
Layered Temporal DBMS%-Concepts and Techniques

Kristian Torp Christian S. Jensen Michael Biihlen

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg 0, DENMARK

{torp,cs j,boehlen}@cs. auc. dk

Abstract

A wide range of database applications manage time-
varying data, and it is well-known that querying and
correctly updating time-varying data is dificult and er-
ror-prone when using standard SQL. Temporal exten-
sions of SQL ofSeer substantial benefits over SQL when
managing time-varying data.

The topic of this paper is the effective implemen-
tation of temporally extended SQL’s. Traditionally, it
has been assumed that a temporal DBMS must be built
from scratch, utilizing new technologies for storage, in-
dexing, query optimization, concurrency control, and
recovery. In contrast, this paper explores the concepts
and techniques involved in implementing a temporally
enhanced SQL while maximally reusing the facilities
of an existing SQL implementation. The topics cov-
ered span the choice of an adequate timestamp domain
that includes the time van’able “NOW,” a comparison.
of query processing architectures, and transaction pro-
cessing, the latter including how to ensure ACID prop-
erties and assign timestamps to updates.

Keywords Temporal databases, SQL, layered archi-
tecture, legacy issues

1 Introduction
A wide variety of existing database applications man-
age time-varying data (e.g., see [8, p. 6701 [13]). Ex-
amples include medical, banking, insurance, and data
warehousing applications.

At the same time, it is widely recognized that tem-
poral data management in SQL-92 is a complicated and
error-prone proposition. Updates and queries on tem-
poral data are complex and are thus hard to formulate
correctly and subsequently understand (e.g., see [6, 9,
161). This insight is also not new, and following more
than a .decade of research, advanced query languages
with built-in temporal support now exist (e.g., [17. 191)
that substantially simplify temporal data management.

To be applicable in practice, a temporal language
must meet the challenges of legacy code. Specifically, a
temporal query language should be upward compatible
with SQL-92, meaning that the operation of the bulks

Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications, Melbourne,
Australia, April l-4,1997.

of legacy code is not affected when temporal support is
adopted. In addition, it is desirable that a language per-
mits for incremental exploitation of the temporal sup-
port. When a temporal language is first adopted, no
existing application code takes advantage of the tem-
poral features. Only when converting old applications
and developing new ones are the benefits of temporal
support achieved. To be able to make this transition
to temporal support, temporal and old, “non-temporal”
applications must be able to coexist smoothly.

Temporal query languages effectively move com-
plexity from the user’s application to the implementa-
tion of the DBMS. The usual architecture adopted when
building a temporal DBMS is the integrated architec:
ture also used for implementing commercial relational
DBMS’s (see, e.g., [l, 18, 193). This architecture al-
lows the implementor maximum flexibility in imple-
menting the temporal query language. This flexibility
may potentially be used for developing an efficient im-
plementation that makes use of, e.g., special-purpose
indices, query optimizers, storage structures, and trans-
action management techniques. However, developing
a temporal DBMS with this approach is also very time
consuming and resource intensive. A main reason why
the layered architecture has received only little atten-
tion so far is that the ambitious performance goal has
been to achieve the same performance in a temporal
database (with multiple versions of data) as in a snap-
shot database (without versions and thus with much less
data).

This paper explores the implementation of tempo-
ral query languages using a layered architecture. This
architecture implements a temporal query language on
top of an existing relational DBMS. Here, the relational
DBMS is considered a black box, in that it is not pos-
sible to modify its implementation when building the
temporal DBMS.

With this architecture there is a potential for reusing
the services of the underlying DBMS, e.g., the con-
currency control and recovery mechanisms, for imple-
menting the extended functionality, and upward com-
patibility may potentially be achieved with a minimal
coding effort. The major disadvantages are the entry
costs that a DBMS imposes on its clients, as well as the
impossibility of directly manipulating DBMS-internal
data structures.

371

Proceedings of the Fifth International Conference on Database Systems for Advanced Applications
Melbourne, Australia, pp. 371-380, 1-4 April, 1997
Copyright © 1997 World Scientific Publishing

Our main design goals are upward compatibility and
maximum reuse of the underlying DBMS. Another goal
is that no queries should experience significantly lower
performance when replacing an existing DBMS with a
temporal DBMS. Throughout, we aim to achieve these
goals. We consider the alternatives for a domain for
timestamps, including the possible values available for
representing the time variable “NOW.” We show how
a partial parser architecture can be used for achiev-
ing upward compatibility with a minimal effort, and
we discuss issues involved in implementing temporal-
transaction processing.

A partial parser has been implemented that provides
a minimum of temporal support. We have chosen a
commercial DBMS as the underlying DBMS, and not
an extensible system (Chapter 7 of reference [21] cov-
ers several such systems) because we want to investi-
gate the seamless migration of legacy systems.

Little related work has appeared that considers a
layered implementation of temporal query languages.
The research reported by Vassilakis et al. [20] assumes
a layered implementation of an interval-extended query
language, VT-SQL, on top of Ingres. The focus is on
correct transaction support, and the problem addressed
is that the integrity of transactions may be violated when
the layer uses temporary tables to store intermediate re-
sults. This is because the SQL-92 standard does not re-
quire that a DBMS permits both data manipulation and
data definition statements to be executed in the same
transaction [10, p. 761. This may make it impossible to
rollback a transaction started from the layer. The prob-
lem is solved by using two connections to the DBMS.
We find that the problem is eliminated if the DBMS
supports SQL-92 temporary tables, and this paper does
not address that problem.

Recently, a layered implementation, based on Ora-
cle, was pursued in the TIMEDB prototype that imple-
ments the ATSQL query language [3], which incorpo-
rates ideas from TSQL2 [171 and ChronoLog [2]. The
topics covered in this paper are partly inspired by and
generalize TIMEDB.

Most recently, Finger and McBrien [7] studied which
value to use for NOW in the valid-time dimension when
transactions are taken into consideration. But their work,
which focuses on valid time and has a less practical ori-
entantion, covers issues largely orthogonal to those ad-
dressed here. Among the most significant differences,
they do not consider representational issues and do not
use timestamping-after-commit [121, as done here.

The rest of the paper is organized as follows. Sec-
tion 2 characterizes temporal support, introduces the
layered architecture, states design goals, and touches
upon the limitations of the general approach. Section 3
is concerned with the domain of timestamps. Different
parser architectures for temporal query processing are
the topic of Section 4, and Section 5 is devoted to the
processing of temporal transactions. Finally, Section 6
concludes and points to research directions.

2 Temporal SQL and Design Goals
Following an introduction to the functionality that a tem-
poral SQL adds to SQL-92, we introduce the layered
architecture and state the design goals for the layered
implementation of this functionality.

2.1 Temporal Functionality

Two general temporal aspects of database facts have
received particular interest [151. The transaction time
of a fact records when the fact is current in the database,
and is handled by the temporal DBMS. Orthogonally,
the valid time of a fact records when the fact is true in
the modeled reality, and is handled by the user; or de-
fault values are supplied by the temporal DBMS. A data
model or DBMS with built-in support for both times is
called bitemporal; and if neither time is supported, it is
termed non-temporal.

The relation Employee in Figure 1 is an example
of a bitemporal relation. The relation records depart-
ment information for employees, with a granularity of
days, and with the last four implicit columns encoding
the transaction-time and valid-time dimensions using
half-open intervals.

On August 8, the tuple (Torben, Toy, 8-8-1996,
NOW, 10-8-1996, NOW) was inserted, meaning that
Torben will be in the Toy department from August 10
until the current time. Similarly, on August 12 we re-
corded that Alex was to be in the Sports department
from August 23 and until August 3 1. Later, on August
19, we learned that Torben was to start in the Sports de-
partment on August 21. The relation was subsequently
updated to record the new belief. We no longer be-
lieved that Torben would be in the Toy department from
August 10 until the current time, but believed instead
that he would be there only until August 21 and that
he would be in Sports from August 21 and until the
current time. Thus, the first NOW in the original tuple is
changed to August 19, and the resulting two new tuples
with our new beliefs are inserted.

The relation in Figure 1 shows that the data model
for a temporal SQL is different from the SQL-92 data
model. Four implicit attributes have been added to the
data structure (the relation).

Instead of assuming a specific temporal query lan-
guage, we will simply assume that the temporal query
language supports standard temporal database function-
ality, as it may be found in the various existing data
models. We also assume that the temporal data model
satisfies three important properties, namely upward com-
patibility (UC), temporal upward compatibility (TUC)
[4] and snapshot reducibility (SR) [14]. We will define
these properties next.

There are two requirements for a new data model
to be upward compatible with respect to an old data
model [4]. First, the data structures of the new data
model must be a superset of the data structures in the
old data model. Second, a legal statement in the old
data model must also be a legal statement in the new

372

(Name 1 Department (1 T-Start 1 T-Stop 1 V-Begin 1

1
V-En7

Torben 1 Tov 11 8-8-1996 1 19-8-1996 I 10-g-3996 t NOW t
I.

Alex sports 12-8-1996 NOW 23-8-1996 31-8-1996
Torben Toy 19-8-1996 NOW 10-g-1996 21-8-1996
Torben sports 19-8-1996 NOW 21-8-1996 NOW

Figure 1: The Bitemporal Relation, Employee

data model, and the semantics must be the same, e.g.,
the result returned by a query must be the same. A tem-
poral extension will invariably include new key words.
We assume that such key words do not occur in legacy
statements as identifiers (e.g., as table names). For a
temporal data model and DBMS to be successful, it
is important that these requirements are fulfilled with
respect to SQL-92.

TUC is a more restrictive requirement. For a new
temporal data model to be temporal upward compatible
with respect to an old data model, it is required that
all legacy statements work unchanged even when the
tables they use are changed to provide built-in support
for transaction time or valid time. Thus TUC poses
special requirements on the effect of legacy modifica-
tion statements applied to temporal relations and to the
processing of legacy queries on such relations. When
a temporal DBMS is taken in use, the application code
does not immediately exploit the added functionality;
rather, the temporal features are only realized incremen-
tally, as new applications are developed and legacy ap-
plications are being modernized. TUC guarantees that
legacy and new applications may coexist harmoniously.

Lastly, a temporal statement is snapshot reducible
with respect to a non-temporal statement if all snap-
shots of the result of the temporal statement are the
same as the result of the non-temporal statement eval-
uated on the corresponding snapshots of the argument
relations. The idea of SR is that the expertise of applica-
tion programmers using SQL-92 should be applicable
to the added temporal functionality, making it easier to
understand and use the new facilities.

Using TUC and SR, we may divide the new state-
ments in a temporal SQL into three categories. First,
TUC statements are conventional SQL-92 statements,
with the exception that they involve temporal relations.
These statements are not “aware” of the temporal exten-
sions and access only the current state of the temporal
database. Second, sequenced statements are those state-
ments that satisfy snapshot reducibility with respect to
a corresponding SQL-92 query. Third, non-sequenced
statements are statements that do not have a correspond-
ing SQL-92 counterpart. These statements exploit the
temporal facilities, but do not rely on the DBMS to
do timestamp-related processing according to snapshot
reducibility.

2.2 The Layered Architecture

The layered architecture implements new temporal qu-
ery facilities in SQL-92. The queries written in the
new temporal language are then converted to SQL-92
queries that are subsequently executed by the underly-
ing DBMS. No conversion is needed for plain SQL-92
queries. The layered temporal database architecture is
shown in Figure 2.

DBMS
1

Figure 2: The Layered Temporal Database Architecture

Some comments are in order. First, the layer uses
the DBMS as a “black box.” Second, the assumed con-
trol structures in this architecture are simple. The layer
converts temporal queries to SQL-92 queries, Keeps
track of information used by the layer internally, and
does some post-processing of the result received from
the DBMS. More precisely, a transaction with temporal
statements is compiled into a single SQL-92 transac-
tion that is executed on the DBMS without interference
from the layer-the layer simply receives the result and
applies some post-processing. There is thus no control
module in the layer, and there is minimal interaction be-
tween the layer and the DBMS. While maximizing the
independence among the two components, this simplic-
ity also restricts the options available for implementing
temporal queries in the layer. The specific impacts on
the functionality of the temporal query language and on
performance are not yet well understood.

Temporal Query. Q Error RWlll

I I A

Layer

I
SC2XUKX

1

code Generam

J

As a simple example of how the layer converts a
temporal query into an SQL-92 query, consider the fol-
lowing sequenced temporal query that finds the name
and department of employees in the sports department
and how long they have been there.

373

SEQUENCED VALID
SELECT Name, Department
FROM Employee
WHERE Department = 'Sports'

The new keywords SEQUENCED VALID indicate that
the query should be computed over all (valid) times,
but just for the current (transaction time) state. To con-
vert thisquerytoSQL-92,the SEQUENCED VALIDis
omitted, attributes V-Begin and V-End are added to
the SELECT clause, and the WHERE clause is extended
with conditions on T-Start and T-Stop to ensure
that only current tuples are considered. If evaluated on
August 25, the following table results.

Name Department V-Begin V-End
Torben sports 21-8-1996 NOW
Alex SDOrtS 23-8-1996 31-8-1996

The temporal query is written in the temporal query
language ATSQL [3]. It is beyond the scope of this pa-
per to define the syntax and semantics of this language.
However, the extensions are consistent with SQL-92
and are easy to understand.

2.3 Design Goals

In implementing the layered temporal DBMS, we stress
seven somewhat conflicting and overlapping design go-
als, namely achieving upward compatibility with a min-
imal coding effort, gradual availability of temporal func-
tionality, achieving temporal upward compatibility, max-
imum reuse of existing relational database technology,
retention of all desirable properties of the underlying
DBMS, platform independence, and adequate perfor-
mance. We discuss each in turn.

As discussed already, UC is important in order to be
able to protect the investments in legacy code. Achiev-
ing UC with a minimal effort and gradual availability
of advanced functionality are related goals. First, it
should be possible to exploit in the layered architecture
that the underlying DBMS already supports SQL-92.
Second, it should be possible to make the new temporal
functionality available stepwise. Satisfying these goals
provides a foundation for early availability of a suc-
cession of working temporal DBMSs with increasing
functionality.

TUC makes it possible to turn an existing snapshot
database into a temporal database, without affecting le-
gacy code. The old applications work exactly as in the
legacy DBMS, and new applications can take advan-
tages of the temporal functionality added to the database.
TUC helps achieve a smooth, evolutionary integration
of temporal support into an organization.

Few software companies have the resources for build-
ing a temporal DBMS from scratch. By aiming for
maximum reuse of existing technology, we are striving
towards a feasible implementation where both SQL-92
and temporal queries are processed by the underlying
DBMS. Only temporal features not found in the DBMS
are implemented in the layer.

It is important to retain all the desirable properties of
the underlying DBMS. For example, we want to retain
ACID properties. With this goal we want to assure that
we are adding to the underlying DBMS. However, this
also means that if the underlying DBMS does not have
a certain core database property, the temporal DBMS
will not have it, either.

We stress platform independence because we want
the layer to be independent of any particular underlying
DBMS. By generating SQL-92 code, the layer should
be portable to any DBMS supporting this language.

Rather than attempting to achieve higher performan-
ce than existing DBMS’s, we simply aim at achieving
adequate performance. Specifically, legacy code should
be processed with the same speed as in the DBMS,
and temporal queries on temporal databases should be
processed as fast as the corresponding SQL-92 queries
on the corresponding snapshot database (i.e., with the
same information, but using explicit time attributes).

Achieving all the design goals simultaneously is not
always possible. For example, the maximum-reuse goal
implies that the layer should be as thin as possible, which
is likely to be in conflict with the adequate-performance
goal. Similarly, the platform-independence goal may be
in conflict with the maximal-reuse goal.

2.4 Fundamental Limitations

An important question when adopting a layered archi-
tecture is whether it is practical or even possible to trans-
late all temporal SQL queries to SQL-92 queries. While
we believe that much of the functionality of a tempo-
rally enhanced SQL may be mapped systematically to
SQL-92, there exist temporal queries, e.g., complex
nested queries, for which a systematic mapping is not
available.

3 Representing the Time Domain
As illustrated in Figure 1, four extra attributes, termed
timestamp attributes are used when recording the tem-
poral aspects of a tuple. Next, we will discuss which
domain to use for the timestamp attributes and how to
represent the special temporal database value ‘NOW.”

3.1 Choosing a Time Domain

The domain of the timestamped attributes can be one of
the SQL-92 datetime data types (DATE or TIMESTAMP).
The advantage of using one of the built-in types is max-
imum reuse. The disadvantage is that the domain is
limited to represent the years 0001 to 9999 [lo].

If the limits of the SQL-92 data types is a problem
to the applications, the domain of the time attributes can
be represented using a new temporal data type handled
by the layer, and stored as a I3 IT (x) in the DBMS. The
advantage of using a new temporal data type is that it
can represent a much wider range of times with a finer
precision. The most obvious disadvantage is that the
layer will be thicker, because all handling of the new

374

data type must be implemented in the layer. Further,
because dates are irregular, e.g, there are different num-
bers of days in different months, and because the arith-
metic operators defined on the BIT (x) data type are
regular, we cannot easily use the BIT (x) arithmetic
operators in the DBMS to manipulate the new data type.

As an example of these problems, notice that adding
one month to a date depends on which month the date
is in. The addition routine must add 3 I days to a March
date and 30 days to an April date. Thus, addition must
be performed in the layer. Indeed, the manipulation of
time attributes must to a large extent be handled by the
layer. This means more tuples have to be sent from the
DBMS to the layer to be processed. This again leads to
a performance penalty.

We have here reached one of the limitation on build-
ing on top of an existing DBMS: Adding a new data
type in the layer is a major modification when the un-
derlying DBMS does not support abstract data types. In
conclusion, we recommend using the built-in data type
TIMESTAMP for timestamp attributes.

3.2 Representing NOW

Temporal relations may record facts that are valid from
or until the current time, and the information they record
is or is not current. The relation in Figure 1 exemplifies
this representation of “now”-relative information.

The value NOW is not part of the domain of SQL-92
TIMESTAMP values, making it necessary to represent
NOW by some other value in the domain. A require-
ment to a useful value is that it is not also used with
some other meaning. Otherwise, the meaning of the
value becomes overloaded. There are essentially two
choices of a value for denoting NOW: It is possible
to use the value NULL or to use a well-chosen “nor-
mal” value, specifically either the smallest or the largest
TIMESTAMP value. After a general discussion of this
approach, we compare the two possibilities.

No matter what value is chosen, this will limit the
domain of the data type and create a potential for over-
loading. For transaction-time attributes, this is not a
problem because their values are system supplied. How-
ever, for valid-time attributes, this is a real restriction.
Furthermore, we have to explicitly treat the value rep-
resenting NOW specially, e.g., make sure the user does
not enter the special value; and when we display data to
the user, we have to convert the value used for NOW to
an appropriate value (e.g., the string “NOW’).

Next, we compare NULL with “regular” timestamp
values. The value NULL has special properties that ma-
kes it different from any other value. An advantage
of MULL is that it takes up less space than a regular
timestamp value. Also, the value NULL can be pro-
cessed faster. This aspect is discussed empirically in
the next section. (While these observations pertain to
Oracle [l 11, similar statements should hold for other
DBMS’s) A disadvantage of NULL is that columns
that permit NULL values prevent the DBMS from using

indices. However, using a non-NULL value also impacts
indexing adversely. For example, assume that a B+-
tree index, e.g., on V-End, is used to retrieve tuples
with a time period that OverlapsNOW. Because NOW is
represented by a large or a small value, tuples with the
V-End attribute set to NOW will not be in the range
retrieved. They will have to be found at one of the
“sides” of the B+-tree.

3.3 Using NOW in Queries

Above, we considered the representation of NOW in
temporal relations. The next step is to consider the
querying of such relations. Here, it is quite easy to
contend with each of MULL, the minimum value, and
the maximum value as NOW. Assuming a temporally
enhanced SQL, NOW will be used in the SELECT and
WHERE clauses. The idea is to check values of the
timestamp attributes and replace them with the current
time (i.e., the time when the query is executed) if they
are equal to the time representing NOW.

For example, in a SELECT or WHERE clause the
valid-time end of tuples in a relation can be referenced
as END (VALID (relation-name)) in ATSQL.
This is translated to the following in an SQL-92 query:’

CASE
WHEN relation-name.V-End = <now rep.>
THEN CURRENT-TIMESTAMP
ELSE relation-name.V-End

END

3.4 Performance Comparison of Alternative NOW
Representations

We have seen that it is possible to use NULL, the mini-
mum, and maximum values as representatives for NOW.
Next, we compare their performance. Specifically, for
each choice for NOW, we perform each of three differ-
ent representative queries on three different relations.
We consider timeslice queries because of their impor-
tance in temporal query languages [19]. The queries
favor the current state, which is assumed to be accessed
much more frequently than old states.

Query 1 retrieves the current state in both trans-
action time and valid time, i.e., it selects tuples with
transaction-time and valid-time intervals that both over-
lap with the current time. Tuples with intervals that end
at NOW thus qualify. Query 2 timeslices the argument
relation as of NOW in transaction time and as of a past
time in valid time. It thus retrieves our current belief
about a past state of reality. Query 3 timeslices the
relation as of a past time in both transaction time and
valid time and thus retrieves a past belief about a past
state of reality.

The queries are performed on three different bitem-
poral tables, with varying distribution of their tuples.
In the first relation, 10% of the tuples overlaps with

‘When using NULL, the shorter conditional value expression
COALESCEIIM~~SO be used.

375

the current time in both transaction and valid time. In
the second and third relations, this percentage is 20 and
40, respectively. Each relation has one million tuples.
For each of the three candidate representations of NOW,
i.e., NULL, Min value, and Max, we have a variant of
each table. There are thus three different tables and
three different queries; and each combination of a ta-
ble and a query exists in three variations, one for each
choice for NOW.

In the experiments, we have used a composite B-
tree index on V-Begin and V-End, and a B-tree index
on T-S top for all tables. The CPU-times in seconds
to answer the queries are shown in Table 1. The tests
were performed on a SUN Spare 10 using the Oracle
RDBMS version 7.2.2.4.

It follows that representing NOW by the minimum
value is always slowest. When 10% of the tuples are in
the current state, it is approximately 5% slower to use
NULL than the maximum value for the three queries.
However, when 20% and 40% of the tuples are current,
it is fastest to use NULL.

The next step is to consider the number of physical
disk reads. Using NULL always results in a full table
scan. Using the maximum value, the number of phys-
ical disk reads increases with the percentage of tuples
in the current state. In the case of 40% of the tuples
in the current state, the number of physical disk reads
is approximately the same when using either of NULL
and the maximum value. Using the minimum value per-
forms similar to using the maximum value, except in the
case of 40% current tuples where using the minimum
value results in 35% more physical disk reads.

Based on the analysis above, we choose to use the
maximum value for representing NOW in the following,

4 Query Processing

This section describes different strategies for process-
ing queries in a layered architecture. The main idea is
to reduce product development time. For this purpose,
several variants of partial parsers are investigated.

Partial parser approaches are useful in two situa-
tions. First, they can significantly reduce the time it
takes to release the first version of a new product. To-
day, this factor often decides whether a product is suc-
cessful or not. Second, a partial parser approach is
useful if many statements of a language are not affected
by the (temporal) extension. The parsing of such state-
ments does not have to be implemented, as we will see.

4.1 A Full Parser

We start with the layered architecture shown in Fig-
ure 2. The user enters a query, Q, that is parsed in the
layer. Any errors found during parsing are reported. If
no errors are found, an equivalent SQL-92 query, called
Q’, is generated and sent to the DBMS. Query Q can be
either an SQL-92 query or a temporal query. During
the conversion, the layer uses and possibly updates the

metadata maintained by the layer. Finally, it is neces-
sary to do some processing of the output from query
Q’, e.g., substitute the value representing NOW with the
text string “NOW”. We call this layered temporal query
processing architecture afullparser archifecfure.

With this architecture, it is possible to obtain UC
and TUC, and it is possible to process all SQL-92 and
temporal queries. Further, all desirable properties of the
DBMS can be retained because it is totally encapsulated
from the users. Finally, by generating SQL-92 code,
the layer can be made platform independent.

As disadvantages, we do not obtain UC with a min-
imal effort. The SQL-92 parser in the DBMS is not
reused; rather, we have to implement it in the layer.
This means that before we can start to implement the
temporal extensions to SQL-92, we first have to “im-
plement” SQL-92. Further, SQL-92 queries are un-
necessarily parsed twice, once in the layer and once in
the DBMS. This performance overhead, we would like
to avoid if possible.

4.2 A Partial Parser Architecture

SQL-92 is a large language, making an upward com-
patible temporal extension even bigger. Because the
DBMS has a full SQL-92 parser, it is attractive to only
have to implement a parser for the temporal extension
in the layer, and to rely on the DBMS’s parser for the
SQL-92 queries. This idea is illustrated in Figure 3.
The parser in the layer is now a partial parser-it only
must know the temporal extensions to SQL-92.

A query Q is entered. If the parser cannot parse Q,
it is assumed to be an SQL-92 query and is sent uncon-
verted to the DBMS. If the parsing does not generate
an error, Q is a temporal query and is converted to the
equivalent SQL-92 query, Q’, that is then sent to the
DBMS.

Q I

Yes e-l ElTOI?

NO

Figure 3: Partial Parser

This architecture makes it possible to achieve UC
with a minimal effort by maximally reusing the under-
lying DBMS for the processing of SQL-92 queries: All
SQL-92 queries will run immediately, and error mes-
sages to incorrect SQL-92 queries are generated by the
DBMS. It is also possible to achieve TUC: If an existing
relation is altered to support valid or transaction time,
legacy queries using the relation may be detected and
modified in the layer.

376

Table 1: CPU-time in Seconds for the Three Queries

However, there is still a performance overhead. The
layer must start parsing all queries, including SQL-92
queries, and stops only if and when an error is encoun-
tered. Further, there is a problem with error handling.
The result of an error is that the query is sent to the
DBMS, which cannot parse an incorrect temporal query,
either. This results in SQL-92 error messages to tem-
poral queries.

The source of the disadvantages seems to be that
the layer cannot easily and correctly determine whether
a query is a temporal or an SQL-92 query. The next
architecture attempts to solve this.

4.3 Partial Parser-Optional Hints

With a partial-parser approach with optional hints, the
user can indicate whether a query Q is temporal or non-
temporal by writing TEMPORAL or PLAIN, respectively,
in a comment before the query. The approach is illus-
trated in Figure 4.

A query Q is entered. If the scanner finds PLAIN
in front of the query, it is sent directly to the DBMS. If
the scanner finds TEMPORAL or no hint, Q is parsed in
the layer. If Q is a temporal query, it is converted to Q’
which is then sent to the DBMS. If the parser finds an
error, the user receives an error message. The presence
of TEMPORAL indicates that the error is a temporal-
query error. Otherwise, the query is assumed to be a
SQL-92 query, and it is sent unconverted to the DBMS.

With this approach, it is possible to achieve UC with
a minimal effort, and SQL-92 queries with a hint are
parsed only once, leading to faster processing. The
architecture also permits for obtaining TUC; and there
is good error handling for temporal queries when the
TEMPORAL hintisused.

However, there are also some problems. Legacy
SQL-92 queries are parsed twice if the PLAIN hint is
not present. Without this hint, we have the same disad-
vantages as before: a performance overhead for SQL-
92 queries and problems with the error handling for
temporal queries. We try to eliminate these problems
next.

Error
E Q I

I

t t t
Q Q Q

Figure 4: Partial Parser with Optional “Hints”

4.4 Partial Parser-Enforced “Hints”

With a partial parser approach with enforced “hints,”
temporal queries must be tagged with a TEMPORAL
hint. Thus queries with no hint are assumed to be SQL-
92 queries. This way, we are able to distinguish SQL-
92 queries from temporal queries without having to re-
visit legacy code.

The idea is illustrated in Figure 5. When query Q
is entered and the scanner does not find TEMPORAL in
front of the query, it is sent directly to the DBMS. If the
scanner finds a TEMPOIUL, Q is converted to Q’, which
is then sent to the DBMS. If the parser finds an error,
this must be a temporal-query error, and an appropriate
error message may be generated.

The advantages of this architecture are the same as
for a partial parser with optional hints. We get UC with
a minimal effort and fast handling of SQL-92 queries.
The disadvantage is that we cannot get TUC. If a table is
altered to add temporal support, all legacy queries using
the table must be altered by inserting the temporal hint.

377

not TEMPORAL

vi d
Figure 5: Partial Parser with Enforced “Hints”

4.5 Comparison of Architectures

,

single SQL-92 transaction. The alternative of allowing
the layer to map a temporal SQL transaction to several
SQL-92 transactions, while easing the implementation
of temporal SQL transactions, leads to hard-to-solve
problems.

To illustrate, assume that a temporal SQL transac-
tion is mapped to two SQL-92 transactions. During
execution it may then happen that one SQL-92 transac-
tion commits but the other fails, meaning that the tem-
poral SQL transaction fails and should be rolled back.
This, however, is not easily possible-other (e.g., com-
mitted) transactions may already have seen the effects
of the committed SQL-92 transaction.

J

Next, it is generally not sufficient to simply require
that each temporal SQL transaction is mapped to a sin-
gle SQL-92 transaction. It must also be guaranteed that
the SQL-92 transaction does not contain DDL state-
ments. This is so because the SQL-92 standard permits
DDL statements to issue implicit commits [10, p. 761.
Thus the SQL-92 transaction becomes several SQL-92
transactions, yielding the same problem as before.

All four architectures are compatible with a platform-
independent layer, and they may reuse the components
in the DBMS. However, there is less reuse with the full
parser. Here we cannot achieve UC with a minimal
effort. It is interesting to observe that we cannot obtain
both TUC and no performance overhead for SQL-92
queries without revisiting legacy code. For the partial
parser with optional hints, we can either achieve TUC
or no performance overhead, but not both at the same
time. We can retain the desired properties, e.g., error
handling, of the DBMS, except in the case of the partial
parser.

Recovery is an important part of a DBMS that nor-
mally is transparent to end users. When constructing
the layered approach, we are not different from end
users and can rely on the recovery mechanisms imple-
mented in the DBMS. We see no reason why recovery
should be faster or slower using a layered approach.

The conclusion is that the ACID properties of tem-
poral SQL transactions are guaranteed if the SQL-92
transactions satisfy the ACID properties and if we map
each temporal SQL transaction to exactly one SQL-92
transaction that does not contain DDL statements.

The partial parser approaches are consistent with
the desire for gradual availability of increasingly more
temporal support. The outset is that we want a temporal
DBMS that is upward compatible with SQL-92. Then
we want to, e.g., have temporal upward compatibility
for all non-nested SQL-92 queries, then for all SQL-
92 queries, and finally advanced temporal support via
new temporal sequenced and non-sequenced queries.

5 Transaction Processing
In this section, we discuss how to implement ACID
properties [8] of transactions in the layer by exploit-
ing the ACID properties of the DBMS. Specifically, we

5.2 Timestamping of Updates

When supporting transaction time, all previously cur-
rent database states are retained. Each update trans-
action transforms the current database state to a new
current state. In practice, this is achieved by associ-
ating a pair of an insertion and a deletion time with
each tuple. These times are managed by the DBMS,
transparently to the user. The insertion time of a tuple
indicates when the tuple became part of the current state
of the database, and the deletion time indicates that the
tuple is still current or when it ceased to be current.

To ensure that the system correctly records all previ-
ously current states, the timestamps given to tuples by
the transactions must satisfy four requirements. First,

show how concurrency control and recovery mechanisms all insertions into and deletions from the current state

can be implemented using the services of the DBMS. by a transaction must occur simultaneously, meaning

Finally, the effective timestamping of database modifi- that the insertion times of insertions and the deletion

cations is explored. times of deletions must all be the same time. If not, we
mav observe inconsistent database states. For example,

5.1 ACID Properties of ‘Ikansactions

One of our design goals is to retain the desirable prop-
erties of the underlying DBMS. The ACID properties of
transactions are examples of such desirable properties.

The ACID properties of temporal SQL transactions
are retained by mapping each temporal transaction to a

if the two updates in a debit-credit transaction are given
different timestamps and we inspect the database state
current between the two timestamps, we see an incon-
sistent state. Second, the transactions cannot choose
their timestamp times arbitrarily. Rather, the times given
to updates by the transactions must be consistent with

378

a serialization order of the transactions. Thus, if trans-
action Tl uses timestamp tr, and transaction Tz uses
timestamp tT,, with tT, < tT,, then there must exist
a serialization order in which 2’1 is before Tz. Third,
a transaction cannot choose as its timestamp value a
time that is before it has taken its last lock. If this
restriction is not met, queries may observe inconsistent
database states. Fourth, it may be undesirable that a
transaction uses a timestamp value that is after its com-
mit time. This would result in “phantom changes” to
the database, i.e., “changes” that occur when no trans-
actions are executing.

Using the (ready-to) commit time of each transac-
tions for its timestamps is a simple and obvious choice
that satisfies the requirements. Salzberg [12] has pre-
viously studied two approaches to implementing this
choice of timestamping.

In the first approach, all updates by a transaction
are deferred until it has acquired all its locks. It is
a serious complication that it may not be possible to
determine that a transaction has taken all the locks it
needs before the transaction is ready to commit (cf.,
practical two-phase locking). Next, it is a problem with
this approach for a transaction to read its own updates.
Thus, this approach is only suitable for short and simple
transactions.

The second approach is to revisit and timestamp all
the tuples after all locks have been acquired, i.e., in
practice when the transaction is ready to commit. This
approach is general and guarantees correctness. The
cost is to have to visit tuples twice: once to write a
temporary value for the time attributes, and once to up-
date the temporary value to the commit time. This cost
is dependent on the hit ratio for the buffer of tuples to
revisit.

In order to avoid some of the overhead of the ba-
sic timestamp-after-commit scheme, we propose an ap-
proach where tuples are timestamped at jrst update.
This approach trades correctness for performance: it
generally does not satisfy the third requirement from
above. This does not render the approach useless, but
it may not he useful for all applications (cf., SQL-92’s
Transaction Isolation Levels [10, pp. 293-3021). In the
presentation that follows, we disregard the third require-
ment.

The approach is an optimistic one. We select the
time of the first update, t$, of a transaction, T, as the
transaction’s timestamp time, hoping that we will be
able to use this time for timestamping all updates with-
out violating the second requirement from above. If the
transaction has only the one update, the chosen times-
tamp time satisfies correctness. However, each update
that the transaction makes may, or may not, invalidate
our choice of timestamp time.

Consider a tuple z inserted into the current state of
the database by a transaction T’ and at time t+, and
assume that T is to update this tuple. As T sees a
result of T’, T’ must be before T in any serialization

order. The second requirement then implies that the
timestamp time of T’ must be before the timestamp
time of T, i.e., it is required that t$, < t$. When the
update is to be carried out, this condition is checked. If
it is satisfied, our choice of timestamp time for T does
not violate correctness, and the update is carried out
using time t& Subsequent updates are then processed
similarly. If the condition is not satisfied, the choice
of timestamp time does violate correctness, and we say
that the two involved transactions conflict. In this case,
timestamp-after-commit is used. If all updates satisfy
the requirement, the choice of timestamp satisfies the
serializability requirement, and transaction T can sim-
ply commit without having to revisit any tuples.

This new scheme has other notable characteristics.
The first update will never lead to a conflict. This is so
because t$ will be larger than the time when we acquire
a write lock on the tuple to update. This time, in turn,
will be larger than the timestamp of the tuple, t+, . Thus,
transactions with a single update will never experience
a conflict.

Next, observe that using the time of the first update
for timestamping makes the chance of conflicts between
concurrent transactions the smallest possible. It is also
not necessary to attempt to determine when in a trans-
action all locks have been acquired.

In both the timestamp-after-commit and timestamp-
at-first-update, it is necessary for a transaction to retain
a list of updated tuples until the transaction is ready to
commit. With the timestamp-at-first-update there is an
overhead of one comparison for each tuple to update.
However, the comparisons are on tuples that have al-
ready been fetched in order to do the update.

The benefit of using timestamp-at-first-update com-
pared to using timestamping-after-commit thus are that
when there are no conflicts, we do not have to revisit up-
dated tuples to update their timestamp when the trans-
action is ready to commit. When there are conflicts the
two timestamp algorithms are virtually identical.

To summarize, the general approach we propose for
timestamping is as follows. A temporal SQL transac-
tion is mapped to a single SQL-92 transaction with-
out DDL statements. The serialization level for the
SQL-92 transaction is set to “serializable.” All times-
tamps of tuples written by the SQL-92 transaction are
given the time of the first update as their value, and the
identity of each updated tuple is recorded. When the
transaction is ready to commit and if there were any
conflicts, the update-after-commit procedure is evoked;
otherwise, the SQL-92 transaction commits.

6 Conclusion and Future Research

We have investigated concepts and techniques for im-
plementing a temporal SQL using a layered approach
where the temporal SQL is implemented via a software
layer on top of an existing DBMS. The layer reuses the
functionality of the DBMS in order to support aspects

379

such as access control, query optimization, concurrency
control, indexing, storages, etc.

While developing a full-fledged DBMS that sup-
ports a superset of SQL is a daunting task that only the
major vendors can expect to accomplish, this layered
technology promises much faster development. Assum-
ing that the underlying DBMS is an SQL-92 compliant
black box makes this technology inherently open and
technology transferable. It may be adopted by a wide
range of software vendors that would like to provide
more advanced database functionality than offered by
current products.

With specific design goals in mind, we explored what
we believe to be central issues in the layered implemen-
tation of temporal functionality on a relational SQL-92
platform. We considered the options for the domain of
timestamps, and for representing the temporal database
variable NOW. Then followed an exploration of dif-
ferent query processing architectures. We showed how
the partial-parser architecture may be used for achiev-
ing upward compatibility with a minimal effort and for
satisfying additional goals. Finally, we considered the
processing of temporal transactions.

This work points to several directions for future re-
search. A more comprehensive study of the perfor-
mance characteristics of layered implementation of tem-
poral functionality is warranted. Next, issues related
to the use of a control component in the layer should
be explored. Finally, we believe that it would be in-
teresting to study hybrid architectures, in-between the
conventional integrated architecture of current DBMS
produces and the preprocessor approach studied here.
A hybrid architecture should be able to exploit temporal
implementation techniques while also reusing the ser-
vices of an SQL-92 DBMS.

Acknowledgements
This research was supported in part by the Danish Nat-
ural Science Research Council, through grant 94009 11,
and the CHOROCHRONOS project, funded by the Eu-
ropean Commission DG XII Science, Research and De-
velopment, as a Networks Activity of the Training and
Mobility of Researchers Programme, contract no. FM-
RX-CT96-0056.

References
[l] I. Ahn and R. Snodgrass. Performance Analysis of

Temporal Queries. 1f: Syst., 49:103-146,1989.

[2] M. H. BGhlen. The Temporal Deductive Database
System Chronolog. Ph.D. thesis, Departement Infor-
matik, ETH Zurich, 1994.

[3] M. Biihlen and C. S. Jensen. Seamless Integration
of Time into SQL. TR-96-2049, Department of
Computer Science, Aalborg University, Dec. 1996.

[4] M. BShlen, C. S. Jensen, and R. T. Snodgrass. Eval-
uating and Enhancing the Completeness of TSQL2.

TR 95-05, Department of Computer Science, Uni-
versity of Arizona, June 1995.

[5] J. Clifford and A. Tuzhilin, editors. Recent Ad-
vances in Temporal Databases. Workshops in Com-
puting Series, Springer-Verlag, Nov. 1995.

[6] C. Davies, B. Lazell, M. Hughes, and L. Cooper.
Time is Just Another Attribute--or at Least, Just
Another Dimension, pp. 175-193. In [5].

[7] M. Finger and P. McBrien. On the Semantics
of ‘Current-Time’ In Temporal Databases. 11th
Brazilian Symposium on Databases, pp. 324-337,
Oct. 1996.

[8] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Pub-
lishers, 1993.

[9] T. Y. C. Leung and H. Pirahesh. Querying Histor-
ical Data inIBM DB2 C/S DBMS Using Recursive
SQL, pp. 315-331. In [5].

[lo] J. Melton and A. R. Simon. Understanding the
New SQL: A Complete Guide. Morgan Kaufmann
Publishers, 1993.

[1 l] Oracle Corp. Oracle7 Server Concepts Release
7.2, March 1995.

[12] B. Salzberg. Timestamping After Commit. In
Proceedings of the Third International Conference
on Parallel and Distributed Znformation Systems, pp.
160-167, Sep. 1994.

1131 A. R. Simon. Strategic Database Technology:
Management for the Year 2000. Morgan Kaufmann
Publishers, 1995.

1141 R. T. Snodgrass. The Temporal Query Lan-
guage TQuel. ACM Trans. on Database Systems,
12(2):247-298, June 1987.

[15] R. T. Snodgrass and I. Al-m. Temporal Databases.
IEEE Computer, 19(9):35-42, Sep. 1986.

[16] R. T. Snodgrass. A Road Map of Additions to
SQL/Temporal. ANSI, Feb. 1996.

[17] R. T. Snodgrass, editor. The TSQL2 Temporal
Query Language. Kluwer Academic Publishers,
1995.

[18] M. Stonebraker and G. Kemnitz. The Post-
gres Next-generation Database Management Sys-
tem. Comm. of the ACM, 34(10):78-92, Oct. 1991.

[19] A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, and R. Snodgrass, editors. Temporal
Databases: Theory Design, and Implementation.
Benjamin/Cummings Publishers, 1993.

[20] C. Vassilakis, N. Lorentzos, and I? Georgiadis.
Transaction Support in a Temporal DBMS, pages
255-271. In [5].

[21] S. B. Zdonik and D. Maier, editors. Readings in
Object-Oriented Database Systems. Morgan Kauf-
mann Publishers, 1990.

380

