tuples may be produced. However, the uncoalesced result is clearly
snapshot-equivalent to the corresponding conceptual result. Moreover, the representational coalescing
operator may be applied to the the uncoalesced result to produce a coalesced representation.

5.6 Difference Operator

Semantically, the conceptual difference operator is implemented using the representational difference
S

operator, i.e., r — s = 7—38.

Unlike the union operator, simple set difference is insufficient for computing the representational
difference operator. This is because two value-equivalent conceptual tuples in the input relations produce
aresult tuple timestamped with the set difference of the input timestamps. Computation of this difference
timestamp is most easily accomplished if the conceptual timestamps are first materialized.

Evaluation of the representational difference operator is simplified if the input relations are clustered
on their explicit attribute values, thereby allowing the timestamp for a conceptual tuple to be easily
materialized. The difference is then computed by performing a single pass over both input relations, in
effect performing a merge-join.

However, if the input relations are not clustered on the explicit attribute values then either a
nested-loop computation can be used, or prior coalescing must be performed.

5.7 Coalescing Operator

Coalescing is an important operation, since value-equivalent tuples may be present in the representation.
As mentioned in the discussions of other operators, the semantics of some queries demand that the input
relations be coalesced prior to evaluation.

If prior coalescing is required, this is most easily accomplished if the input relation is sorted on
the explicit attribute values. The temporal element associated with the conceptual tuple is easily recon-
structed during a scan of the relation. If indexes or precomputed results are available then it may be
possible to avoid the relation scan.

5.8 Slice Operator

The representational slice operators SL and SLp implement the corresponding conceptual slice operators.
Many of the previous remarks apply to the slice operators. For example, consider the sL”® operator.
This operator must reconstruct the valid-time element for a given period of transaction time from the
value-equivalent tuples in the representation. This is a variant of the coalescing problem, and is most
easily accomplished if the input tuples are clustered on their explicit attribute values. Transaction-time
indexes [Sno92] and precomputed results [JMR91], if available, may be helpful.
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Now consider the SALs ’ operator. Interestingly, due to the representation, it may be less expensive to
compute this operator than the sL™ operator, even though the former has more complicated semantics.
If the implementation enforces coalescing of the input to the operator then the SALlfS operator is free
since the representation is already sliced and partitioned into maximal rectangles. If coalescing is not
enforced then remarks similar to those made for implementing the sL™ operator can be made.

5.9 Rename Operator

The temporal p operators have no associated cost as they are intensional operators, and are not dependent
on the contents of the database. The temporal operators are identical to their snapshot counterparts.

5.10 Optimization

For efficient query evaluation, we would like to design special-purpose operators for frequently used
combinations of operators, or consider combinations of operators during query optimization.

For example, we believe that most TSQL2 queries will reference the current state of the database, in
order to support conventional snapshot queries. Therefore, an efficient algorithm to transaction timeslice
the database, as given by the expression Grpaysacrron(r)overtars vow(SL(r)), would be very beneficial.

As another example, which we borrow from traditional query optimization, consider the expression
fig(x)(Gp,r(F x 8)). A simple evaluation of this query would perform each operation sequentially, i.e.,
first computing the join, then the selection, and finally the projection. The associated cost is then
cost computing #x3, plus the cost of selecting from 7% (selectivities are used to estimate the size of
this result), plus the cost of projecting the result of the selection (again selectivities are used). More
efficient expressions may be substituted, e.g., if it is possible to push the projection and/or selection into
the join, or by implementing a combined operator projection/selection operator, thereby eliminating an
intermediate result.

5.11 Supporting Now

The addition of now has minimal impact on the representational algebra. We treat now as a variable
that is ground, i.e., given a value, during query evaluation or view materialization. To accommodate now
in the representational algebra, we propose adding a new function, “now variable assignment,” which
assigns a value to now everywhere that it appears in a tuple. From that point on, the tuple is ground
and manipulated exactly as other ground tuples.

We considered the option of allowing the user to specify that now remain uninstantiated during
query evaluation, however, this option has one primary disadvantage that is illustrated by the following
example. Consider a selection on a valid-time state relation where the selected tuples are those preceding
December 1, 1993 in valid time. Should a tuple with an ending time of now appear in the result? If
today is November 30, 1993, then perhaps the result should include the tuple. However, if the tuple is
in the result, then the result becomes invalid the very next day, since on December 1, 1993 the tuple no
longer precedes that date! We could associate a “lifetime” with every result, but this is an (apparently)
expensive option and requires further research. In the interest of making minimal changes to SQL-92 we
advocate grounding every tuple prior to its use.
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5.12 Summary

For many of the temporal operators, the same algorithms used to evaluate their snapshot counterparts
may be used directly, or with small modifications, the changes being additional parameters passed to the
evaluation functions. These operators include the projection, selection, theta-join, outer-join, and union
operators. For other operators, such as the at and snapshot operators, evaluation algorithms are easily
constructed as variants of the projection evaluation algorithm.

In some instances, the representational operators demand prior coalescing of input relations, mainly
for timestamp computation. Efficient algorithms for temporal coalescing, as well as a thorough study of
query optimization strategies for queries involving coalescing, is needed for the construction of a TSQL2
query processor. We note that the need for coalescing is determined by the form of the predicate or
timestamp computation function associated with a conceptual operator. In many cases, such as when
predicates reference only explicit attributes, coalescing is not required.

However, efficient implementation of several operators, most notably the temporal join operators,
is significantly more complex than their snapshot counterparts, in order to avoid performing a Cartesian
product of the input. Coalescing is again important here; however, new techniques for temporal join
implementation may result in improved performance, and justify additional implementation complexity.

Lastly, depending on the representation enforced by the implementation, efficient techniques for
temporal slicing may be required. The database implementor may desire to trade cost on update for
evaluation expense by allowing non-coalesced or repetitive information in the database. Efficient temporal
slicing techniques should exist to support this capability.

These three problems, temporal coalescing, temporal join evaluation, and temporal slicing, are
central to the efficient evaluation of TSQL2 queries, and further research is required to develop and
analyze associated algorithms.

6 Architecture

The algebra just described is one component of a DBMS architecture supporting TSQL2. In this section,
we describe such an architecture. OQur goal is to enumerate the changes that a conventional DBMS would
need to support TSQL2. As with the algebra, we are concerned with modifying a conventional DBMS
in a minimal fashion to support TSQL2. While a more elaborate architecture is possible (likely with
significant performance gains), our purpose is to describe the “first step” towards the realization of a
temporal DBMS.

In the next section, we describe a canonical design for a conventional DBMS. We then describe the
minimal changes needed by each component of the architecture to support TSQL2. We conclude with a
few observations about the described architecture.

6.1 Conventional Architectures

Figure 8 shows a conventional DBMS architecture supporting SQL-92. In the figure, ovals represent data
items, e.g., user submitted queries, boxes represent software components, e.g., the query compiler, and
arrows show the flow of data through the DBMS.
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Figure 8: Canonical DBMS Architecture

Queries may be submitted by four types of users, the database administration (DBA) staff, inter-
active users, application programmers, and parametric users.

The DBA staff is responsible for defining and maintaining the database through the execution of
data definition language (DDL) statements and privileged commands not available to other users.

Interactive users are sophisticated, database-literate users. They submit SQL-92 queries which are
compiled by the query compiler into an procedure-oriented internal representation, the query execution
plan. The query execution plan is passed to the run-time evaluator for execution. Actual access to the
stored data is performed by the transaction and data manager.

Application programmers submit application programs written in a host programming language,
e.g., C, that contain embedded database queries. A precompiler separates the embedded queries from
the host application and routes each to an appropriate compiler. The compiled database query and host
program are recombined to produce a canned transaction, which may be executed at some later date.

Parametric users are unsophisticated users such as airline reservation agents or customer service
representatives. They use the canned transactions produced by applications programmers.
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ExampLE: Consider snapshot versions of the Employee and Manages schemas defined in Sections 4.1.
We illustrate the flow of information through the architecture with the following query, which returns
the names of all employees managed by Bob.

SELECT Employee.Name, Manages.MgrName
FROM Employee, Manages
WHERE Manages.Dept = Employee.Dept AND Manages.MgrName = ’Bob’

Suppose that this query is submitted by an interactive user. (We could assume that the query was
submitted via another path, e.g., as an embedded query in an applications program, but the discussion
would be more complicated, and no more illustrative.) The query, a DML statement, is first processed
by the query compiler. The query compiler analyzes the query, first syntactically and then semantically.
Syntactic analysis ensures that the lexical and syntactic structure of the query is correct. Semantic
analysis performs type checking and verifies that other semantic constraints are satisfied. Though not
shown on the diagram, schema information contained in the data dictionary is used during semantic
analysis.

Ultimately, the query compiler produces a procedural expression of the submitted query that is
suitable for execution by the run-time evaluator. This procedural expression is based on the relational al-
gebra. As an intermediate step, the query compiler translates the query into a simple algebraic expression
which is then optimized. Such an expression for our example might be the following.

T{Employee.Name,Manages. MgrName} (Employee X Employee. Dept=Manages. Dept (UMgTNameZ’ Bob' (Manages)))

The final result produced by the query compiler is a query execution plan, which is essentially the
optimized algebraic expression with specific algorithms chosen for each algebraic operation. For example,
the query compiler might generate the following query execution plan, depending on a estimate of the
cost of various algorithms implementing the different operators.

tempy < index_select(Manages,' Bob")
result < project{nome,MgrName} (nested_loop_join(Employee, tempy,' Dept'))

In this query execution plan, the query compiler makes use of an existing index on the MgrName attribute
of the Manages relation to quickly find the departments that Bob manages. This intermediate result is
stored in the temporary relation temp;. As temp; is likely to fit in main memory, i.e., Bob only manages
a few departments, and hence temp; will contain only a few tuples, a simple nested-loop join is used to
find Bob’s employees. In addition, rather than writing another temporary result, the compiler chooses
to perform the final projection of the employee name and the manager name attributes “on the fly” with
the join.

The query execution plan is sent to the run-time evaluator for execution. For example, for the
index_select operation in the above query execution plan, the run-time evaluator executes this algorithm,
generating a series of index retrievals and subsequent relation page retrievals to materialize the selection.
The data retrieval operations are performed by the transaction and data manager which manages the
buffer space alloted to the transaction, and ensures the consistency of the database even though multiple
transactions may be executing concurrently in the DBMS. O
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In the remainder of this section, we describe the minimal changes required to each DBMS com-
ponent in order to support TSQL2. We note that the precompiler and host language compiler are
largely independent of the database query language—they require only small changes to support tempo-
ral literal/timestamp conversion. For each of the remaining components, the data dictionary and data
files, as well as those within the DBMS proper, we describe the minimal modifications needed by these
components to support TSQL2 queries.

6.2 Data Dictionary and Data Files

The data dictionary and data files contain the database, the actual data managed by the DBMS. The
data dictionary records schema information such as file structure and format, the number and types of
attributes in a relation, integrity constraints, and associated indexes. The data files contain the physical
relations and access paths of the database.

For a minimal extension, the data files require no revision. We can store tuple-timestamped tem-
poral relations in conventional relations, where the timestamp attributes are stored as explicit atomic
attributes. However, the data dictionary must be extended in a number of ways to support TSQL2
[SAA194]. The most significant extensions involve schema versioning, multiple granularities, and vacu-
uming.

For schema versioning, the data dictionary must record, for each relation, all of its schemas and
when they were current. The data files associated with a schema must also be preserved. This is easily
accomplished by making a transaction-time relation recording the schemas for a single relation. The
transaction time associated with a tuple in this relation indicates the time when the schema was current.

Multiple granularities are associated in a lattice structure specified at system generation time. A
simple option is to store the lattice as a data structure in the data dictionary. Alternatively, if the lattice
is fixed, i.e., new granularities will not be added after the DBMS is generated, then the lattice can exist
as a separate data structure outside of the data dictionary.

Vacuuming specifies what information should be physically deleted from the database. Minimally,
this requires a timestamp, the cut-off time, to be stored for each transaction-time or bitemporal relation
cataloged by the data dictionary. The cut-off time indicates that all data current in the table before the
value of the timestamp has been physically deleted from the relation.

6.3 DDL Compiler

The DDL compiler translates TSQL2 CREATE, ADD, REPLACE and DROP statements [SAAT94] into exe-
cutable transactions. Each of these statements affects both the data dictionary and the data files. The
CREATE statement adds new definitions, of either relations or indexes, to the data dictionary and creates
the data files containing the new relation or index. The ADD and REPLACE statements change an existing
schema by updating the data dictionary, and possibly updating the data file containing the relation. The
ADD statement is used to add new columns or indexes to a schema, and the REPLACE statement is used
to change an existing column or index. Lastly, the DROP statement is used to remove a table, column, or
index definition from a schema, as well as the actual physical data.

Numerous changes are needed by the DDL compiler, but each is straightforward and extend existing
functionality in small ways. First, the syntactic analyzer must be extended to accommodate the extended
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TSQL2 syntax for each of the CREATE, ADD. REPLACE, and DROP statements. The semantic analyzer must
be extended in a similar manner, e.g., to ensure that an existing relation being transformed into a
valid-time state relation via the ADD VALID STATE command is not already a valid-time relation.

6.4 Query Compiler

The query compiler translates TSQL2 data manipulation language (DML) statements into an executable,
and semantically equivalent, internal form called the query execution plan. As with the DDL compiler,
each phase of the query compiler, syntactic analysis, semantic analysis, and query plan generation, must
be extended to accommodate TSQL2 queries.

We use the model that the initial phase of the compilation, syntactic analysis, creates a tree-
structured query representation which is then referenced and augmented by subsequent phases. Ab-
stractly, the query compiler performs the following steps.

1. Parse the TSQL2 query. The syntactic analyzer, extended to parse the TSQL2 constructs, produces
an internal representation of the query, the parse tree.

2. Semantically analyze the constructed parse tree. The parse tree produced by the syntactic analyzer
is checked for types and other semantic constraints, and simultaneously augmented with semantic
information.

3. Lastly, a query execution plan, essentially an algebraic expression that is semantically equivalent
to the original query, is produced from the augmented parse tree by the query plan generator.

The minimal changes required by the query compiler are summarized as follows.

e The syntactic and semantic analyzers must be extended to support TSQL2.

e The query execution plan generator must be extended to support the extended TSQL2 algebra,
including the new coalescing, join, and slicing operations. In a minimally extended system, it
may be acceptable to use existing algebraic equivalences for optimization, even with the extended
operator set. Such an approach preserves the performance of conventional snapshot queries. Later
inclusion of optimization rules for the new operators would be beneficial to the performance of
temporal queries.

e Support for vacuuming must be included in the compiler. Query modification, which normally
occurs after semantic analysis and prior to query optimization, must be extended to include vacu-
uming support.

The need to extend the syntactic and semantic analyzers is self-evident, and straightforward. (A query
compiler has been implemented in conjunction with the MultiCal project that syntactically and seman-
tically analyzes a significant subset of TSQL2.) Extending the query plan generator to use the extended
algebra is also straightforward, assuming that temporal aspects of the query are not considered during
query optimization. In the worst case, the same performance would be encountered when executing a
temporal query on a purely snapshot database. Lastly, in order to support vacuuming, the query com-
piler, within its semantic analysis phase, must support automated query modification based on vacuuming
cut-off times stored in the data dictionary.
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6.5 Run-time Evaluator

The run-time evaluator interprets a query plan produced by the query compiler. The run-time evaluator
calls the transaction and data manager to retrieve data from the system catalog and data files.

We assume that the run-time evaluator makes no changes to the query plan as received from the
query compiler, i.e., the query plan, as generated by the query compiler, is optimized and represents
the best possible evaluation plan for the query. As such the changes required for the run-time evaluator
are small. Particularly, since evaluation plans for the any new operators have already been selected by
the query compiler, the run-time evaluator must merely invoke these operations in the same manner
as non-temporal operations. Additionally, as mentioned in Section 5, evaluation algorithms for the new
temporal operators (coalescing, n-way joins, and slicing) are similar to well-known algorithms for snapshot
operators. For example, coalescing can be implemented with slightly modified duplicate elimination
algorithms, which have been well-studied in snapshot databases.

Lastly, changes are needed by the run-time evaluator to support the input and output of temporal
literals [S0093]. Calls to the software components supporting temporal literals must be inserted into the
query execution plan by the query compiler and subsequently performed by the run-time evaluator.

6.6 Transaction and Data Manager

The transaction and data manager performs two basic tasks: it manages the transfer of information to
and from disk and main memory, and it ensures the consistency of the database in light of concurrent
access and transaction failure.

Again, at a minimum little needs to be modified. We assume that the conventional buffer man-
agement techniques are employed. Supporting transaction time requires the following small extension to
the concurrency control mechanism.

For correctness, transaction times are assigned at commit time, otherwise during an interleaved
execution a transaction may see data that is not yet current. This would happen if a transaction reads
tuples previously written by a concurrent transaction holding a later transaction time. To avoid this
problem, we have an executing transaction write tuples without filling in the transaction timestamp
of the tuples. When the transaction later commits, the transaction times of affected tuples are then
updated.

This is accomplished by maintaining a (reconstructable) table of tuple IDs written by the transac-
tion. This table is read by an asynchronous background process which performs the physical update of
the tuples’ transaction timestamp. Correctness only requires that the transaction times for all written
tuples be filled in before they are read by a subsequent transaction. While this simple extension suffices,
more complex and efficient methods have been proposed [Lom93]. Notice also that this algorithm does
not affect the recovery mechanism used by the DBMS, assuming that the transaction time of a committed
transaction is logged along with the necessary undo/redo information.

6.7 Summary

We have described how a canonical DBMS architecture can be extended to support TSQL2. The changes
described are minimal in that they represent the smallest necessary extensions to support the functionality
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of TSQL2. As the extensions are small, we believe that, as a first-step, TSQL2 can be supported for a
relatively low development cost.

We anticipate that the performance of the minimally extended architecture will rival the perfor-
mance of conventional systems. Snapshot queries on the current database state may suffer a slight
performance penalty due to the additional temporal support. However, since we are able to use existing
optimization techniques, evaluation algorithms, and storage structures, we expect snapshot queries on
the temporal DBMS to approach the performance of identical queries on a conventional DBMS.

Conversely, while there are many opportunities for improvement, we believe that temporal queries
on the minimally extended architecture will show reasonable performance. In particular, the architecture
can employ new evaluation and optimization techniques for temporal queries currently under investiga-
tion. With the addition of temporally optimized storage structures, we expect further performance
improvements.

7 Summary and Future Work

We have defined an algebra for TSQL2 implementation. The distinguishing features of this proposal are
as follows.

e The algebra supports all six relation types provided by TSQL2.

e The algebra is minimal in the sense that it is an extension of the conventional snapshot algebra,
with few additional operators. In addition, we showed that each defined operator is required by
some TSQL2 language construct. Hence, the algebra contains no superfluous operators.

e The algebra is expected to have sufficient expressive power to implement TSQL2 queries, modulo
the future work listed below.

e The algebra is minimal in the sense that no superfluous operators were defined.

e The semantics of the algebra can be supported in a 1NF tuple-timestamping representational data
model, and hence, efficient implementation of the algebra is possible by exploiting existing query
optimization and evaluation techniques.

This algebra is powerful enough to implement most TSQL2 queries. Two language constructs,
namely temporal aggregation and the TSQL2 data definition language, are not yet incorporated into the
algebra. We expect to augment the algebra with support for these items in the near future.

In addition, we have described an implementation for a TSQL2 database management system.
This architecture is notable in that it requires only a few changes to the functionality found in existing
conventional DBMS architectures. As such, we believe that TSQL2 can be implemented at relatively
low-cost, with the described algebra and architecture providing the implementation framework.
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