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Abstract. Based on a systematic study of the semantics of temporal 
attributes of entities, this paper provides new guidelines for the design 
of temporal relational databases. The notions of observation and update 
patterns of an attribute capture when the attribute changes value and 
when the changes are recorded in the database. A lifespan describes 
when an attribute has a value. And derivation functions describe how 
the values of an attribute for all times within its lifespan are computed 
from stored values. The implications for temporal database design of the 
semantics that may be captured using these concepts are formulated as 
schema decomposition rules. 

1 Introduction 

Designing appropriate database schemas is crucial to the effective use of rela- 
tional database technology, and an extensive theory has been developed that 
specifies what is a good database schema and how to go about designing such 
a schema. The relation structures provided by temporal data models, e.g., the 
recent TSQLS model [13], provide built-in support for representing the tempo- 
ral aspects of data. With such new relation structures, the existing theory for 
relational database design no longer applies. Thus, to make effective use of tem- 
poral database technology, a new theory for temporal database design must be 
developed. 

We have previously extended and generalized conventional normalization 
concepts to temporal databases [7, 81. But the resulting concepts are still lim- 
ited in scope and do not fully account for the time-varying nature of data. 
Thus, additional concepts are needed in order to fully capture and exploit the 
time-varying nature of data during database design. This paper proposes con- 
cepts that capture the time-related semantics of attributes and uses these as a 
foundation for developing guidelines for the design of temporal databases. The 
properties of time-varying attributes are captured by describing their lifespans, 
their time patterns, and their derivation functions. Design rules subsequently al- 
low the database designer to use the properties for (view, logical, and physical) 
schema design. 

LNCS 1021, pp366-377, 1995.
(URL: http://www.springer.de/comp/lncs/index.html)
Copyright © Springer-Verlag



367 

The paper is structured as follows. Section 2 first reviews the temporal data 
model used in the paper. It then argues that the properties of attributes are rela- 
tive to the objects they describe and then introduces surrogates for representing 
real-world objects in the model. The following subsections address in turn dif- 
ferent aspects of time-varying attributes,namely lifespans, time patterns, and 
derivation functions. Section 3 is devoted to the implications of the attribute se- 
mantics for logical schema, physical schema, and view design. The final section 
summarizes and points to opportunities for further research. 

2 Capturing the Semantics of Time-Varying Attributes 

This section provides concepts that allow the database designer to capture more 
precisely and concisely than hitherto the time-varying nature of attributes in 
temporal relations. The temporal data model employed in the paper is first 
described. Then a suite of concepts for capturing the temporal semantics of 
attributes are introduced. 

2.1 A Conceptual Data Model 

We describe briefly the relation structures of the Bitemporal Conceptual Data 
Model (BCDM) (see [9] f or a more complete description) that is the data model 
of TSQL2 and which is used in this paper. 

We ,adopt a linear, discrete, bounded model of time, with a time line com- 
posed of chronons. The schema of a bitemporal conceptual relation, R, consists 
of an arbitrary number, e.g., n, of explicit attributes and an implicit timestamp 
attribute, T, defined on the domain of sets of bitemporal chronons. A bitemporal 
chronon cb = (ct,c”) is an ordered pair of a transaction-time chronon ct and a 
valid-time chronon c”. A tuple z = (ai, us,. . . , a,] tb), in a relation instance r 
of schema R thus consists of n attribute values associated with a bitemporal 
timestamp value. An arbitrary subset of the domain of valid times is associated 
with each tuple, meaning that the information recorded by the tuple is true in 
the modeled reality during each valid-time chronon in the subset. Each individ- 
ual valid-time chronon of a single tuple has associated a subset of the domain 
of transaction times, meaning that the information, valid during the particular 
chronon, is current in the relation during each of the transaction-time chronons 
in the subset. Any subset of transaction times less than the current time may 
be associated with a valid time. Notice that while the definition of a bitemporal 
chronon is symmetric, this explanation is asymmetric, reflecting the different 
semantics of transaction and valid time. 

We have thus seen that a tuple has associated a set of so-called &temporal 
chronons in the twodimensional space spanned by transaction time and valid 
time. Such a set is termed a bitemporal element [4, 61. We assume that a do- 
main of surrogate values is available for representing real-world objects in the 
database. 
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Example 1. Consider the relation instance, empDep, shown next. 

ENme Dept T 

Bob Ship ((5,lO) ,..., (5,15) ,..., (9,lO) ,..., (9,15),(10,5) ,..., (10,20) ,..., 
(14,5), * - * I (14,20), (15, lo), . . .) (15,15). . . , (19, lo), . . .) (19,15)} 

Bob Load ((20, lo), . . . ,(20,15), (21,10), . . . ,(21,15)} 

The relation shows the employment information for an employee, Bob, and two 
departments, Ship and Load, contained in two tuples. In the timestamps, we 
assume that the chronons correspond to days and that the period of interest is 
some given month in a given year, e.g., July 1995. Throughout, we use integers 
as timestamp components. The reader may informally think of these integers as 
dates, e.g., the integer 15 in a timestamp represents the date July 15, 1995. The 
current time is assumed to be 21. 

Valid-time relations and transaction-time relations are special cases of bitem- 
poral relations that support only valid time and transaction time, respectively. 
For clarity, we use the term snapshot relation for a conventional relation, which 
supports neither valid time nor transaction time. 

This completes the description of the objects in the bitemporal conceptual 
data model-relations of tuples timestamped with temporal elements. An asso- 
ciated algebra and user-level query language are defined elsewhere [13, 141. 

2.2 Using Surrogates 

An attribute is seen in the context of a particular real-world entity. Thus, when 
we talk about a property, e.g., the frequency of change, of an attribute, that 
property is only meaningful when the attribute is associated with a particular 
entity. As an example, the frequency of change of a salary attribute with re- 
spect to a specific employee in a company may reasonably be expected to be 
relatively regular, and there will only be at most one salary for the employee at 
each point in time. In contrast, if the salary is with respect to a department, a 
significantly different pattern of change may be expected. There will generally 
be many salaries associated with a department at a single point in time. Hence, 
it is essential to identify the reference object when discussing the semantics of 
an attribute. 

We employ surrogates for representing real-world entities in the database. 
In this regard, we follow the approach adopted in, e.g., the TEER model by 
Elmasri [3]. Surrogates do not vary over time in the sense that two entities iden- 
tified by identical surrogates are the same entity, and two entities identified by 
different surrogates are different entities. We assume the presence of surrogate 
attributes throughout logical design. At the conclusion of logical design, surro- 
gate attributes may be either retained, replaced by regular (key) attributes, or 
eliminated. 

2.3 Lifespans of Individual Time-Varying Attributes 

In database design, one is interested in the interactions among the attributes of 
the relation schemas that make up the database. 
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Here, we provide a basis for relating the lifespans of attributes. Intuitively, the 
lifespan of an attribute for a specific object is all the times when the object has 
a value, distinct from li, inapplicable null, for the attribute. Note that lifespans 
concern valid time, i.e., are about the times when there exist some valid values. 

To more precisely define lifespans, we first define an algebraic selection oper- 
ator on a temporal relation. Define a relation schema R = (AI,. . . , AJT), and 
let T be an instance of this schema. Let P be a predicate defined on the Ai. The 
selection P on r, o:(r), is defined by o:(r) = {z 1 z E r A P(z[Al,. ..,A,])}. 
It follows that o:(r) simply performs the familiar snapshot selection, with the 
addition that each selected tuple carries along its timestamp, T. Next, we define 
an auxiliary function vte that takes as argument a valid-time relation r and 
returns the valid-time element defined by vte(r) = {c” 1 3s (s E r A cv E s[T])}. 
The result valid-time element is thus the union of all valid timestamps of the 
tuples in an argument valid-time relation. 

Definition 1. Let a relation schema R = (S, AI, . . . , A, 1 T) be given, where S 
is surrogate valued, and let r be an instance of R. The lifespan for an attribute 
Ai, i = l,.. . , n, with respect to a value s of S in r is denoted ls(r, Ai, s) and is 
defined by ls(r, Ai, s) = vte(&&.,,,+li (T)). 

Lifespans are important because attributes are guaranteed to not have any 
inapplicable null value during their lifespans. Assume that we are given a relation 
schema empDep = (EmpS, EName, Dept) that records the names and departments 
of employees (represented by the surrogate attribute EmpS). If employees always 
have a name when they have a department, and vice versa, this means that 
inapplicable nulls are not present in instances of the schema. With lifespans, this 
property may be stated by saying that for all meaningful instances of EmpSal 
and for all EmpS surrogates, attributes EName and Dept have the same lifespans. 

The importance of lifespans in temporal databases has been recognized in the 
context of data models in the past (c.f. [l, 2,3]). 0 ur use of lifespans for database 
design differs from the use of lifespans in database instances. In particular, using 
lifespans during database design does not imply any need for storing lifespans 
in the database. 

2.4 Time Patterns of Individual Time-Varying Attributes 

In order to capture how an attribute varies over time, we introduce the concept 
of a time pattern. Informally, a time pattern is simply a sequence of times. 

Definition 2. The time pattern T is a partial function from the natural numbers 
n/ to a domain 2)~ of times: T : N v V T. If T(i) is defined, so is T(j) for 
all j < i. We term T(i) the i’th time point. 

In the context of databases, two distinct types of time patterns are of partic- 
ular interest, namely observation patterns and update patterns. The observation 
pattern 05, for an attribute A relative to a particular surrogate s, is the times 
when the attribute is given a particular value, perhaps as a result of an observa- 
tion (e.g., if the attribute is sampled), a prediction, or an estimation. We adopt 
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the convention that 01(O) is the time when it was first meaningful for attribute 
A to have a value for the surrogate s. Observation patterns concern valid time. 
The observation pattern may be expected to be closely related to, but distinct 
from, the actual (possibly unknown) pattern of change of the attribute in the 
modeled reality. The update pattern Vi is the times when the value of the at- 
tribute is updated in the database. Thus, update patterns concern transaction 
time. 

Note that an attribute may not actually change value at a time point because 
it may be the case that the existing and new values are the same. The times 
when changes take place and the resulting values are orthogonal aspects. In the 
latter half of Section 3.1, we will return to this distinction. 

2.5 The Values of Individual Time-Varying Attributes 

Wc proceed by considering how attributes may encode information about the 
objects they describe. As the encoding of the transaction time of attributes is 
typically built into the data model, we consider only valid-time relations. 

A relation may record directly when a particular attribute value is valid. 
Alternatively, what value is true at a certain point in time may be computed 
from the recorded values. In either case, the relation is considered a valid-time 
relation. An example clarifies the distinction between the two cases. 

Example2 Consider the two relations shown below. The first, empSa1, records 
names and salaries of employees, and the second, expTemp, records names and 
temperature measurements for experiments. Attributes EmpS and ExpS record 
surrogates representing employees and experiments, respectively. 

empSa1 expTemp 

Relation empSa1 records Bob’s and Sam’s salaries at all the times they h;;;ve 
salaries. This is clearly consistent with what a valid-time relation is. At first sight, 
relation expTemp is more problematic. It does not appear to record temperatures 
for all the times when there exists a temperature for experiment xl. Specifically, 
we may envision that the temperature of xl is sampled regularly and that we 
may later want to compute xl temperature values for times with no explicitly 
recorded value. 

Traditionally, empSa1 has been considered a state relation and expTemp has 
been considered an event relation; most data model proposals (with notable 
exceptions, e.g., [13, 15, 161) have considered only the first type of relation. 
However, note that the relations are similar in the sense that they both record 
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when information is true. Due to this observation, we make no fundamental 
distinction between the two types of relations, but instead treat them quite 
similarly. 

The difference between relations such as empSa1 and expTemp in the example 
above is solely in what additional, or even different, information is implied by 
each of the relations. At the one extreme, relation empSa1 does not imply any 
additional information at a& No salary is recorded for Bob from time 20 to time 
29, and the existing tuples do not imply any salary for Bob in that time interval. 
The other sample relation is different. For example, while no temperature for 
Expl at time 40 is recorded, clearly such a temperature exists. Further, we may 
even have a good idea what the temperature may be (i.e., close to 87). 

Thus, the difference is that different derivation functions apply to the salary 
and temperature attributes of the two relations. A derivation function fA for 
a specific attribute A of a relation schema R takes as arguments a valid-time 
chronon c” and a relation instance T and returns a value in the domain of at- 
tribute A. For the salary attribute, a discrete derivation function applies; and for 
the temperature, a nearest-neighbor derivation function may satisfy some users 
while other users may need a more sophisticated function. 

Definition 3. A derivation function f is a partial function from the domains of 
valid times 23~~ and relation instances T with schema R to a value domain D 
in the universal set of domains DD, i.e., f : DVT x r(R) c) D. 

The importance of derivation functions in data models has previously been 
argued convincingly by, e.g., Klopprogge [lo], Clifford [l] and Segev [16]. They 
should thus also be part of a design methodology. 

2.6 Summary of Attribute Semantics 
In summary, the database designer is expected to initially identify and model 
entity types using surrogates. Then, the notions of lifespans, time patterns, and 
derivation functions are used for capturing the semantics of attributes. 

Elsewhere, we have generalized conventional functional dependencies to tem- 
poral databases [7]. Essentially, a temporal dependency holds on a temporal re- 
lation if the corresponding snapshot dependency holds on each snapshot relation 
contained in the temporal relation. With this generalization, conventional rela- 
tional dependency theory applies wholesale to temporal databases. For example, 
temporal keys may be defined. Such keys are generally time-varying. As a basis 
for defining time-invariant attributes and keys, we have also defined so-called 
strong temporal functional dependencies and strong temporal keys [8]. While not 
discussed here, the designer is also expected to identify temporal and strong 
temporal functional dependencies. 

3 Temporal Relational Database Design Guidelines 

In this section, we discuss how the properties of schemes with time-varying 
attributes as captured in the previous section are used during database design. 
Emphasis is on the implications of the properties for design of the logical schema, 
but implications for view design and physical design are touched upon as well. 
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3.1 Logical-Design Guidelines 

Two important goals of logical database design are to design a database schema 
that does not require the use of inapplicable nulls and avoids representation of 
the same information. We define two properties that illuminate these aspects of 
relation schemas and guide the database designer. 

Database designers are faced with a number of design criteria which are 
sometimes conflicting, making database design a challenging task. So, while we 
discuss certain design criteria in isolation, it is understood that there may be 
other criteria that should be taken into consideration during database design, 
such as minimizing the impact of joins required on relations that have been 
decomposed. 

Lifespan Decomposition Rule One important design criterion in conven- 
tional relational design is to eliminate the need for inapplicable nulls in tuples of 
database instances. In the context of temporal databases, we use the notion of 
lifespans to capture when attributes are defined for the objects they are intro- 
duced in order to describe. Briefly, the lifespan for an attribute-with respect 
to a particular surrogate representing the object described by the attribute-is 
all the times when a meaningful attribute value, known or unknown, exists for 
the object. 

Inapplicable nulls may occur in a relation schema when two attributes have 
different lifespans for the same object/surrogate. To identify this type of situa- 
tion, we introduce the notion of lifespan equal attributes. Examples follow the 
the definition. 

Definition 4. Let a relation schema R = (S, AI,. . . , A, IT) be given where S is 
surrogate valued. Two attributes Ai and Aj in R are termed lifespan equal with 
respect to surrogate S, denoted AigsAj, if for all meaningful instances T of R, 
Vs E dam(S) (ls(r, Ai, s) = ls(r, Aj, s)). 

To exemplify this definition, consider a relation schema Emp with attributes EmpS 
(employee surrogates), Dept, Salary, and MgrSince. The schema is used by a 
company where each employee is always assigned to some department and has a 
salary. In addition, the relation records when an employee in a department first 
became a manager in that department. 

For this schema, we have Dept gkPs Salary because an employee has a salary 
(it might be unknown or zero) exactly when associated with a department. Thus, 
no instances of Emp will have tuples with an inapplicable-null value for one of 
Dept and Salary and not for the other. Next, it is not the case that Dept g~,,s 
MgrSince and (by inference) not the case that Salary gz,,,,,s HgrSince. This is 
so because employees often are associated with a department where they have 
never been a manager. Thus, instances of Emp may contain inapplicable nulls. 
Specifically, the nulls are associated with attribute MgrSince as the lifespan of 
this attribute is shorter than that of Dept and Salary. 
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Next, observe that Dept and Salary being lifespan equal with respect to EmpS 
does not mean that all employees have the same lifespan for their department 
(or salary) attribute. Employees may have been hired at different times, and the 
lifespans are thus generally different for different employees. Rather, the equality 
is between the department and the salary lifespan for individual employees. 

The following definition then characterizes temporal database schemas with 
instances that do not contain inapplicable nulls. 

Definition 5. A relation schema R = (S, AI,. . . , A, ) T) where S is surrogate 
valued is lifespan homogeneous if VA, B E R (AEsB). 

These concepts formally tie the connection between the notion of lifespans 
of attributes with the occurrence of inapplicable nulls in instances. With them, 
we are in a position to formulate the Lifespan Decomposition Rule. 

Definition 6. Lifespan Decomposition Rule. To avoid inapplicable nulls in tem- 
poral database instances, decompose temporal relation schemas to ensure life- 
span homogeneity. 

It is appropriate to briefly consider the interaction of this rule with the the 
existing temporal normal forms that also prescribe decomposition of relation 
schemes. Specifically, while the decomposition that occurs during normalization 
does, as a side effect, aid in eliminating the need for inapplicable nulls, a database 
schema that obeys the temporal normal forms may still require inapplicable nulls 
in its instances. To exemplify, consider again the imp schema (and think of the 
temporal dependencies on temporal relations as regular dependencies on the 
corresponding snapshot tables). Here, EmpS is a temporal key, and there are no 
other non-trivial dependencies. Thus, the schema is in temporal BCNF. It is 
also the case that Emp has no non-trivial temporal multi-valued dependencies, 
and it is thus also in temporal fourth normal form. In spite of this, we saw that 
there are inapplicable nulls. The solution is to decompose Emp = (EmpS , Dept , 
Salary, MgrSince) into Empl = (EmpS, Dept , Salary) and Emp2 = (EmpS, 
MgrSince) . Both resulting relations are lifespan homogeneous. 

Synchronous Decomposition Rule The synchronous decomposition rule is 
based on the notion of observation pattern, and its objective is to eliminate a 
particular kind of redundancy. We initially exemplify this type of redundancy. 
Then we define the notion of synchronous attributes, which leads to a definition 
of synchronous schemas and an accompanying decomposition rule that are aimed 
at avoiding this redundancy. Finally, we view synchronism in a larger context, by 
relating it to existing concepts, and discuss the decomposition rule’s positioning 
with respect to logical versus physical design. 

Example 3. Consider the relation instance, empDepSa1, that follows next, record- 
ing departments and salaries for employees. The schema for the relation is in 
temporal BCNF, with the surrogate-valued attribute EmpS being the only min- 
imal key and no other non-trivial dependencies. Yet, it may be observed that 
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the salary 30k and the departments A and B are repeated once, once, and four 
times in the instance, respectively. These repetitions are due to attributes Dept 
and Salary having different observation patterns. Specifically, the instance is 
consistent with the patterns shown to the right of the instance. 

O;!,, =< [0 ++ l],[l c) 6],[2 c) 43],[3 H 501 > 

o:& =< [0 c) 11, [l c) 10],[2 I+ 15],[3 I+ 281, 
[4 t-+ 43],[5 l-b 501 > 

In combination, these observation patterns imply the redundancy that may be 
observed in the sample instance. Thus, capturing during database design which 
attributes of the same relation schema have different observation patterns is a 
means of identifying this type of redundancy. 

To capture precisely the synchronism of attributes, define Tit to be the re- 
striction of time pattern T to the valid-time element t, that is, to include only 
those times also contained in t. 

Definition 7. Define relation schema R = (S, AI, . . . , A, ] T) where S is surro- 
gate valued. Two attributes A; and Aj in R, with observation patterns 0:; and 
Oz., , are synchronous with respect to S, denoted AigsAj, if for all meaningful 
instances r of R and for all surrogates a, 

Ozi ‘lS(T,Ai ,S)dS(T,Aj,S) = O:j ‘ls(r,Ai,o)“ls(P,Aj,.) * 

Thus, attributes are synchronous if their lifespans are identical when restricted 
to the intersection of their lifespans. With this definition, we can characterize 
relations that avoid the redundancy caused by a lack of synchronism and then 
state the Synchronous Decomposition Rule. 

Definition 8. Define relation schema R = (S, AI,. . . , A, ( T) where S is surro- 
gate valued. Relation R is synchronous if VA;, Aj E R (AigsAj). 

Definition 9. Synchronous Decomposition Rule. To avoid repetition of attribute 
values in temporal relations, decompose relation schemes until they are syn- 
chronous. 

Alternative notions of synchronism have previously been proposed for data- 
base design by Navathe and Ahmed [12], Lorentzos [ll], and Wijsen [18]. While 
these notions are stated with varying degrees of clarity and precision and are 
defined in different data-model contexts, they all seem to capture the same ba- 
sic idea, namely that of value-baaed synchronism which is different from the 
syuchronism proposed in this paper. 
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To explain the difference, consider the relation instance shown next,. 

In value-based synchronism, value-changes of attributes must occur synchronous- 
ly for attributes to be synchronous. Consequently, the relation instance implies 
that the attributes Ai and Aj in its schema are not value synchronous, and 
(value-based) decomposition is thus prescribed. Next, it may be that the at- 
tributes in the relation have identical observation patters and that it just (acci- 
dentally!) happened that the new value of Ai when both attributes were observed 
at t,ime 6 was the same as its old value. This means that the relation is consis- 
tent, with attributes Aa and Aj being (observation-pattern based) synchronous, 
and the synchronous decomposition rule does then not apply. To conclude, the 
value-based and pattern-based synchronisms are quite unrelated. 

Further, it, is our contention that using the concept of value-based synchro- 
nism during database design is problematic. Specifically, it seems quite rare that 
the database designer can guarantee that, at a21 times in the future, when two 
attributes in a tuple of relation are updated, one of them does not get a new value 
that, is identical to its old value. Thus, it appears that decomposition based on 
value-based synchronism effectively (and unnecessarily) leads to a binary data 
model, in which all relations have just, two attributes, a time invariant attribute 
and a single time-varying attribute. This is in contrast to the pattern-based 
decomposition prescribed in this paper. 

This study is carried out in the context of TSQL2. It is our contention that 
in t,his context, the synchronous decomposition rule is relevant, only to physical 
database design. Surely, the redundancy that may be detected using the syn- 
chronism concept is important when storing temporal relations. At the same 
time, this type of redundancy is of little consequence for the querying of logical- 
level relations using the TSQL2 query language [8, 131. Indeed, it will often 
adversely affect, the ease of formulating queries if logical-level relations are de- 
composed solely based on a lack of synchronism. In conclusion, the presence of 
synchronous attributes in a relation may affect, performance (positively or neg- 
atively), but it, does not negatively affect, correctness or the ease of formulating 
queries, and it is thus a non-issue at the logical level. 

The widespread presence of asynchronous attributes in relation schemas has 
been used for motivating various attribute-value timestamped data models where 
in relations, time is associated with attribute values rather than with tuples, be- 
cause these models avoids the redundancy (see, e.g., [2, 4, 51). Since this redun- 
dancy is not a problem in TSQLP, which employs tuple-timestamped relations, 
asynchronous attributes is not strictly an argument for attribute-value times- 
tamped models. 

Finally, the need for synchronism at the logical level has previously been 
claimed to make normal forms and dependency theory inapplicable (e.g., [5]). 
The argument, is that few attributes are synchronous, meaning that relation 
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schemas must be maximally decomposed, which leaves other normalization con- 
cepts irrelevant. This claim does not apply to our data model. 

For completeness, it should be mentioned that while the synchronism con- 
cepts presented in this section have concerned valid time, similar concepts that 
concern transaction time and employ update patterns rather than observation 
patterns, may also be defined. 

3.2 Implications for View Design 

The only concept from Section 2 not covered so far is derivation functions. These 
relate to view design, as outlined next. 

For each time-varying attribute, we have captured a set of one or more deriva- 
tion functions that apply to it. It is often the case that exactly one derivation 
function applies to an attribute, namely the discrete interpolation function [S] 
that is a kind of identity function. However, it may also be the case that several 
nontrivial derivation functions apply to a single attribute. 

The problem is then how to apply several derivation functions to the base 
data. We feel that there should be a clear separation between recorded data and 
data derived from the stored data via some function. Maintaining this separation 
makes it possible to later modify existing interpolation functions. 

The view mechanism provides an ideal solution that maintains this separa- 
tion. Thus, the database designer first identifies which sets of derivation func- 
tions that should be applied simultaneously to the attributes of a logical relation 
instance and then, subsequently, defines a view for each such set. Although in- 
terpolation functions have previously been studied, we believe they have never 
before been associated with the view mechanism. 

4 Summary and Research Directions 

In order to exploit the full potential of temporal relational database technology, 
guidelines for the design of temporal relational databases should be provided. 

This paper has presented concepts for capturing the properties of time- 
varying attributes in temporal databases. These concepts include surrogates 
that represent the real-world objects described by the attributes, lifespans of 
attributes, observation and update patterns for time-varying attributes, and 
derivation functions that compute new attribute values from stored ones. It 
was subsequently shown how surrogates and lifespans play an role during design 
of the logical database schema. In particular, the notion of lifespans led to the 
formulation of a lifespan decomposition rule. The notion of observation (and 
update) patterns led to a synchronous decomposition rule; it was argued that 
this rule should ideally apply to physical database design. Finally, it was shown 
how derivation functions are relevant for view design. 

We feel that several aspects merit further study. An integration of the vari- 
ous existing contributions to temporal relational database design into a coherent 
framework has yet to be attempted. Likewise, a complete design methodology, in- 
cluding conceptual (implementation-data-model independent) design and logical 

design, for temporal databases is warranted. Finally, a next step is to adopt the 
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concepts provided in this paper in richei, entity-based (or semantic or object- 
based) data models. 
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