
Semantics of Time-Varying Attributes and Their
Use for Temporal Database Design

Christian S. Jensen1 Richard T. Snodgrass2

’ Department of Mathematics and Computer Science, Aalborg University, Fredrik
Bajers Vej 7E, DK-9220 Aalborg 0, DENMARK, csj(Diesd.auc.dk

’ Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA,
rtsQcs.arizona.edu

Abstract. Based on a systematic study of the semantics of temporal
attributes of entities, this paper provides new guidelines for the design
of temporal relational databases. The notions of observation and update
patterns of an attribute capture when the attribute changes value and
when the changes are recorded in the database. A lifespan describes
when an attribute has a value. And derivation functions describe how
the values of an attribute for all times within its lifespan are computed
from stored values. The implications for temporal database design of the
semantics that may be captured using these concepts are formulated as
schema decomposition rules.

1 Introduction

Designing appropriate database schemas is crucial to the effective use of rela-
tional database technology, and an extensive theory has been developed that
specifies what is a good database schema and how to go about designing such
a schema. The relation structures provided by temporal data models, e.g., the
recent TSQLS model [13], provide built-in support for representing the tempo-
ral aspects of data. With such new relation structures, the existing theory for
relational database design no longer applies. Thus, to make effective use of tem-
poral database technology, a new theory for temporal database design must be
developed.

We have previously extended and generalized conventional normalization
concepts to temporal databases [7, 81. But the resulting concepts are still lim-
ited in scope and do not fully account for the time-varying nature of data.
Thus, additional concepts are needed in order to fully capture and exploit the
time-varying nature of data during database design. This paper proposes con-
cepts that capture the time-related semantics of attributes and uses these as a
foundation for developing guidelines for the design of temporal databases. The
properties of time-varying attributes are captured by describing their lifespans,
their time patterns, and their derivation functions. Design rules subsequently al-
low the database designer to use the properties for (view, logical, and physical)
schema design.

LNCS 1021, pp366-377, 1995.
(URL: http://www.springer.de/comp/lncs/index.html)
Copyright © Springer-Verlag

367

The paper is structured as follows. Section 2 first reviews the temporal data
model used in the paper. It then argues that the properties of attributes are rela-
tive to the objects they describe and then introduces surrogates for representing
real-world objects in the model. The following subsections address in turn dif-
ferent aspects of time-varying attributes,namely lifespans, time patterns, and
derivation functions. Section 3 is devoted to the implications of the attribute se-
mantics for logical schema, physical schema, and view design. The final section
summarizes and points to opportunities for further research.

2 Capturing the Semantics of Time-Varying Attributes

This section provides concepts that allow the database designer to capture more
precisely and concisely than hitherto the time-varying nature of attributes in
temporal relations. The temporal data model employed in the paper is first
described. Then a suite of concepts for capturing the temporal semantics of
attributes are introduced.

2.1 A Conceptual Data Model

We describe briefly the relation structures of the Bitemporal Conceptual Data
Model (BCDM) (see [9] f or a more complete description) that is the data model
of TSQL2 and which is used in this paper.

We ,adopt a linear, discrete, bounded model of time, with a time line com-
posed of chronons. The schema of a bitemporal conceptual relation, R, consists
of an arbitrary number, e.g., n, of explicit attributes and an implicit timestamp
attribute, T, defined on the domain of sets of bitemporal chronons. A bitemporal
chronon cb = (ct,c”) is an ordered pair of a transaction-time chronon ct and a
valid-time chronon c”. A tuple z = (ai, us,. . . , a,] tb), in a relation instance r
of schema R thus consists of n attribute values associated with a bitemporal
timestamp value. An arbitrary subset of the domain of valid times is associated
with each tuple, meaning that the information recorded by the tuple is true in
the modeled reality during each valid-time chronon in the subset. Each individ-
ual valid-time chronon of a single tuple has associated a subset of the domain
of transaction times, meaning that the information, valid during the particular
chronon, is current in the relation during each of the transaction-time chronons
in the subset. Any subset of transaction times less than the current time may
be associated with a valid time. Notice that while the definition of a bitemporal
chronon is symmetric, this explanation is asymmetric, reflecting the different
semantics of transaction and valid time.

We have thus seen that a tuple has associated a set of so-called &temporal
chronons in the twodimensional space spanned by transaction time and valid
time. Such a set is termed a bitemporal element [4, 61. We assume that a do-
main of surrogate values is available for representing real-world objects in the
database.

366

Example 1. Consider the relation instance, empDep, shown next.

ENme Dept T

Bob Ship ((5,lO) ,..., (5,15) ,..., (9,lO) ,..., (9,15),(10,5) ,..., (10,20) ,...,
(14,5), * - * I (14,20), (15, lo), . . .) (15,15). . . , (19, lo), . . .) (19,15)}

Bob Load ((20, lo), . . . ,(20,15), (21,10), . . . ,(21,15)}

The relation shows the employment information for an employee, Bob, and two
departments, Ship and Load, contained in two tuples. In the timestamps, we
assume that the chronons correspond to days and that the period of interest is
some given month in a given year, e.g., July 1995. Throughout, we use integers
as timestamp components. The reader may informally think of these integers as
dates, e.g., the integer 15 in a timestamp represents the date July 15, 1995. The
current time is assumed to be 21.

Valid-time relations and transaction-time relations are special cases of bitem-
poral relations that support only valid time and transaction time, respectively.
For clarity, we use the term snapshot relation for a conventional relation, which
supports neither valid time nor transaction time.

This completes the description of the objects in the bitemporal conceptual
data model-relations of tuples timestamped with temporal elements. An asso-
ciated algebra and user-level query language are defined elsewhere [13, 141.

2.2 Using Surrogates

An attribute is seen in the context of a particular real-world entity. Thus, when
we talk about a property, e.g., the frequency of change, of an attribute, that
property is only meaningful when the attribute is associated with a particular
entity. As an example, the frequency of change of a salary attribute with re-
spect to a specific employee in a company may reasonably be expected to be
relatively regular, and there will only be at most one salary for the employee at
each point in time. In contrast, if the salary is with respect to a department, a
significantly different pattern of change may be expected. There will generally
be many salaries associated with a department at a single point in time. Hence,
it is essential to identify the reference object when discussing the semantics of
an attribute.

We employ surrogates for representing real-world entities in the database.
In this regard, we follow the approach adopted in, e.g., the TEER model by
Elmasri [3]. Surrogates do not vary over time in the sense that two entities iden-
tified by identical surrogates are the same entity, and two entities identified by
different surrogates are different entities. We assume the presence of surrogate
attributes throughout logical design. At the conclusion of logical design, surro-
gate attributes may be either retained, replaced by regular (key) attributes, or
eliminated.

2.3 Lifespans of Individual Time-Varying Attributes

In database design, one is interested in the interactions among the attributes of
the relation schemas that make up the database.

369

Here, we provide a basis for relating the lifespans of attributes. Intuitively, the
lifespan of an attribute for a specific object is all the times when the object has
a value, distinct from li, inapplicable null, for the attribute. Note that lifespans
concern valid time, i.e., are about the times when there exist some valid values.

To more precisely define lifespans, we first define an algebraic selection oper-
ator on a temporal relation. Define a relation schema R = (AI,. . . , AJT), and
let T be an instance of this schema. Let P be a predicate defined on the Ai. The
selection P on r, o:(r), is defined by o:(r) = {z 1 z E r A P(z[Al,. ..,A,])}.
It follows that o:(r) simply performs the familiar snapshot selection, with the
addition that each selected tuple carries along its timestamp, T. Next, we define
an auxiliary function vte that takes as argument a valid-time relation r and
returns the valid-time element defined by vte(r) = {c” 1 3s (s E r A cv E s[T])}.
The result valid-time element is thus the union of all valid timestamps of the
tuples in an argument valid-time relation.

Definition 1. Let a relation schema R = (S, AI, . . . , A, 1 T) be given, where S
is surrogate valued, and let r be an instance of R. The lifespan for an attribute
Ai, i = l,.. . , n, with respect to a value s of S in r is denoted ls(r, Ai, s) and is
defined by ls(r, Ai, s) = vte(&&.,,,+li (T)).

Lifespans are important because attributes are guaranteed to not have any
inapplicable null value during their lifespans. Assume that we are given a relation
schema empDep = (EmpS, EName, Dept) that records the names and departments
of employees (represented by the surrogate attribute EmpS). If employees always
have a name when they have a department, and vice versa, this means that
inapplicable nulls are not present in instances of the schema. With lifespans, this
property may be stated by saying that for all meaningful instances of EmpSal
and for all EmpS surrogates, attributes EName and Dept have the same lifespans.

The importance of lifespans in temporal databases has been recognized in the
context of data models in the past (c.f. [l, 2,3]). 0 ur use of lifespans for database
design differs from the use of lifespans in database instances. In particular, using
lifespans during database design does not imply any need for storing lifespans
in the database.

2.4 Time Patterns of Individual Time-Varying Attributes

In order to capture how an attribute varies over time, we introduce the concept
of a time pattern. Informally, a time pattern is simply a sequence of times.

Definition 2. The time pattern T is a partial function from the natural numbers
n/ to a domain 2)~ of times: T : N v V T. If T(i) is defined, so is T(j) for
all j < i. We term T(i) the i’th time point.

In the context of databases, two distinct types of time patterns are of partic-
ular interest, namely observation patterns and update patterns. The observation
pattern 05, for an attribute A relative to a particular surrogate s, is the times
when the attribute is given a particular value, perhaps as a result of an observa-
tion (e.g., if the attribute is sampled), a prediction, or an estimation. We adopt

370

the convention that 01(O) is the time when it was first meaningful for attribute
A to have a value for the surrogate s. Observation patterns concern valid time.
The observation pattern may be expected to be closely related to, but distinct
from, the actual (possibly unknown) pattern of change of the attribute in the
modeled reality. The update pattern Vi is the times when the value of the at-
tribute is updated in the database. Thus, update patterns concern transaction
time.

Note that an attribute may not actually change value at a time point because
it may be the case that the existing and new values are the same. The times
when changes take place and the resulting values are orthogonal aspects. In the
latter half of Section 3.1, we will return to this distinction.

2.5 The Values of Individual Time-Varying Attributes

Wc proceed by considering how attributes may encode information about the
objects they describe. As the encoding of the transaction time of attributes is
typically built into the data model, we consider only valid-time relations.

A relation may record directly when a particular attribute value is valid.
Alternatively, what value is true at a certain point in time may be computed
from the recorded values. In either case, the relation is considered a valid-time
relation. An example clarifies the distinction between the two cases.

Example2 Consider the two relations shown below. The first, empSa1, records
names and salaries of employees, and the second, expTemp, records names and
temperature measurements for experiments. Attributes EmpS and ExpS record
surrogates representing employees and experiments, respectively.

empSa1 expTemp

Relation empSa1 records Bob’s and Sam’s salaries at all the times they h;;;ve
salaries. This is clearly consistent with what a valid-time relation is. At first sight,
relation expTemp is more problematic. It does not appear to record temperatures
for all the times when there exists a temperature for experiment xl. Specifically,
we may envision that the temperature of xl is sampled regularly and that we
may later want to compute xl temperature values for times with no explicitly
recorded value.

Traditionally, empSa1 has been considered a state relation and expTemp has
been considered an event relation; most data model proposals (with notable
exceptions, e.g., [13, 15, 161) have considered only the first type of relation.
However, note that the relations are similar in the sense that they both record

371

when information is true. Due to this observation, we make no fundamental
distinction between the two types of relations, but instead treat them quite
similarly.

The difference between relations such as empSa1 and expTemp in the example
above is solely in what additional, or even different, information is implied by
each of the relations. At the one extreme, relation empSa1 does not imply any
additional information at a& No salary is recorded for Bob from time 20 to time
29, and the existing tuples do not imply any salary for Bob in that time interval.
The other sample relation is different. For example, while no temperature for
Expl at time 40 is recorded, clearly such a temperature exists. Further, we may
even have a good idea what the temperature may be (i.e., close to 87).

Thus, the difference is that different derivation functions apply to the salary
and temperature attributes of the two relations. A derivation function fA for
a specific attribute A of a relation schema R takes as arguments a valid-time
chronon c” and a relation instance T and returns a value in the domain of at-
tribute A. For the salary attribute, a discrete derivation function applies; and for
the temperature, a nearest-neighbor derivation function may satisfy some users
while other users may need a more sophisticated function.

Definition 3. A derivation function f is a partial function from the domains of
valid times 23~~ and relation instances T with schema R to a value domain D
in the universal set of domains DD, i.e., f : DVT x r(R) c) D.

The importance of derivation functions in data models has previously been
argued convincingly by, e.g., Klopprogge [lo], Clifford [l] and Segev [16]. They
should thus also be part of a design methodology.

2.6 Summary of Attribute Semantics
In summary, the database designer is expected to initially identify and model
entity types using surrogates. Then, the notions of lifespans, time patterns, and
derivation functions are used for capturing the semantics of attributes.

Elsewhere, we have generalized conventional functional dependencies to tem-
poral databases [7]. Essentially, a temporal dependency holds on a temporal re-
lation if the corresponding snapshot dependency holds on each snapshot relation
contained in the temporal relation. With this generalization, conventional rela-
tional dependency theory applies wholesale to temporal databases. For example,
temporal keys may be defined. Such keys are generally time-varying. As a basis
for defining time-invariant attributes and keys, we have also defined so-called
strong temporal functional dependencies and strong temporal keys [8]. While not
discussed here, the designer is also expected to identify temporal and strong
temporal functional dependencies.

3 Temporal Relational Database Design Guidelines

In this section, we discuss how the properties of schemes with time-varying
attributes as captured in the previous section are used during database design.
Emphasis is on the implications of the properties for design of the logical schema,
but implications for view design and physical design are touched upon as well.

372

3.1 Logical-Design Guidelines

Two important goals of logical database design are to design a database schema
that does not require the use of inapplicable nulls and avoids representation of
the same information. We define two properties that illuminate these aspects of
relation schemas and guide the database designer.

Database designers are faced with a number of design criteria which are
sometimes conflicting, making database design a challenging task. So, while we
discuss certain design criteria in isolation, it is understood that there may be
other criteria that should be taken into consideration during database design,
such as minimizing the impact of joins required on relations that have been
decomposed.

Lifespan Decomposition Rule One important design criterion in conven-
tional relational design is to eliminate the need for inapplicable nulls in tuples of
database instances. In the context of temporal databases, we use the notion of
lifespans to capture when attributes are defined for the objects they are intro-
duced in order to describe. Briefly, the lifespan for an attribute-with respect
to a particular surrogate representing the object described by the attribute-is
all the times when a meaningful attribute value, known or unknown, exists for
the object.

Inapplicable nulls may occur in a relation schema when two attributes have
different lifespans for the same object/surrogate. To identify this type of situa-
tion, we introduce the notion of lifespan equal attributes. Examples follow the
the definition.

Definition 4. Let a relation schema R = (S, AI,. . . , A, IT) be given where S is
surrogate valued. Two attributes Ai and Aj in R are termed lifespan equal with
respect to surrogate S, denoted AigsAj, if for all meaningful instances T of R,
Vs E dam(S) (ls(r, Ai, s) = ls(r, Aj, s)).

To exemplify this definition, consider a relation schema Emp with attributes EmpS
(employee surrogates), Dept, Salary, and MgrSince. The schema is used by a
company where each employee is always assigned to some department and has a
salary. In addition, the relation records when an employee in a department first
became a manager in that department.

For this schema, we have Dept gkPs Salary because an employee has a salary
(it might be unknown or zero) exactly when associated with a department. Thus,
no instances of Emp will have tuples with an inapplicable-null value for one of
Dept and Salary and not for the other. Next, it is not the case that Dept g~,,s
MgrSince and (by inference) not the case that Salary gz,,,,,s HgrSince. This is
so because employees often are associated with a department where they have
never been a manager. Thus, instances of Emp may contain inapplicable nulls.
Specifically, the nulls are associated with attribute MgrSince as the lifespan of
this attribute is shorter than that of Dept and Salary.

373

Next, observe that Dept and Salary being lifespan equal with respect to EmpS
does not mean that all employees have the same lifespan for their department
(or salary) attribute. Employees may have been hired at different times, and the
lifespans are thus generally different for different employees. Rather, the equality
is between the department and the salary lifespan for individual employees.

The following definition then characterizes temporal database schemas with
instances that do not contain inapplicable nulls.

Definition 5. A relation schema R = (S, AI,. . . , A,) T) where S is surrogate
valued is lifespan homogeneous if VA, B E R (AEsB).

These concepts formally tie the connection between the notion of lifespans
of attributes with the occurrence of inapplicable nulls in instances. With them,
we are in a position to formulate the Lifespan Decomposition Rule.

Definition 6. Lifespan Decomposition Rule. To avoid inapplicable nulls in tem-
poral database instances, decompose temporal relation schemas to ensure life-
span homogeneity.

It is appropriate to briefly consider the interaction of this rule with the the
existing temporal normal forms that also prescribe decomposition of relation
schemes. Specifically, while the decomposition that occurs during normalization
does, as a side effect, aid in eliminating the need for inapplicable nulls, a database
schema that obeys the temporal normal forms may still require inapplicable nulls
in its instances. To exemplify, consider again the imp schema (and think of the
temporal dependencies on temporal relations as regular dependencies on the
corresponding snapshot tables). Here, EmpS is a temporal key, and there are no
other non-trivial dependencies. Thus, the schema is in temporal BCNF. It is
also the case that Emp has no non-trivial temporal multi-valued dependencies,
and it is thus also in temporal fourth normal form. In spite of this, we saw that
there are inapplicable nulls. The solution is to decompose Emp = (EmpS , Dept ,
Salary, MgrSince) into Empl = (EmpS, Dept , Salary) and Emp2 = (EmpS,
MgrSince) . Both resulting relations are lifespan homogeneous.

Synchronous Decomposition Rule The synchronous decomposition rule is
based on the notion of observation pattern, and its objective is to eliminate a
particular kind of redundancy. We initially exemplify this type of redundancy.
Then we define the notion of synchronous attributes, which leads to a definition
of synchronous schemas and an accompanying decomposition rule that are aimed
at avoiding this redundancy. Finally, we view synchronism in a larger context, by
relating it to existing concepts, and discuss the decomposition rule’s positioning
with respect to logical versus physical design.

Example 3. Consider the relation instance, empDepSa1, that follows next, record-
ing departments and salaries for employees. The schema for the relation is in
temporal BCNF, with the surrogate-valued attribute EmpS being the only min-
imal key and no other non-trivial dependencies. Yet, it may be observed that

374

the salary 30k and the departments A and B are repeated once, once, and four
times in the instance, respectively. These repetitions are due to attributes Dept
and Salary having different observation patterns. Specifically, the instance is
consistent with the patterns shown to the right of the instance.

O;!,, =< [0 ++ l],[l c) 6],[2 c) 43],[3 H 501 >

o:& =< [0 c) 11, [l c) 10],[2 I+ 15],[3 I+ 281,
[4 t-+ 43],[5 l-b 501 >

In combination, these observation patterns imply the redundancy that may be
observed in the sample instance. Thus, capturing during database design which
attributes of the same relation schema have different observation patterns is a
means of identifying this type of redundancy.

To capture precisely the synchronism of attributes, define Tit to be the re-
striction of time pattern T to the valid-time element t, that is, to include only
those times also contained in t.

Definition 7. Define relation schema R = (S, AI, . . . , A,] T) where S is surro-
gate valued. Two attributes A; and Aj in R, with observation patterns 0:; and
Oz., , are synchronous with respect to S, denoted AigsAj, if for all meaningful
instances r of R and for all surrogates a,

Ozi ‘lS(T,Ai ,S)dS(T,Aj,S) = O:j ‘ls(r,Ai,o)“ls(P,Aj,.) *

Thus, attributes are synchronous if their lifespans are identical when restricted
to the intersection of their lifespans. With this definition, we can characterize
relations that avoid the redundancy caused by a lack of synchronism and then
state the Synchronous Decomposition Rule.

Definition 8. Define relation schema R = (S, AI,. . . , A, (T) where S is surro-
gate valued. Relation R is synchronous if VA;, Aj E R (AigsAj).

Definition 9. Synchronous Decomposition Rule. To avoid repetition of attribute
values in temporal relations, decompose relation schemes until they are syn-
chronous.

Alternative notions of synchronism have previously been proposed for data-
base design by Navathe and Ahmed [12], Lorentzos [ll], and Wijsen [18]. While
these notions are stated with varying degrees of clarity and precision and are
defined in different data-model contexts, they all seem to capture the same ba-
sic idea, namely that of value-baaed synchronism which is different from the
syuchronism proposed in this paper.

375

To explain the difference, consider the relation instance shown next,.

In value-based synchronism, value-changes of attributes must occur synchronous-
ly for attributes to be synchronous. Consequently, the relation instance implies
that the attributes Ai and Aj in its schema are not value synchronous, and
(value-based) decomposition is thus prescribed. Next, it may be that the at-
tributes in the relation have identical observation patters and that it just (acci-
dentally!) happened that the new value of Ai when both attributes were observed
at t,ime 6 was the same as its old value. This means that the relation is consis-
tent, with attributes Aa and Aj being (observation-pattern based) synchronous,
and the synchronous decomposition rule does then not apply. To conclude, the
value-based and pattern-based synchronisms are quite unrelated.

Further, it, is our contention that using the concept of value-based synchro-
nism during database design is problematic. Specifically, it seems quite rare that
the database designer can guarantee that, at a21 times in the future, when two
attributes in a tuple of relation are updated, one of them does not get a new value
that, is identical to its old value. Thus, it appears that decomposition based on
value-based synchronism effectively (and unnecessarily) leads to a binary data
model, in which all relations have just, two attributes, a time invariant attribute
and a single time-varying attribute. This is in contrast to the pattern-based
decomposition prescribed in this paper.

This study is carried out in the context of TSQL2. It is our contention that
in t,his context, the synchronous decomposition rule is relevant, only to physical
database design. Surely, the redundancy that may be detected using the syn-
chronism concept is important when storing temporal relations. At the same
time, this type of redundancy is of little consequence for the querying of logical-
level relations using the TSQL2 query language [8, 131. Indeed, it will often
adversely affect, the ease of formulating queries if logical-level relations are de-
composed solely based on a lack of synchronism. In conclusion, the presence of
synchronous attributes in a relation may affect, performance (positively or neg-
atively), but it, does not negatively affect, correctness or the ease of formulating
queries, and it is thus a non-issue at the logical level.

The widespread presence of asynchronous attributes in relation schemas has
been used for motivating various attribute-value timestamped data models where
in relations, time is associated with attribute values rather than with tuples, be-
cause these models avoids the redundancy (see, e.g., [2, 4, 51). Since this redun-
dancy is not a problem in TSQLP, which employs tuple-timestamped relations,
asynchronous attributes is not strictly an argument for attribute-value times-
tamped models.

Finally, the need for synchronism at the logical level has previously been
claimed to make normal forms and dependency theory inapplicable (e.g., [5]).
The argument, is that few attributes are synchronous, meaning that relation

376

schemas must be maximally decomposed, which leaves other normalization con-
cepts irrelevant. This claim does not apply to our data model.

For completeness, it should be mentioned that while the synchronism con-
cepts presented in this section have concerned valid time, similar concepts that
concern transaction time and employ update patterns rather than observation
patterns, may also be defined.

3.2 Implications for View Design

The only concept from Section 2 not covered so far is derivation functions. These
relate to view design, as outlined next.

For each time-varying attribute, we have captured a set of one or more deriva-
tion functions that apply to it. It is often the case that exactly one derivation
function applies to an attribute, namely the discrete interpolation function [S]
that is a kind of identity function. However, it may also be the case that several
nontrivial derivation functions apply to a single attribute.

The problem is then how to apply several derivation functions to the base
data. We feel that there should be a clear separation between recorded data and
data derived from the stored data via some function. Maintaining this separation
makes it possible to later modify existing interpolation functions.

The view mechanism provides an ideal solution that maintains this separa-
tion. Thus, the database designer first identifies which sets of derivation func-
tions that should be applied simultaneously to the attributes of a logical relation
instance and then, subsequently, defines a view for each such set. Although in-
terpolation functions have previously been studied, we believe they have never
before been associated with the view mechanism.

4 Summary and Research Directions

In order to exploit the full potential of temporal relational database technology,
guidelines for the design of temporal relational databases should be provided.

This paper has presented concepts for capturing the properties of time-
varying attributes in temporal databases. These concepts include surrogates
that represent the real-world objects described by the attributes, lifespans of
attributes, observation and update patterns for time-varying attributes, and
derivation functions that compute new attribute values from stored ones. It
was subsequently shown how surrogates and lifespans play an role during design
of the logical database schema. In particular, the notion of lifespans led to the
formulation of a lifespan decomposition rule. The notion of observation (and
update) patterns led to a synchronous decomposition rule; it was argued that
this rule should ideally apply to physical database design. Finally, it was shown
how derivation functions are relevant for view design.

We feel that several aspects merit further study. An integration of the vari-
ous existing contributions to temporal relational database design into a coherent
framework has yet to be attempted. Likewise, a complete design methodology, in-
cluding conceptual (implementation-data-model independent) design and logical

design, for temporal databases is warranted. Finally, a next step is to adopt the

377

concepts provided in this paper in richei, entity-based (or semantic or object-
based) data models.

Acknowledgements

This work was supported in part by NSF grant ISI-9202244. In addition, the first
author was supported in part by the Danish Natural Science Research Council,
grants 11-1089-1, 11-0061-1, and 9400911.

References
1. J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) and

Algebra Based on Lifespans. In Proceedings of ICDE, pp. 528-537, February 1987.
2. J. Clifford and A. U. Tansel. On an Algebra for Historical Relational Databases:

Two Views. In Proceedings of ACM SIGMOD, pp. 247-265, May 1985.
3. R. Elmasri, G. Wuu, and V. Kouramajian. A Temporal Model and Query Lan-

guage for EER Databases. In [17], pp. 212-229.
4. S. K. Gadia. A Homogeneous Relational Model and Query Languages for Tempo-

ral Databases. ACM TODS, 13(4):418-448, December 1988.
5. S. K. Gadia and J. H. Vaishnav. A Query Language for a Homogeneous Temporal

Database. In Proceedings of ACM PODS, pp. 51-56, March 1985.
6. C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia (eds).

A Glossary of Temporal Database Concepts. SIGMOD Record, 23(1):52-64, March
1994.

7. C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending Normal Forms to Tem-
poral Relations. Technical Report TR-92-17, Department of Computer Science,
University of Arizona, Tucson, AZ, July 1992.

8. C. S. Jensen and R. T. Snodgrsss. Semantics of Time-Varying Attributes and
Their Use for Temporal Database Design. Technical Report R-95-2012, Depart-
ment of Math. and Computer Science, Aalborg University, Denmark, May 1995.

9. C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Models via a
Conceptual Model. Information Systems, 19(7):513-547, 1994.

10. M. R. Klopprogge and P. C. Lockemann. Modelling Information Preserving Data-
bases: Consequences of the Concept of Time. In Proceedings of VLDB, pp. 399-416,
1983.

11. N. A. Lorentzos. Management of Intervals and Temporal Data in the Relational
Model. Technical Report 49, Agricultural University of Athens, 1991.

12. S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Lan-
guage. Information Sciences, 49:147-175, 1989.

13. R. T. Snodgrass (ed). The TSQLZ Temporal Query Language. Kluwer Academic
Publishers, 1995, 674+xxiv pages.

14. M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An Algebra for TSQLP. In [13],
chapter 27, pp. 505-546.

15. R. T. Snodgrass. The Temporal Query Language TQuel. ACM TODS, 12(2):247-
298, June 1987.

16. A. Segev and A. Shoshani. A Temporal Data Model based on Time Sequences. In
[17], pp. 248-270.

17. A.U. Tansel, J. Clifford, S.K. Gadia, A. Segev, and R.T. Snodgrass (eds). Tempo-
ral Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.

18. J. Wijsen. Extending Dependency Theory for Temporal Databases. Ph.D. Thesis.
Department Computerwetenschappen, Katholieke Universiteit Leuven, 1995.

