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Abstract 

A wide range of database applications manage time- 
varying data, and it is well-known that querying and 
correctly updating time-varying data is dificult and er- 
ror-prone when using standard SQL. Temporal exten- 
sions of SQL ofSeer substantial benefits over SQL when 
managing time-varying data. 

The topic of this paper is the effective implemen- 
tation of temporally extended SQL’s. Traditionally, it 
has been assumed that a temporal DBMS must be built 
from scratch, utilizing new technologies for storage, in- 
dexing, query optimization, concurrency control, and 
recovery. In contrast, this paper explores the concepts 
and techniques involved in implementing a temporally 
enhanced SQL while maximally reusing the facilities 
of an existing SQL implementation. The topics cov- 
ered span the choice of an adequate timestamp domain 
that includes the time van’able “NOW,” a comparison. 
of query processing architectures, and transaction pro- 
cessing, the latter including how to ensure ACID prop- 
erties and assign timestamps to updates. 

Keywords Temporal databases, SQL, layered archi- 
tecture, legacy issues 

1 Introduction 
A wide variety of existing database applications man- 
age time-varying data (e.g., see [8, p. 6701 [13]). Ex- 
amples include medical, banking, insurance, and data 
warehousing applications. 

At the same time, it is widely recognized that tem- 
poral data management in SQL-92 is a complicated and 
error-prone proposition. Updates and queries on tem- 
poral data are complex and are thus hard to formulate 
correctly and subsequently understand (e.g., see [6, 9, 
161). This insight is also not new, and following more 
than a .decade of research, advanced query languages 
with built-in temporal support now exist (e.g., [17. 191) 
that substantially simplify temporal data management. 

To be applicable in practice, a temporal language 
must meet the challenges of legacy code. Specifically, a 
temporal query language should be upward compatible 
with SQL-92, meaning that the operation of the bulks 
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of legacy code is not affected when temporal support is 
adopted. In addition, it is desirable that a language per- 
mits for incremental exploitation of the temporal sup- 
port. When a temporal language is first adopted, no 
existing application code takes advantage of the tem- 
poral features. Only when converting old applications 
and developing new ones are the benefits of temporal 
support achieved. To be able to make this transition 
to temporal support, temporal and old, “non-temporal” 
applications must be able to coexist smoothly. 

Temporal query languages effectively move com- 
plexity from the user’s application to the implementa- 
tion of the DBMS. The usual architecture adopted when 
building a temporal DBMS is the integrated architec: 
ture also used for implementing commercial relational 
DBMS’s (see, e.g., [l, 18, 193). This architecture al- 
lows the implementor maximum flexibility in imple- 
menting the temporal query language. This flexibility 
may potentially be used for developing an efficient im- 
plementation that makes use of, e.g., special-purpose 
indices, query optimizers, storage structures, and trans- 
action management techniques. However, developing 
a temporal DBMS with this approach is also very time 
consuming and resource intensive. A main reason why 
the layered architecture has received only little atten- 
tion so far is that the ambitious performance goal has 
been to achieve the same performance in a temporal 
database (with multiple versions of data) as in a snap- 
shot database (without versions and thus with much less 
data). 

This paper explores the implementation of tempo- 
ral query languages using a layered architecture. This 
architecture implements a temporal query language on 
top of an existing relational DBMS. Here, the relational 
DBMS is considered a black box, in that it is not pos- 
sible to modify its implementation when building the 
temporal DBMS. 

With this architecture there is a potential for reusing 
the services of the underlying DBMS, e.g., the con- 
currency control and recovery mechanisms, for imple- 
menting the extended functionality, and upward com- 
patibility may potentially be achieved with a minimal 
coding effort. The major disadvantages are the entry 
costs that a DBMS imposes on its clients, as well as the 
impossibility of directly manipulating DBMS-internal 
data structures. 
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Our main design goals are upward compatibility and 
maximum reuse of the underlying DBMS. Another goal 
is that no queries should experience significantly lower 
performance when replacing an existing DBMS with a 
temporal DBMS. Throughout, we aim to achieve these 
goals. We consider the alternatives for a domain for 
timestamps, including the possible values available for 
representing the time variable “NOW.” We show how 
a partial parser architecture can be used for achiev- 
ing upward compatibility with a minimal effort, and 
we discuss issues involved in implementing temporal- 
transaction processing. 

A partial parser has been implemented that provides 
a minimum of temporal support. We have chosen a 
commercial DBMS as the underlying DBMS, and not 
an extensible system (Chapter 7 of reference [21] cov- 
ers several such systems) because we want to investi- 
gate the seamless migration of legacy systems. 

Little related work has appeared that considers a 
layered implementation of temporal query languages. 
The research reported by Vassilakis et al. [20] assumes 
a layered implementation of an interval-extended query 
language, VT-SQL, on top of Ingres. The focus is on 
correct transaction support, and the problem addressed 
is that the integrity of transactions may be violated when 
the layer uses temporary tables to store intermediate re- 
sults. This is because the SQL-92 standard does not re- 
quire that a DBMS permits both data manipulation and 
data definition statements to be executed in the same 
transaction [ 10, p. 761. This may make it impossible to 
rollback a transaction started from the layer. The prob- 
lem is solved by using two connections to the DBMS. 
We find that the problem is eliminated if the DBMS 
supports SQL-92 temporary tables, and this paper does 
not address that problem. 

Recently, a layered implementation, based on Ora- 
cle, was pursued in the TIMEDB prototype that imple- 
ments the ATSQL query language [3], which incorpo- 
rates ideas from TSQL2 [ 171 and ChronoLog [2]. The 
topics covered in this paper are partly inspired by and 
generalize TIMEDB. 

Most recently, Finger and McBrien [7] studied which 
value to use for NOW in the valid-time dimension when 
transactions are taken into consideration. But their work, 
which focuses on valid time and has a less practical ori- 
entantion, covers issues largely orthogonal to those ad- 
dressed here. Among the most significant differences, 
they do not consider representational issues and do not 
use timestamping-after-commit [ 121, as done here. 

The rest of the paper is organized as follows. Sec- 
tion 2 characterizes temporal support, introduces the 
layered architecture, states design goals, and touches 
upon the limitations of the general approach. Section 3 
is concerned with the domain of timestamps. Different 
parser architectures for temporal query processing are 
the topic of Section 4, and Section 5 is devoted to the 
processing of temporal transactions. Finally, Section 6 
concludes and points to research directions. 

2 Temporal SQL and Design Goals 
Following an introduction to the functionality that a tem- 
poral SQL adds to SQL-92, we introduce the layered 
architecture and state the design goals for the layered 
implementation of this functionality. 

2.1 Temporal Functionality 

Two general temporal aspects of database facts have 
received particular interest [ 151. The transaction time 
of a fact records when the fact is current in the database, 
and is handled by the temporal DBMS. Orthogonally, 
the valid time of a fact records when the fact is true in 
the modeled reality, and is handled by the user; or de- 
fault values are supplied by the temporal DBMS. A data 
model or DBMS with built-in support for both times is 
called bitemporal; and if neither time is supported, it is 
termed non-temporal. 

The relation Employee in Figure 1 is an example 
of a bitemporal relation. The relation records depart- 
ment information for employees, with a granularity of 
days, and with the last four implicit columns encoding 
the transaction-time and valid-time dimensions using 
half-open intervals. 

On August 8, the tuple (Torben, Toy, 8-8-1996, 
NOW, 10-8-1996, NOW) was inserted, meaning that 
Torben will be in the Toy department from August 10 
until the current time. Similarly, on August 12 we re- 
corded that Alex was to be in the Sports department 
from August 23 and until August 3 1. Later, on August 
19, we learned that Torben was to start in the Sports de- 
partment on August 21. The relation was subsequently 
updated to record the new belief. We no longer be- 
lieved that Torben would be in the Toy department from 
August 10 until the current time, but believed instead 
that he would be there only until August 21 and that 
he would be in Sports from August 21 and until the 
current time. Thus, the first NOW in the original tuple is 
changed to August 19, and the resulting two new tuples 
with our new beliefs are inserted. 

The relation in Figure 1 shows that the data model 
for a temporal SQL is different from the SQL-92 data 
model. Four implicit attributes have been added to the 
data structure (the relation). 

Instead of assuming a specific temporal query lan- 
guage, we will simply assume that the temporal query 
language supports standard temporal database function- 
ality, as it may be found in the various existing data 
models. We also assume that the temporal data model 
satisfies three important properties, namely upward com- 
patibility (UC), temporal upward compatibility (TUC) 
[4] and snapshot reducibility (SR) [14]. We will define 
these properties next. 

There are two requirements for a new data model 
to be upward compatible with respect to an old data 
model [4]. First, the data structures of the new data 
model must be a superset of the data structures in the 
old data model. Second, a legal statement in the old 
data model must also be a legal statement in the new 
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( Name 1 Department (1 T-Start 1 T-Stop 1 V-Begin 1 

1 
V-En7 

Torben 1 Tov 11 8-8-1996 1 19-8-1996 I 10-g-3996 t NOW t 
I. 

Alex sports 12-8-1996 NOW 23-8-1996 31-8-1996 
Torben Toy 19-8-1996 NOW 10-g-1996 21-8-1996 
Torben sports 19-8-1996 NOW 21-8-1996 NOW 

Figure 1: The Bitemporal Relation, Employee 

data model, and the semantics must be the same, e.g., 
the result returned by a query must be the same. A tem- 
poral extension will invariably include new key words. 
We assume that such key words do not occur in legacy 
statements as identifiers (e.g., as table names). For a 
temporal data model and DBMS to be successful, it 
is important that these requirements are fulfilled with 
respect to SQL-92. 

TUC is a more restrictive requirement. For a new 
temporal data model to be temporal upward compatible 
with respect to an old data model, it is required that 
all legacy statements work unchanged even when the 
tables they use are changed to provide built-in support 
for transaction time or valid time. Thus TUC poses 
special requirements on the effect of legacy modifica- 
tion statements applied to temporal relations and to the 
processing of legacy queries on such relations. When 
a temporal DBMS is taken in use, the application code 
does not immediately exploit the added functionality; 
rather, the temporal features are only realized incremen- 
tally, as new applications are developed and legacy ap- 
plications are being modernized. TUC guarantees that 
legacy and new applications may coexist harmoniously. 

Lastly, a temporal statement is snapshot reducible 
with respect to a non-temporal statement if all snap- 
shots of the result of the temporal statement are the 
same as the result of the non-temporal statement eval- 
uated on the corresponding snapshots of the argument 
relations. The idea of SR is that the expertise of applica- 
tion programmers using SQL-92 should be applicable 
to the added temporal functionality, making it easier to 
understand and use the new facilities. 

Using TUC and SR, we may divide the new state- 
ments in a temporal SQL into three categories. First, 
TUC statements are conventional SQL-92 statements, 
with the exception that they involve temporal relations. 
These statements are not “aware” of the temporal exten- 
sions and access only the current state of the temporal 
database. Second, sequenced statements are those state- 
ments that satisfy snapshot reducibility with respect to 
a corresponding SQL-92 query. Third, non-sequenced 
statements are statements that do not have a correspond- 
ing SQL-92 counterpart. These statements exploit the 
temporal facilities, but do not rely on the DBMS to 
do timestamp-related processing according to snapshot 
reducibility. 

2.2 The Layered Architecture 

The layered architecture implements new temporal qu- 
ery facilities in SQL-92. The queries written in the 
new temporal language are then converted to SQL-92 
queries that are subsequently executed by the underly- 
ing DBMS. No conversion is needed for plain SQL-92 
queries. The layered temporal database architecture is 
shown in Figure 2. 

DBMS 
1 

Figure 2: The Layered Temporal Database Architecture 

Some comments are in order. First, the layer uses 
the DBMS as a “black box.” Second, the assumed con- 
trol structures in this architecture are simple. The layer 
converts temporal queries to SQL-92 queries, Keeps 
track of information used by the layer internally, and 
does some post-processing of the result received from 
the DBMS. More precisely, a transaction with temporal 
statements is compiled into a single SQL-92 transac- 
tion that is executed on the DBMS without interference 
from the layer-the layer simply receives the result and 
applies some post-processing. There is thus no control 
module in the layer, and there is minimal interaction be- 
tween the layer and the DBMS. While maximizing the 
independence among the two components, this simplic- 
ity also restricts the options available for implementing 
temporal queries in the layer. The specific impacts on 
the functionality of the temporal query language and on 
performance are not yet well understood. 

Temporal Query. Q Error RWlll 

I I A 

Layer 

I 
SC2XUKX 

1 

code Generam 

J 

As a simple example of how the layer converts a 
temporal query into an SQL-92 query, consider the fol- 
lowing sequenced temporal query that finds the name 
and department of employees in the sports department 
and how long they have been there. 
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SEQUENCED VALID 
SELECT Name, Department 
FROM Employee 
WHERE Department = 'Sports' 

The new keywords SEQUENCED VALID indicate that 
the query should be computed over all (valid) times, 
but just for the current (transaction time) state. To con- 
vert thisquerytoSQL-92,the SEQUENCED VALIDis 
omitted, attributes V-Begin and V-End are added to 
the SELECT clause, and the WHERE clause is extended 
with conditions on T-Start and T-Stop to ensure 
that only current tuples are considered. If evaluated on 
August 25, the following table results. 

Name Department V-Begin V-End 
Torben sports 21-8-1996 NOW 
Alex SDOrtS 23-8-1996 31-8-1996 

The temporal query is written in the temporal query 
language ATSQL [3]. It is beyond the scope of this pa- 
per to define the syntax and semantics of this language. 
However, the extensions are consistent with SQL-92 
and are easy to understand. 

2.3 Design Goals 

In implementing the layered temporal DBMS, we stress 
seven somewhat conflicting and overlapping design go- 
als, namely achieving upward compatibility with a min- 
imal coding effort, gradual availability of temporal func- 
tionality, achieving temporal upward compatibility, max- 
imum reuse of existing relational database technology, 
retention of all desirable properties of the underlying 
DBMS, platform independence, and adequate perfor- 
mance. We discuss each in turn. 

As discussed already, UC is important in order to be 
able to protect the investments in legacy code. Achiev- 
ing UC with a minimal effort and gradual availability 
of advanced functionality are related goals. First, it 
should be possible to exploit in the layered architecture 
that the underlying DBMS already supports SQL-92. 
Second, it should be possible to make the new temporal 
functionality available stepwise. Satisfying these goals 
provides a foundation for early availability of a suc- 
cession of working temporal DBMSs with increasing 
functionality. 

TUC makes it possible to turn an existing snapshot 
database into a temporal database, without affecting le- 
gacy code. The old applications work exactly as in the 
legacy DBMS, and new applications can take advan- 
tages of the temporal functionality added to the database. 
TUC helps achieve a smooth, evolutionary integration 
of temporal support into an organization. 

Few software companies have the resources for build- 
ing a temporal DBMS from scratch. By aiming for 
maximum reuse of existing technology, we are striving 
towards a feasible implementation where both SQL-92 
and temporal queries are processed by the underlying 
DBMS. Only temporal features not found in the DBMS 
are implemented in the layer. 

It is important to retain all the desirable properties of 
the underlying DBMS. For example, we want to retain 
ACID properties. With this goal we want to assure that 
we are adding to the underlying DBMS. However, this 
also means that if the underlying DBMS does not have 
a certain core database property, the temporal DBMS 
will not have it, either. 

We stress platform independence because we want 
the layer to be independent of any particular underlying 
DBMS. By generating SQL-92 code, the layer should 
be portable to any DBMS supporting this language. 

Rather than attempting to achieve higher performan- 
ce than existing DBMS’s, we simply aim at achieving 
adequate performance. Specifically, legacy code should 
be processed with the same speed as in the DBMS, 
and temporal queries on temporal databases should be 
processed as fast as the corresponding SQL-92 queries 
on the corresponding snapshot database (i.e., with the 
same information, but using explicit time attributes). 

Achieving all the design goals simultaneously is not 
always possible. For example, the maximum-reuse goal 
implies that the layer should be as thin as possible, which 
is likely to be in conflict with the adequate-performance 
goal. Similarly, the platform-independence goal may be 
in conflict with the maximal-reuse goal. 

2.4 Fundamental Limitations 

An important question when adopting a layered archi- 
tecture is whether it is practical or even possible to trans- 
late all temporal SQL queries to SQL-92 queries. While 
we believe that much of the functionality of a tempo- 
rally enhanced SQL may be mapped systematically to 
SQL-92, there exist temporal queries, e.g., complex 
nested queries, for which a systematic mapping is not 
available. 

3 Representing the Time Domain 
As illustrated in Figure 1, four extra attributes, termed 
timestamp attributes are used when recording the tem- 
poral aspects of a tuple. Next, we will discuss which 
domain to use for the timestamp attributes and how to 
represent the special temporal database value ‘NOW.” 

3.1 Choosing a Time Domain 

The domain of the timestamped attributes can be one of 
the SQL-92 datetime data types (DATE or TIMESTAMP). 
The advantage of using one of the built-in types is max- 
imum reuse. The disadvantage is that the domain is 
limited to represent the years 0001 to 9999 [lo]. 

If the limits of the SQL-92 data types is a problem 
to the applications, the domain of the time attributes can 
be represented using a new temporal data type handled 
by the layer, and stored as a I3 IT ( x ) in the DBMS. The 
advantage of using a new temporal data type is that it 
can represent a much wider range of times with a finer 
precision. The most obvious disadvantage is that the 
layer will be thicker, because all handling of the new 
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data type must be implemented in the layer. Further, 
because dates are irregular, e.g, there are different num- 
bers of days in different months, and because the arith- 
metic operators defined on the BIT (x) data type are 
regular, we cannot easily use the BIT (x) arithmetic 
operators in the DBMS to manipulate the new data type. 

As an example of these problems, notice that adding 
one month to a date depends on which month the date 
is in. The addition routine must add 3 I days to a March 
date and 30 days to an April date. Thus, addition must 
be performed in the layer. Indeed, the manipulation of 
time attributes must to a large extent be handled by the 
layer. This means more tuples have to be sent from the 
DBMS to the layer to be processed. This again leads to 
a performance penalty. 

We have here reached one of the limitation on build- 
ing on top of an existing DBMS: Adding a new data 
type in the layer is a major modification when the un- 
derlying DBMS does not support abstract data types. In 
conclusion, we recommend using the built-in data type 
TIMESTAMP for timestamp attributes. 

3.2 Representing NOW 

Temporal relations may record facts that are valid from 
or until the current time, and the information they record 
is or is not current. The relation in Figure 1 exemplifies 
this representation of “now”-relative information. 

The value NOW is not part of the domain of SQL-92 
TIMESTAMP values, making it necessary to represent 
NOW by some other value in the domain. A require- 
ment to a useful value is that it is not also used with 
some other meaning. Otherwise, the meaning of the 
value becomes overloaded. There are essentially two 
choices of a value for denoting NOW: It is possible 
to use the value NULL or to use a well-chosen “nor- 
mal” value, specifically either the smallest or the largest 
TIMESTAMP value. After a general discussion of this 
approach, we compare the two possibilities. 

No matter what value is chosen, this will limit the 
domain of the data type and create a potential for over- 
loading. For transaction-time attributes, this is not a 
problem because their values are system supplied. How- 
ever, for valid-time attributes, this is a real restriction. 
Furthermore, we have to explicitly treat the value rep- 
resenting NOW specially, e.g., make sure the user does 
not enter the special value; and when we display data to 
the user, we have to convert the value used for NOW to 
an appropriate value (e.g., the string “NOW’). 

Next, we compare NULL with “regular” timestamp 
values. The value NULL has special properties that ma- 
kes it different from any other value. An advantage 
of MULL is that it takes up less space than a regular 
timestamp value. Also, the value NULL can be pro- 
cessed faster. This aspect is discussed empirically in 
the next section. (While these observations pertain to 
Oracle [l 11, similar statements should hold for other 
DBMS’s) A disadvantage of NULL is that columns 
that permit NULL values prevent the DBMS from using 

indices. However, using a non-NULL value also impacts 
indexing adversely. For example, assume that a B+- 
tree index, e.g., on V-End, is used to retrieve tuples 
with a time period that OverlapsNOW. Because NOW is 
represented by a large or a small value, tuples with the 
V-End attribute set to NOW will not be in the range 
retrieved. They will have to be found at one of the 
“sides” of the B+-tree. 

3.3 Using NOW in Queries 

Above, we considered the representation of NOW in 
temporal relations. The next step is to consider the 
querying of such relations. Here, it is quite easy to 
contend with each of MULL, the minimum value, and 
the maximum value as NOW. Assuming a temporally 
enhanced SQL, NOW will be used in the SELECT and 
WHERE clauses. The idea is to check values of the 
timestamp attributes and replace them with the current 
time (i.e., the time when the query is executed) if they 
are equal to the time representing NOW. 

For example, in a SELECT or WHERE clause the 
valid-time end of tuples in a relation can be referenced 
as END (VALID ( relation-name ) ) in ATSQL. 
This is translated to the following in an SQL-92 query:’ 

CASE 
WHEN relation-name.V-End = <now rep.> 
THEN CURRENT-TIMESTAMP 
ELSE relation-name.V-End 

END 

3.4 Performance Comparison of Alternative NOW 
Representations 

We have seen that it is possible to use NULL, the mini- 
mum, and maximum values as representatives for NOW. 
Next, we compare their performance. Specifically, for 
each choice for NOW, we perform each of three differ- 
ent representative queries on three different relations. 
We consider timeslice queries because of their impor- 
tance in temporal query languages [19]. The queries 
favor the current state, which is assumed to be accessed 
much more frequently than old states. 

Query 1 retrieves the current state in both trans- 
action time and valid time, i.e., it selects tuples with 
transaction-time and valid-time intervals that both over- 
lap with the current time. Tuples with intervals that end 
at NOW thus qualify. Query 2 timeslices the argument 
relation as of NOW in transaction time and as of a past 
time in valid time. It thus retrieves our current belief 
about a past state of reality. Query 3 timeslices the 
relation as of a past time in both transaction time and 
valid time and thus retrieves a past belief about a past 
state of reality. 

The queries are performed on three different bitem- 
poral tables, with varying distribution of their tuples. 
In the first relation, 10% of the tuples overlaps with 

‘When using NULL, the shorter conditional value expression 
COALESCEIIM~~SO be used. 
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the current time in both transaction and valid time. In 
the second and third relations, this percentage is 20 and 
40, respectively. Each relation has one million tuples. 
For each of the three candidate representations of NOW, 
i.e., NULL, Min value, and Max, we have a variant of 
each table. There are thus three different tables and 
three different queries; and each combination of a ta- 
ble and a query exists in three variations, one for each 
choice for NOW. 

In the experiments, we have used a composite B- 
tree index on V-Begin and V-End, and a B-tree index 
on T-S top for all tables. The CPU-times in seconds 
to answer the queries are shown in Table 1. The tests 
were performed on a SUN Spare 10 using the Oracle 
RDBMS version 7.2.2.4. 

It follows that representing NOW by the minimum 
value is always slowest. When 10% of the tuples are in 
the current state, it is approximately 5% slower to use 
NULL than the maximum value for the three queries. 
However, when 20% and 40% of the tuples are current, 
it is fastest to use NULL. 

The next step is to consider the number of physical 
disk reads. Using NULL always results in a full table 
scan. Using the maximum value, the number of phys- 
ical disk reads increases with the percentage of tuples 
in the current state. In the case of 40% of the tuples 
in the current state, the number of physical disk reads 
is approximately the same when using either of NULL 
and the maximum value. Using the minimum value per- 
forms similar to using the maximum value, except in the 
case of 40% current tuples where using the minimum 
value results in 35% more physical disk reads. 

Based on the analysis above, we choose to use the 
maximum value for representing NOW in the following, 

4 Query Processing 

This section describes different strategies for process- 
ing queries in a layered architecture. The main idea is 
to reduce product development time. For this purpose, 
several variants of partial parsers are investigated. 

Partial parser approaches are useful in two situa- 
tions. First, they can significantly reduce the time it 
takes to release the first version of a new product. To- 
day, this factor often decides whether a product is suc- 
cessful or not. Second, a partial parser approach is 
useful if many statements of a language are not affected 
by the (temporal) extension. The parsing of such state- 
ments does not have to be implemented, as we will see. 

4.1 A Full Parser 

We start with the layered architecture shown in Fig- 
ure 2. The user enters a query, Q, that is parsed in the 
layer. Any errors found during parsing are reported. If 
no errors are found, an equivalent SQL-92 query, called 
Q’, is generated and sent to the DBMS. Query Q can be 
either an SQL-92 query or a temporal query. During 
the conversion, the layer uses and possibly updates the 

metadata maintained by the layer. Finally, it is neces- 
sary to do some processing of the output from query 
Q’, e.g., substitute the value representing NOW with the 
text string “NOW”. We call this layered temporal query 
processing architecture afullparser archifecfure. 

With this architecture, it is possible to obtain UC 
and TUC, and it is possible to process all SQL-92 and 
temporal queries. Further, all desirable properties of the 
DBMS can be retained because it is totally encapsulated 
from the users. Finally, by generating SQL-92 code, 
the layer can be made platform independent. 

As disadvantages, we do not obtain UC with a min- 
imal effort. The SQL-92 parser in the DBMS is not 
reused; rather, we have to implement it in the layer. 
This means that before we can start to implement the 
temporal extensions to SQL-92, we first have to “im- 
plement” SQL-92. Further, SQL-92 queries are un- 
necessarily parsed twice, once in the layer and once in 
the DBMS. This performance overhead, we would like 
to avoid if possible. 

4.2 A Partial Parser Architecture 

SQL-92 is a large language, making an upward com- 
patible temporal extension even bigger. Because the 
DBMS has a full SQL-92 parser, it is attractive to only 
have to implement a parser for the temporal extension 
in the layer, and to rely on the DBMS’s parser for the 
SQL-92 queries. This idea is illustrated in Figure 3. 
The parser in the layer is now a partial parser-it only 
must know the temporal extensions to SQL-92. 

A query Q is entered. If the parser cannot parse Q, 
it is assumed to be an SQL-92 query and is sent uncon- 
verted to the DBMS. If the parsing does not generate 
an error, Q is a temporal query and is converted to the 
equivalent SQL-92 query, Q’, that is then sent to the 
DBMS. 

Q I 

Yes e-l ElTOI? 

NO 

Figure 3: Partial Parser 

This architecture makes it possible to achieve UC 
with a minimal effort by maximally reusing the under- 
lying DBMS for the processing of SQL-92 queries: All 
SQL-92 queries will run immediately, and error mes- 
sages to incorrect SQL-92 queries are generated by the 
DBMS. It is also possible to achieve TUC: If an existing 
relation is altered to support valid or transaction time, 
legacy queries using the relation may be detected and 
modified in the layer. 
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Table 1: CPU-time in Seconds for the Three Queries 

However, there is still a performance overhead. The 
layer must start parsing all queries, including SQL-92 
queries, and stops only if and when an error is encoun- 
tered. Further, there is a problem with error handling. 
The result of an error is that the query is sent to the 
DBMS, which cannot parse an incorrect temporal query, 
either. This results in SQL-92 error messages to tem- 
poral queries. 

The source of the disadvantages seems to be that 
the layer cannot easily and correctly determine whether 
a query is a temporal or an SQL-92 query. The next 
architecture attempts to solve this. 

4.3 Partial Parser-Optional Hints 

With a partial-parser approach with optional hints, the 
user can indicate whether a query Q is temporal or non- 
temporal by writing TEMPORAL or PLAIN, respectively, 
in a comment before the query. The approach is illus- 
trated in Figure 4. 

A query Q is entered. If the scanner finds PLAIN 
in front of the query, it is sent directly to the DBMS. If 
the scanner finds TEMPORAL or no hint, Q is parsed in 
the layer. If Q is a temporal query, it is converted to Q’ 
which is then sent to the DBMS. If the parser finds an 
error, the user receives an error message. The presence 
of TEMPORAL indicates that the error is a temporal- 
query error. Otherwise, the query is assumed to be a 
SQL-92 query, and it is sent unconverted to the DBMS. 

With this approach, it is possible to achieve UC with 
a minimal effort, and SQL-92 queries with a hint are 
parsed only once, leading to faster processing. The 
architecture also permits for obtaining TUC; and there 
is good error handling for temporal queries when the 
TEMPORAL hintisused. 

However, there are also some problems. Legacy 
SQL-92 queries are parsed twice if the PLAIN hint is 
not present. Without this hint, we have the same disad- 
vantages as before: a performance overhead for SQL- 
92 queries and problems with the error handling for 
temporal queries. We try to eliminate these problems 
next. 

Error 
E Q I 

I 

t t t 
Q Q Q 

Figure 4: Partial Parser with Optional “Hints” 

4.4 Partial Parser-Enforced “Hints” 

With a partial parser approach with enforced “hints,” 
temporal queries must be tagged with a TEMPORAL 
hint. Thus queries with no hint are assumed to be SQL- 
92 queries. This way, we are able to distinguish SQL- 
92 queries from temporal queries without having to re- 
visit legacy code. 

The idea is illustrated in Figure 5. When query Q 
is entered and the scanner does not find TEMPORAL in 
front of the query, it is sent directly to the DBMS. If the 
scanner finds a TEMPOIUL, Q is converted to Q’, which 
is then sent to the DBMS. If the parser finds an error, 
this must be a temporal-query error, and an appropriate 
error message may be generated. 

The advantages of this architecture are the same as 
for a partial parser with optional hints. We get UC with 
a minimal effort and fast handling of SQL-92 queries. 
The disadvantage is that we cannot get TUC. If a table is 
altered to add temporal support, all legacy queries using 
the table must be altered by inserting the temporal hint. 
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not TEMPORAL 

vi d 
Figure 5: Partial Parser with Enforced “Hints” 

4.5 Comparison of Architectures 

, 

single SQL-92 transaction. The alternative of allowing 
the layer to map a temporal SQL transaction to several 
SQL-92 transactions, while easing the implementation 
of temporal SQL transactions, leads to hard-to-solve 
problems. 

To illustrate, assume that a temporal SQL transac- 
tion is mapped to two SQL-92 transactions. During 
execution it may then happen that one SQL-92 transac- 
tion commits but the other fails, meaning that the tem- 
poral SQL transaction fails and should be rolled back. 
This, however, is not easily possible-other (e.g., com- 
mitted) transactions may already have seen the effects 
of the committed SQL-92 transaction. 

J 

Next, it is generally not sufficient to simply require 
that each temporal SQL transaction is mapped to a sin- 
gle SQL-92 transaction. It must also be guaranteed that 
the SQL-92 transaction does not contain DDL state- 
ments. This is so because the SQL-92 standard permits 
DDL statements to issue implicit commits [ 10, p. 761. 
Thus the SQL-92 transaction becomes several SQL-92 
transactions, yielding the same problem as before. 

All four architectures are compatible with a platform- 
independent layer, and they may reuse the components 
in the DBMS. However, there is less reuse with the full 
parser. Here we cannot achieve UC with a minimal 
effort. It is interesting to observe that we cannot obtain 
both TUC and no performance overhead for SQL-92 
queries without revisiting legacy code. For the partial 
parser with optional hints, we can either achieve TUC 
or no performance overhead, but not both at the same 
time. We can retain the desired properties, e.g., error 
handling, of the DBMS, except in the case of the partial 
parser. 

Recovery is an important part of a DBMS that nor- 
mally is transparent to end users. When constructing 
the layered approach, we are not different from end 
users and can rely on the recovery mechanisms imple- 
mented in the DBMS. We see no reason why recovery 
should be faster or slower using a layered approach. 

The conclusion is that the ACID properties of tem- 
poral SQL transactions are guaranteed if the SQL-92 
transactions satisfy the ACID properties and if we map 
each temporal SQL transaction to exactly one SQL-92 
transaction that does not contain DDL statements. 

The partial parser approaches are consistent with 
the desire for gradual availability of increasingly more 
temporal support. The outset is that we want a temporal 
DBMS that is upward compatible with SQL-92. Then 
we want to, e.g., have temporal upward compatibility 
for all non-nested SQL-92 queries, then for all SQL- 
92 queries, and finally advanced temporal support via 
new temporal sequenced and non-sequenced queries. 

5 Transaction Processing 
In this section, we discuss how to implement ACID 
properties [8] of transactions in the layer by exploit- 
ing the ACID properties of the DBMS. Specifically, we 

5.2 Timestamping of Updates 

When supporting transaction time, all previously cur- 
rent database states are retained. Each update trans- 
action transforms the current database state to a new 
current state. In practice, this is achieved by associ- 
ating a pair of an insertion and a deletion time with 
each tuple. These times are managed by the DBMS, 
transparently to the user. The insertion time of a tuple 
indicates when the tuple became part of the current state 
of the database, and the deletion time indicates that the 
tuple is still current or when it ceased to be current. 

To ensure that the system correctly records all previ- 
ously current states, the timestamps given to tuples by 
the transactions must satisfy four requirements. First, 

show how concurrency control and recovery mechanisms all insertions into and deletions from the current state 

can be implemented using the services of the DBMS. by a transaction must occur simultaneously, meaning 

Finally, the effective timestamping of database modifi- that the insertion times of insertions and the deletion 

cations is explored. times of deletions must all be the same time. If not, we 
mav observe inconsistent database states. For example, 

5.1 ACID Properties of ‘Ikansactions 

One of our design goals is to retain the desirable prop- 
erties of the underlying DBMS. The ACID properties of 
transactions are examples of such desirable properties. 

The ACID properties of temporal SQL transactions 
are retained by mapping each temporal transaction to a 

if the two updates in a debit-credit transaction are given 
different timestamps and we inspect the database state 
current between the two timestamps, we see an incon- 
sistent state. Second, the transactions cannot choose 
their timestamp times arbitrarily. Rather, the times given 
to updates by the transactions must be consistent with 
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a serialization order of the transactions. Thus, if trans- 
action Tl uses timestamp tr, and transaction Tz uses 
timestamp tT,, with tT, < tT,, then there must exist 
a serialization order in which 2’1 is before Tz. Third, 
a transaction cannot choose as its timestamp value a 
time that is before it has taken its last lock. If this 
restriction is not met, queries may observe inconsistent 
database states. Fourth, it may be undesirable that a 
transaction uses a timestamp value that is after its com- 
mit time. This would result in “phantom changes” to 
the database, i.e., “changes” that occur when no trans- 
actions are executing. 

Using the (ready-to) commit time of each transac- 
tions for its timestamps is a simple and obvious choice 
that satisfies the requirements. Salzberg [12] has pre- 
viously studied two approaches to implementing this 
choice of timestamping. 

In the first approach, all updates by a transaction 
are deferred until it has acquired all its locks. It is 
a serious complication that it may not be possible to 
determine that a transaction has taken all the locks it 
needs before the transaction is ready to commit (cf., 
practical two-phase locking). Next, it is a problem with 
this approach for a transaction to read its own updates. 
Thus, this approach is only suitable for short and simple 
transactions. 

The second approach is to revisit and timestamp all 
the tuples after all locks have been acquired, i.e., in 
practice when the transaction is ready to commit. This 
approach is general and guarantees correctness. The 
cost is to have to visit tuples twice: once to write a 
temporary value for the time attributes, and once to up- 
date the temporary value to the commit time. This cost 
is dependent on the hit ratio for the buffer of tuples to 
revisit. 

In order to avoid some of the overhead of the ba- 
sic timestamp-after-commit scheme, we propose an ap- 
proach where tuples are timestamped at jrst update. 
This approach trades correctness for performance: it 
generally does not satisfy the third requirement from 
above. This does not render the approach useless, but 
it may not he useful for all applications (cf., SQL-92’s 
Transaction Isolation Levels [ 10, pp. 293-3021). In the 
presentation that follows, we disregard the third require- 
ment. 

The approach is an optimistic one. We select the 
time of the first update, t$, of a transaction, T, as the 
transaction’s timestamp time, hoping that we will be 
able to use this time for timestamping all updates with- 
out violating the second requirement from above. If the 
transaction has only the one update, the chosen times- 
tamp time satisfies correctness. However, each update 
that the transaction makes may, or may not, invalidate 
our choice of timestamp time. 

Consider a tuple z inserted into the current state of 
the database by a transaction T’ and at time t+, and 
assume that T is to update this tuple. As T sees a 
result of T’, T’ must be before T in any serialization 

order. The second requirement then implies that the 
timestamp time of T’ must be before the timestamp 
time of T, i.e., it is required that t$, < t$. When the 
update is to be carried out, this condition is checked. If 
it is satisfied, our choice of timestamp time for T does 
not violate correctness, and the update is carried out 
using time t& Subsequent updates are then processed 
similarly. If the condition is not satisfied, the choice 
of timestamp time does violate correctness, and we say 
that the two involved transactions conflict. In this case, 
timestamp-after-commit is used. If all updates satisfy 
the requirement, the choice of timestamp satisfies the 
serializability requirement, and transaction T can sim- 
ply commit without having to revisit any tuples. 

This new scheme has other notable characteristics. 
The first update will never lead to a conflict. This is so 
because t$ will be larger than the time when we acquire 
a write lock on the tuple to update. This time, in turn, 
will be larger than the timestamp of the tuple, t+, . Thus, 
transactions with a single update will never experience 
a conflict. 

Next, observe that using the time of the first update 
for timestamping makes the chance of conflicts between 
concurrent transactions the smallest possible. It is also 
not necessary to attempt to determine when in a trans- 
action all locks have been acquired. 

In both the timestamp-after-commit and timestamp- 
at-first-update, it is necessary for a transaction to retain 
a list of updated tuples until the transaction is ready to 
commit. With the timestamp-at-first-update there is an 
overhead of one comparison for each tuple to update. 
However, the comparisons are on tuples that have al- 
ready been fetched in order to do the update. 

The benefit of using timestamp-at-first-update com- 
pared to using timestamping-after-commit thus are that 
when there are no conflicts, we do not have to revisit up- 
dated tuples to update their timestamp when the trans- 
action is ready to commit. When there are conflicts the 
two timestamp algorithms are virtually identical. 

To summarize, the general approach we propose for 
timestamping is as follows. A temporal SQL transac- 
tion is mapped to a single SQL-92 transaction with- 
out DDL statements. The serialization level for the 
SQL-92 transaction is set to “serializable.” All times- 
tamps of tuples written by the SQL-92 transaction are 
given the time of the first update as their value, and the 
identity of each updated tuple is recorded. When the 
transaction is ready to commit and if there were any 
conflicts, the update-after-commit procedure is evoked; 
otherwise, the SQL-92 transaction commits. 

6 Conclusion and Future Research 

We have investigated concepts and techniques for im- 
plementing a temporal SQL using a layered approach 
where the temporal SQL is implemented via a software 
layer on top of an existing DBMS. The layer reuses the 
functionality of the DBMS in order to support aspects 
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such as access control, query optimization, concurrency 
control, indexing, storages, etc. 

While developing a full-fledged DBMS that sup- 
ports a superset of SQL is a daunting task that only the 
major vendors can expect to accomplish, this layered 
technology promises much faster development. Assum- 
ing that the underlying DBMS is an SQL-92 compliant 
black box makes this technology inherently open and 
technology transferable. It may be adopted by a wide 
range of software vendors that would like to provide 
more advanced database functionality than offered by 
current products. 

With specific design goals in mind, we explored what 
we believe to be central issues in the layered implemen- 
tation of temporal functionality on a relational SQL-92 
platform. We considered the options for the domain of 
timestamps, and for representing the temporal database 
variable NOW. Then followed an exploration of dif- 
ferent query processing architectures. We showed how 
the partial-parser architecture may be used for achiev- 
ing upward compatibility with a minimal effort and for 
satisfying additional goals. Finally, we considered the 
processing of temporal transactions. 

This work points to several directions for future re- 
search. A more comprehensive study of the perfor- 
mance characteristics of layered implementation of tem- 
poral functionality is warranted. Next, issues related 
to the use of a control component in the layer should 
be explored. Finally, we believe that it would be in- 
teresting to study hybrid architectures, in-between the 
conventional integrated architecture of current DBMS 
produces and the preprocessor approach studied here. 
A hybrid architecture should be able to exploit temporal 
implementation techniques while also reusing the ser- 
vices of an SQL-92 DBMS. 
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