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Abstract

Spatio-temporal databases deal with geometries changing over time. The goal of our work is
to provide a DBMS data model and query language capable of handling such time-dependent
geometries, including those changing continuously which describe mowving objects. Two fun-
damental abstractions are mouving point and mouving region, describing objects for which
only the time-dependent position, or position and extent, are of interest, respectively. We
propose to represent such time-dependent geometries as attribute data types with suitable
operations, that is, to provide an abstract data type extension to a DBMS data model and
query language.

This paper presents a design of such a system of abstract data types. It turns out that
besides the main types of interest, moving point and moving region, a relatively large number
of auxiliary data types is needed. For example, one needs a line type to represent the pro-
jection of a moving point into the plane, or a “moving real” to represent the time-dependent
distance of two moving points. Tt then becomes crucial to achieve (i) orthogonality in the
design of the type system, i.e., type constructors can be applied uniformly, (ii) genericity
and consistency of operations, 1.e., operations range over as many types as possible and
behave consistently, and (iii) closure and consistency between structure and operations of
non-temporal and related temporal types. Satisfying these goals leads to a simple and ex-
pressive system of abstract data types that may be integrated into a query language to yield
a powerful language for querying spatio-temporal data, including moving objects. The paper
formally defines the types and operations, offers detailed insight into the considerations that
went into the design, and exemplifies the use of the abstract data types using SQL. The
paper offers a precise and conceptually clean foundation for implementing a spatio-temporal
DBMS extension.

1 Introduction

A common characteristic of concrete, physical objects is that they have a position and an extent
in space at any point in time. This applies to countries, land parcels, rivers, taxis, forest
harvesting equipment, fishing boats, air planes, glaciers, lakes, forests, birds, polar bears, and
persons, to name but a few types of objects.
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A wide and increasing range of database applications manage such space and time referenced
objects, termed spatio-temporal objects. In these database applications, the current as well as
the past and anticipated future positions and extents of the objects are frequently of interest.
This brings about the need for capturing these aspects of the objects in the database.

As an example, forest management involves the management of spatio-temporal objects. For-
est harvesting machines have Global Positioning System (GPS) devices attached. A harvesting
machine cuts down a pine tree while holding on to the tree; it then strips off the branches while
simultaneously cutting the tree into logs of specified lengths, placing also the logs in different
piles so that similar logs go into the same pile. During this process, the machine measures the
amount and properties of the harvested wood (e.g., volumes, diameters, lengths) and transmits
this information together with the positions of the piles to head quarters. Together with the
orders for wood, this information along with the present locations of the harvesting machines
then is used for scheduling the pickup of already harvested wood as well as further harvesting.

Two types of spatio-temporal objects may be distinguished, namely discretely moving ob-
jects and continuously moving objects. For the former type of object, e.g., land parcels, it is
relatively easy to keep track in the database of the objects’ changing positions and extents.
This may be accomplished by more or less frequent database updates, and solutions exist for
capturing and querying discretely changing spatial positions and extents. For example, this may
be accomplished by using separate spatial and temporal columns in relational tables.

Objects that change position or extent continuously, termed moving objects for short, are
pervasive, but in contrast to the discretely changing objects, they are much more difficult to
accommodate in the database. Supporting these kinds of moving objects is exactly the challenge
addressed by this paper. It is not feasible to capture these with separate spatial and temporal
values, and the database cannot be updated for each change to the objects’ spatial aspect.
Another tack must be adopted.

The paper defines a complete framework of abstract data types for moving objects. The
proposed framework is intended to serve as a precise and conceptually clean foundation for
the representation and querying of spatio-temporal data. While proposals exist for spatial and
temporal types, no framework has previously been proposed for spatio-temporal types that
include support for moving objects. (Section 6 positions the paper’s contribution with respect
to related research.)

The framework takes as its outset a set of basic types that includes standard data types such
as integer and Boolean; spatial data types, including point and region; and the temporal type
instant. The next step is to introduce type constructors that may be applied to the basic types,
thus creating new types. For example, the type constructor “moving” that maps an argument
type to the type that is a mapping from time to the argument type is included. This leads to
types such as moving point, which is a function from instant to point. For example, a harvesting
machine’s position may be modeled as a moving point.

The framework emphasizes three properties, namely closure, simplicity, and expressiveness.
For example, closure dictates that types exist for the domains and ranges of types that are
functions between types.

It is important to note that in a design of abstract data types like the one of this paper, the
definitions of the structure of entities (e.g., values of spatial data types) and of the semantics
of operations can be given at different levels of abstraction. For example, the trajectory of a
moving point can be described either as a curve or as a polygonal line in two-dimensional space.
In the first case, a curve is defined as a (certain kind of) infinite set of points in the plane without
fizing any finite representation. In the second case, the definition uses a finite representation
of a polygonal line, which in turn defines the infinite point set making up the trajectory of the



moving point. In [EGSV97] the difference between these two levels of modeling is discussed
at some depth, and the terms abstract and discrete modeling have been introduced for them.
Basically, the advantage of the abstract level is that it is conceptually clean and simple, because
one does not have to express semantics in terms of the finite representations. One is also free to
select later different kinds of finite representations, e.g., polygonal lines, or descriptions based on
splines. On the other hand, this additional step of fixing a finite representation is still needed.
The advantage of discrete modeling is that it is closer to implementation.

The design of this paper is an abstract model in this sense. However, care has been taken to
define all data types and operations in such a way that an instantiation with finite representations
(e.g., set of polygons for region) is possible without problems.

The proposed abstract data types may be used as column types in conventional relational
DBMSs, or they may be integrated in object-oriented or object-relational DBMS’s. It is also
possible for a user or a third-party developer to implement abstract data types based on this
paper’s definitions in an extensible DBMS, e.g., a so-called Universal Server.

The paper is structured as follows. Abstract data types consist of data types and operations
that encapsulate the data types, i.e., they form an algebra. Section 2 discusses the embedding
of such an algebra into a query language. Section 3 proceeds to present the data types in
the framework, and Section 4 defines the appropriate sets of operations to go with the data
types. Section 5 explores the expressiveness of the resulting language within two application
areas. Section 6 covers related research. Section 7 concludes the paper and identifies promising
directions for future research pointed to by the paper.

2 Preliminaries: Language Embedding

In order to illustrate the use of the framework of abstract data types in queries, these must be
embedded in a query language. A range of languages would suffice for this purpose, including
theoretical and practical languages as well as relational, object-relational, and object-oriented
languages.

We do not care into which language our design, which can be viewed as an application-
specific sublanguage, is embedded. In the examples of this paper we show an embedding into a
relational model and an SQL-like language with which most readers should be familiar.

To achieve a smooth interplay between the embedding language and an embedded system
of abstract data types, a few interface facilities and notations are needed, expressible in one
form or another in most object-oriented or object-relational query languages. In order to not be
bound to any particular SQL standard, we briefly explain our notations for these facilities.

Assignments. The construct LET <name> = <query> assigns the result of query to a new
object called name which can then be used in further steps of a query.

Multistep queries. A query can be written as a list of assignments, separated by semicolon,
followed by one or more query expressions. The latter are displayed as the result of the query.

Example 2.1 We assume an example relation
employee(name: siring, salary:int, permanent :bool)
Here is a multistep query.

LET big = 10000;
LET well_paid = SELECT name, salary FROM employee WHERE salary > big;
SELECT SUM(salary) FROM well_paid



The result of the last SELECT statement is displayed. a

Conversions between sets of objects and atomic values. In relational terms, this means that
a relation with a single tuple and a single attribute can be converted into a typed atomic value
and vice-versa. We use the notations ELEMENT (<query>) and SET(<attrname>, <value>) for
this.

Example 2.2 The expression
ELEMENT (SELECT salary FROM employee WHERE name = "John Smith") > 100000

is a good predicate, because the ELEMENT construct returns a value of type integer. Conversely,
the expression

SET(name, "John Smith")

returns a relation with an attribute name and a single tuple having John Smith as the value of
that attribute. O

Defining derived attributes. We assume that arbitrary ADT operations over new or old data
types may occur anywhere in a WHERE clause as long as in the end a predicate is constructed,
and they can be used in a SELECT clause to produce new attributes, with the notation

<new attrname> AS <expression>

Example 2.3 Here a new attribute thousands is derived.
SELECT name, thousands AS salary div 1000 FROM employee

We generally typeset ADT operators in bold face, so div is assumed to be an ADT operator
here. |

Defining operations. We allow for the definition of new operations derived from existing
ones, in the form LET <name> = <functional expression>.

Example 2.4 This example shows how functional expressions are written and may be used.

LET square = FUN (m:integer) m * m;
square(5) O

Defining aggregate functions. Any binary, associative, and commutative operation defined
on a data type can be used as an aggregate function over a column of that data type, using
the notation AGGR(<attrname>, <operator>, <neutral element>). In case the relation is
empty, the neutral element is returned. In case it has a single tuple, then that single attribute
value is returned; otherwise the existing values are combined by the given operator. Moreover,
a name for the aggregate function can be defined by LET <name> = AGGREGATE(<operator>,
<neutral element>).

Example 2.5 We can sum all salaries by
SELECT AGGR(salary, +, 0) FROM employee
We can determine whether all employees have permanent positions by:
LET all = AGGREGATE(and, TRUE);
SELECT all(permanent) FROM employee a

Whereas we have explained all these facilities in terms of simple standard data types, they
are much more useful in the handling of complex non-standard data types. — A deeper study
about interfacing ADT algebras with embedding languages can be found in [GS95].



3 Spatio-Temporal Data Types

In this and the next section we define a system of data types and operations, or an algebra,
suitable for representing and querying geometries changing over time, and in particular, moving
objects. Defining an algebra consists of two steps. In a first step we design a type system
by introducing some basic types as well as some type constructors. For each type in the type
system, its semantics is given by defining a carrier set. In the second step we design a collection
of operations over the types of the type system. For each operation, its signature is defined,
describing the syntax of the operation, i.e., the correct argument and result types, and its
semantics is given by defining a function on the carrier sets of the argument types.

In this section we define the type system; operations are given in Section 4. We first discuss
requirements, then define basic types and type constructors, and finally justify some of the
particular choices made in the design.

3.1 Requirements and Scope

A fundamental requirement to this design is that the types enable us to record in the database
the spatio-temporal aspects of the objects. We focus on capturing spatio-temporal aspects that
change continuously as this is the most challenging and allows us to also capture spatio-temporal
aspects that only change in discrete steps.

The outset for the spatio-temporal type system is the standard database types traditionally
built into relational database management systems, termed base types and represented here by
the integers, reals, strings, and Booleans; the spatial types of point, line, and region; and the
time type of instants.

Another fundamental requirement to the type system is that it be orthogonal. With this
requirement in mind, it is possible to construct various functional types over the types just
mentioned as follows.

e [‘unctions from the domain of points in 2D space to some other domain (e.g., a temperature
distribution over a country),

e functions from the domain of instants to some other domain, called temporal types, and

e functions from the domain of point-instant pairs to some domain.

Not all of these types are equally interesting in the context of this paper that focusses on
moving objects. In keeping with this focus, we will restrict our attention to consider explicitly
only (i) base types, spatial types and time types, and, primarily, (ii) temporal types, of which
spatio-temporal types (= spatial temporal types) are a special case. The temporal types are also
termed “moving,” and since temporal base types have been covered extensively in the research
literature on temporal databases, emphasis is given to spatio-temporal types.

A third requirement is that the type system be closed. This means that the domains and
ranges of all the “functional” types as well as the ranges of the inverse functions must be present
in the type system. This requirement dictates the presence of a time type of sets of time intervals,
for example.

3.2 The Type System

We define the type system as a signature. Any (many-sorted) signature consists of sorts and
operators, where the sorts control the applicability of operators (see e.g. [LEW96]). A signature



generates a set of terms. Here the sorts are called kinds and describe certain subsets of types,
and instead of operators we have type constructors. The terms generated by the signature
describe exactly the types available in our type system. For more background on this technique
for defining type systems and algebras see [Giit93].

Table 1 shows the signature defining our type system.

Type constructor Signature

int, real, string, bool — BASFE

point, points, line, region — SPATIAL
instant — TIMFE
moving, intime BASE U SPATIAL — TEMPORAL
range BASE U TIME — RANGE

Table 1: Signature describing the type system

Terms, and therefore types, generated by this signature are e.g., int, region, moving(point),
range(int), etc. The range type constructor is applicable to all the types in the kind BASE and
all types in kind TIMF, hence all types that can be constructed by it are range(int), range(real),
range(string), range(bool), and range(instant).

One can see that quite a few types are around. Although the focus of interest are the spatio-
temporal data types, especially moving(point) and moving(region), in order to obtain a closed
system of operations it is necessary to include the related spatial, time, and base types into the
design.

So far we have just introduced some names for types. In the sequel we describe their semantics
first informally, and then formally by defining carrier sets.

We start with the constant types (type constructors with no arguments), and then discuss
(proper) type constructors. Throughout the paper, type constructors, including constant types,
are typeset in italics.

3.2.1 Base Types

The base types are int, real, string, and bool. All base types have the usual interpretation, except
that each domain is extended by the value L (undefined).

Definition 3.1 The carrier sets for the types int, real, string, and bool, are defined as:

A 2 ZU L),

Areal é RU{J—}7
Astring 2 yry {L}, where V is a finite alphabet,

Apoot 2 {FALSE, TRUE} U {L}. 0

We sometimes need to talk about the carrier set without the undefined value. As a shorthand

for this we define A, = As \ {L}.

3.2.2 Spatial Types

Basic conceptual entities that have been identified in spatial database research are point, line,
and region [Giit94]. A point is a suitable representation for an object for which only the position,
not the extent, is of interest. A region is the abstraction of an object for which the position



and the extent are relevant. A line is (in most cases) an abstraction for ways of moving through
space, or for connections through space (roads, rivers, electricity networks, gas lines, etc.).

The focus of our interest are point and region entities changing over time, as these are most
relevant for applications involving moving objects. Lines (connection structures) changing over
time do exist, but are not as prominent as the other two. However, as we will see below, to
obtain a closed system it is necessary to have data types for lines and even for collections of
points available.

The spatial data types used in our design are called point, points, line, and region. They are
illustrated in Figure 1.

apoint value apointsvaue alinevalue aregionvaue

Figure 1: The spatial data types

Informally, these types have the following meaning. A value of type point represents a point
in the Euclidean plane or is undefined. A points value is a finite set of points. A line value is a
finite set of continuous curves in the plane. A region is a finite set of disjoint faces each of which
may have holes. It is allowed that a face lies within a hole of another face. Each of the three
finite set types may be empty. More precise conditions on the structures are given next.

Formal definitions are based on the point set paradigm and on point set topology. The point
set paradigm expresses that space is composed of infinitely many points and that spatial objects
are distinguished subsets of space which are viewed as entities. Point set topology provides
concepts specifying the notions of continuity and closeness and allows one to identify special
topological structures of a point set like its interior, closure, boundary, and exterior. We assume
that the reader is familiar with the fundamental concepts of point set topology like those just
mentioned and others such as topological space, open and closed sets, etc., and refer to textbooks
such as [Gaa64].

Point and point set types are still quite simple:

Definition 3.2 The carrier sets for the types point and points are:
A

Apoint - RQU{J—}7
Apoints 2 {P CR?| P is finite} 0

For the definition of lines, we need the concept of a (continuous) curve. In the following
definition, a total order on R? is assumed, namely lexicographic order on the coordinates (first
z, then y), and < refers to that order.

Definition 3.3 A curve is a mapping f : [0, 1] — R? such that

1. f is continuous
2. Va,be (0,1):a #b= f(a) # f(b)
3. Ya € {0,1},Vb € (0,1) : f(a) # f(b)



4. £(0) < F(1)V (F(0) = F(1) AVa € (0,1): F(0) < f(a))

The points f(0) and f(1) are called the end points of f. The corresponding point set in the
range of f is denoted by rng(f). O

The definition allows loops (f(0) = f(1)) but forbids equality of different interior points and
equality of an interior with an end point. The last condition ensures uniqueness of representation,
e.g. in a closed curve, f(0) must be the leftmost point.

The curves that we want to deal with must be simple in the sense that the intersection of two
curves yields only a finite number of proper intersection points (disregarding common parts).
This is ensured by the following definitions.

Definition 3.4 Let @ C R? and p € Q. p is called isolated in Q < Je € R,e > 0: Sp(p,€) N
@\ {p}) =0.

Here Sp(p, €) denotes an open sphere around p with radius e. The set of all isolated points
in ) is denoted as isolated(Q). O

Definition 3.5 Let C be the set of all curves w.r.t. Def. 3.3. A class of curves C' C C is called
simple & ey, co € C' 2 isolated(rng(cr) Nrng(cp)) is finite. o

The line data type is to represent any finite union of curves from some class of simple curves.
When the abstract design of data types given in this paper is implemented by some discrete
design (as explained in the introduction), some class of curves will be selected for representation,
for example polygonal lines, curves described by cubic functions, etc. We just require that the
class of curves selected has this simplicity property. This is needed, for example, to ensure that
the intersection operation between two line values yields a finite set of points representable by
the points data type.

A finite union of curves basically yields a graph structure embedded into the plane. Given a
set of points of such a graph, there are many different sets of curves resulting in this point set.
We obtain a unique representation by enforcing that all curves are disjoint except for the end
points.

Definition 3.6 Let S be a class of curves. A C-complex over S'is a finite set of curves C' C S
such that Vey, eo € C\Va,b e (0,1) : ¢1(a) # ca(b).

The set of points of this C-complex, denoted points(C'), is |J, e rng(c).

The set of all C-complexes over S is denoted by C'C(S). o

Definition 3.7 Let S be a simple class of curves. The carrier set of the line data type is:

Aline = {Q CR?|3C € CC(S) : points(C) = Q} |

For the definition of regions, we need the concept of a regular closed set. A set  C R?
is called regular closed if the closure of its interior coincides with the set itself, i.e., @ =
closure(interior(@)). The reason for this regularization process is that regions should not
have geometric anomalies like isolated or dangling line or point features and missing lines and
points in the form of cuts and punctures. These are avoided by regularity.

A region can be viewed as a finite set of faces. Each face is a non-empty, regular closed
set. Any two faces of a region are disjoint except for finitely many “touching points” at the
boundary.



Definition 3.8 Let @), R be two regular closed sets. @ and R are quasi-disjoint :& Q N R is
finite. |

Definition 3.9 Let S be a class of curves. An R-complex over S is a finite set R of regular
closed sets, such that:

1. Any two distinct elements of R are quasi-disjoint.
2. Vr € R,3c € CC(S) : Or = points(c)

Here 0r denotes the boundary of r. Each element of the R-complex is called a face. The union
of all points of all faces is denoted points(R). The set of all R-complexes over S is denoted
RC(S). O

An R-complex captures the intuition of a set of disjoint faces. In addition, it ensures that
boundaries of faces are simple in the same sense that lines are simple. For example, the intersec-
tion of two regions will also produce only finitely many isolated intersection points. Note that
the boundary of a face has outer as well as possibly inner parts, i.e., the face may have holes.

Definition 3.10 Let S be a simple class of curves. The carrier set of the region data type is
defined as: A
Aregion - {Q Q R2 | dR € RC(S) :Q = pO’L’IZtS(R)} Oa

We require that the same class S of curves is used in the definition of the line and the region
data type.
We extend the shorthand A to the spatial data types, and in fact to all types whose carrier

. = A
set contains sets of values. For these types @ we define A, = A, \ {0}.

3.2.3 Time Type

Type instant represents a point in time or is undefined. Time is considered to be linear and
continuous, i.e., isomorphic to the real numbers.

Definition 3511 The carrier set for instant is:
Ainsmnt = RU {L} |

3.2.4 Temporal Types

From the standard base types and base space types, we want to derive corresponding temporal
types. The type constructor mowving is used for this purpose. The moving type constructor
yields for any given type o a mapping from time to a. More precisely, this means:

Definition 3.12 Let o be a data type to which the moving type constructor is applicable, with
carrier set A,. Then the carrier set for moving(«), is defined as follows:

Amoving(a) = {f1f : Ainstant — A, is a partial function A U(f) is finite} O

Hence, each value f from the carrier set of moving(«) is a function describing the development
over time of a value from the carrier set of a. The condition “I'(f) is finite” says that f consists
of only a finite number of continuous components. This is made precise in Appendix A where a
generalized notion of continuity is defined. This condition is needed to ensure (i) that projections



of moving objects have only a finite number of components, (ii) for the decompose operation
defined below, and (iii) as a precondition to make the design implementable.

For all “moving” types we introduce extra names by prefixing the argument type with an
“m”, that is, mpoint, mpoints, mline, mregion, mint, mreal, mstring, and mbool. This is just to
shorten some signatures.

The temporal types obtained through the moving type constructor are functions, or infinite
sets of pairs (instant, value). It is practical to have a type for representing any single element
of such a function, i.e., a single (instant, value)-pair. The type constructor intime serves this
purpose. The resulting family of types is used, for example, to represent the result of operations
(e.g., atinstant) that for values of a temporal type yield the value at a specified instant (a
time-slice of the value). The intime type constructor converts a given type « into a type that
associates instants of time with values of a:

Definition 3.13 Let o be a data type to which the intime type constructor is applicable, with

carrier set A,. Then the carrier set for intime(a), is defined as follows:

A
Aintime(a) — Ainsmnt X Aoz O

3.2.5 Range Types (Sets of Intervals)

For all temporal types we would like to have operations that correspond to projections into the
domain and the range of the functions. For the moving counterparts of the base types, e.g.
moving(real) (whose values come from a one-dimensional domain), the projections are, or can
be compactly represented as, sets of intervals over the one-dimensional domain. Hence we are
interested in types to represent sets of intervals over the real numbers, over the integers, etc.
Such types are obtained through a range type constructor.

Definition 3.14 Let a be a data type to which the range type constructor is applicable (and
hence on which a total order < exists). An a-intervalis a set X C A, such that Vz,y € X,Vz €
Ayiz<z<y=z¢€X.

Two a-intervals are adjacent, if they are disjoint and their union is an a-interval. An a-range
is a finite set of disjoint, non-adjacent intervals. For an a-range R, points(R) denotes the union
of all its intervals.

An a-interval X is left-closed if inf(X') € X, it is right- closed if sup(X) € X, and it is closed
if it is both left-closed and right-closed. Dually, it is (left-/right-) open iff it is not (left-/right-)
closed. The closure of an a-interval X is defined as closure(X) 2 xu {inf(X)} U {sup(X)}.
O

Definition 3.15 Let o be any data type to which the range type constructor is applicable.
Then the carrier set for range(«) is:

A 2 {X C A, |3F an a-range R : X = points(R)} o

range(o)

Because we are particularly interested in ranges over the time domain we introduce a special
name for this type: periods = range(instant).

3.3 Rationale for this Design

At this point, one may wonder why the design of data types was done in this particular way,
and ask questions like the following;:
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1.

What are all the data types for? For example, if we are interested in moving points and
regions, why do we bother about lines? Why are there separate point and points data
types? Why do we need “moving reals” or sets of intervals of integers?

. Why do some types have the undefined value included, others not?

. Why are the formal definitions done in this peculiar way? For example, why do we have

the finiteness conditions in some places although generally we are talking about infinite
point sets?

Although a full understanding of these issues will be possible only after reading Section 4,
let us already point out the following design principles. The main concerns are closure and
consistency.

1.

Closure and consistency between collections of non-temporal and temporal types.

Closure means that for a certain collection of non-temporal types we want to have corre-
sponding temporal types, and for each temporal type, we want to have the corresponding
non-temporal type available. The collection of types here are those in BASEF U SPATIAL
to which we will also refer as kernel types in the sequel.

Consistency means that given a temporal type such as moving(region), its value at each
instant is a value of the corresponding non-temporal type region. Moreover, for each non-
temporal type for which a temporal version exists, the temporal type can represent the
development over time of any of its values. This principle would be violated, for example,
if a moving region could consist only of a single connected volume (in the 2D+time space),
whereas a region might have several disjoint components.

. Closure and consistency of operations on non-temporal types under temporal “lifting”.

In most cases, an operation that is of interest in the non-temporal case is relevant in the
temporal case as well. For example, we are interested in the distance between two points,
but also in the time-dependent distance between two moving points. To keep this simple
and uniform, in Section 4 we first define an algebra over the kernel types, the kernel algebra.
We then require that for each operation in the kernel algebra any of its time-dependent
variants exists as well, and its semantics is consistent with that of the kernel operation.

. For all temporal data types, time-slice, projection into the (time) domain, and projections

into the range must be available.

For example, we must have types to represent the trajectory of a moving(point), or the set
of values assumed by a moving(real).

. The generic point vs. point set (or element vs. set) view must be supported by all kernel

data types.

There is a major organizing principle in designing generic operations in Section 4, which
is to consider interaction between single values and sets of values of some domain. This
means, for each domain, we need a type for single values and one for sets of values. For
example, int and range(int) are these related types for integers, whereas in 2D point is the
single value type, and points, line, and region are the set types.

. All set types must be closed under set operations.

By set operations we mean union, intersection, and difference of the underlying point sets.
For example, there must be types to represent the result of intersecting two regions.
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6. We want to have a semantically rich, non-degenerate type system for the spatial data types.

We want a type system that corresponds to the users conceptual entities and therefore
distinguishes between point, line, and region features in 2D space. In contrast, a collapsed
type system would represent any spatial value by a single type “geometry”, or a partially
collapsed type system may have a type to represent point and line features together. An
analogon for the better known standard data types would be to have a single data type
“number” instead of distinguishing integers and reals. Here a tradeoff is involved. In a
collapsed type system, of course, closure is much easier to achieve. This approach is, by the
way, taken in constraint databases, where the uniform representation of a set of constraints
corresponds to having a single type “geometry”. On the other hand, the advantages of a
non-collapsed type system are (i) better expressiveness; e.g., in a relation schema we can
distinguish point or line features, (ii) better type checking in expressions (queries) — the
classical reason for having expressive type systems, and (iii) more efficient data structures
and algorithms. For example, geometric algorithms are almost always designed to deal
with features of a certain kind (e.g. regions) rather than a mixed collection of anything.
Knowledge of the type allows one to choose the most compact and efficient representations.

7. For the spatial data types, predicates as well as certain operations with numeric results are
needed.

It is obvious that predicates are indispensable in any spatial algebra. Operations with
numeric results are, e.g., distance (realvalued), or the number of components (int-valued).

Figure 2 shows how (almost) the entire type system can be motivated through these princi-
ples, starting from the types of interest mpoint and mregion.

(1) ™) _ oo\ range(bool)

int range(int)
real range(real)

mpoint
mregion

e 76
instant > points (1)> mpoints
periods line mline

Figure 2: Type system motivated through mpoint and mregion

Here types mpoint and mregion are assumed as given. Types point and region follow by
principle (1). Types points and line are needed for two reasons: (i) because by (5) we need types
to represent the intersection of regions (which yields point, line and region features; we will
introduce separate operations to return these in different types), and (ii) because according to
(3) we need types for the projection of a moving point into the plane, which can consist of point
and line features (point if the moving point is still for a while, or does not move at all). Types
mpoints and mline follow by principle (1) again. Note that the application of (3) to mpoints and
mline leads to types points, line, and region which are there already (projection of mpoints has
points and line parts, of mline has line and region parts; again we will have separate operations
to get these parts).

According to (7) we need types bool, int, and real, and then according to (1) also mbool,
mint, and mreal. For these we need projection types according to (3) which induces the three
range types. Finally, projection into the time domain (3) requires the types instant and periods.
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What is missing in this picture are the string type and the class of intime types. The
string type is indeed not needed as far as mpoint and mregion are concerned, since there are
no operations on spatial data types or their induced types that yield string values. However,
string is probably the most fundamental type of all in a DBMS. If we had no string attributes
in tables, the system would be rather poor. So we assume this type is needed; then by principle
(1) mstring should be there as well.

The intime types are in fact not as fundamental for this design as the rest. They are just
handy to have for certain operations (e.g. finding the closest distance between two moving
points including the time as well as the distance). Note however, that they do not violate the
7 principles, as intime values are just pairs of values of existing types, and we will provide
operations to do projections into these two components. Hence especially principle (3) holds
also for them.

A few issues remain to be discussed. Why are there separate point and points types? We
have seen that starting from mpoint, points arise by closure. Could one entirely omit point and
mpoint and just live with sets of (moving) points? First, this would violate principle (4) since
we would have no type for single values in 2D. Second, point and mpoint are the main target of
the whole design; these are the natural abstractions for the position of a (moving) entity, and
we should not by closure arguments lose our main target!

Another option one could pursue is to merge points and line into a single data type containing
point and line features. This means the projection of a moving point would not yield two results
of different types (and so require two different operations in our design), but only of this mixed
type. However, this would violate principle (6), as it would lead to a partially collapsed type
system for spatial types. By closure, one would obtain the temporal version of this mixed type
which is conceptually quite ugly.

Why is the undefined value L included in some types, and why not in all? It was included
to have closure for the operation atinstant (time-slice). The temporal values that we deal with
are generally partial functions. We need to be able to ask for the value at any instant of time.
The result value, even if the function happens to be undefined at this instant, should be usable
within subexpressions of the query. For example, such an expression may be evaluated for each
tuple of a relation, where sometimes the temporal attribute has a defined value at this instant,
sometimes not. The undefined value is included in all types representing single values; it is not
needed in the set types. This is because all set types have the empty set as a value. If we ask for
the value of a set type at an instant when it was not defined, then we can return the empty set.
Indeed, an alternative view of the “moving” types is to view them as complete functions that
can assume the values L and (). However, when we talk about the definition time (operation
deftime), we refer to those times when the value is different from L or 0.

Finally, why is there the emphasis on finite collections in the definition of spatial data types
even though we are dealing with infinite point sets anyway? This is in order to be realistic
and implementable. As mentioned in the Introduction, this abstract design is intended as a
basis for a discrete design where we have to give finite representations for all the types. For
each component of a spatial type, e.g. a face of a region, one can easily come up with a finite
representation (e.g. a polygon with holes). Such a polygon certainly represents an infinite
number of points of the plane. However, it is crucial to keep the number of components finite,
as each of them will be some component of a data structure in the end.
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4 Operations

4.1 Overview

The design of the operations adheres to three principles, of which some aspects have already
been touched in Section 3.3.

1. Design operations as generic as possible.
2. Achieve consistency between operations on non-temporal and temporal types.

3. Capture the interesting phenomena.

The first principle is crucial, as our type system is quite large. To avoid a proliferation of
operations, it is mandatory to find a unifying view of collections of types, and hence to focus on
properties shared by many types.

The basic approach to achieve generality is to relate each type to either a one-dimensional
or a two-dimensional space and to consider all values either as single elements or subsets of
the respective space. For example, type int describes single elements of the one-dimensional
space of integers, while range(int) describes sets of integers (structured into disjoint intervals).
Similarly, peint describes single elements of two-dimensional space, whereas points, line, and
region describe (different kinds of ) subsets of the two-dimensional space.

Second, in order to achieve consistency of operations on non-temporal and temporal types,
we proceed in two steps. In the first, we define operations on non-temporal types. In a second
step, we systematically extend operations defined in the first step to the temporal variants of
the respective types. This is called lifting.

Third, in order to obtain a powerful query language, it is necessary to include operations
that address the most important concepts from various domains (or branches of mathemat-
ics). Whereas simple set theory and first-order logic are certainly the most fundamental and
best-understood parts of query languages, we also need to have operations based on order rela-
tionships, topology, metric spaces, etc. There is no clear recipe to achieve closure of “interesting
phenomena”; nevertheless, that should not keep us from having concepts and operations avail-
able like distance, size of a region, relationships of boundaries, and the like.

Section 4 is structured as follows. Section 4.2 develops an algebra over non-temporal types,
based on the generic point and point set (value vs. subset of space) view of these types. The
classes of operations considered are:

1. Predicates. These are operations that return Boolean values.
2. Set operations. These are the basic set operations such as the union of sets.
3. Aggregate operations. These compute some single value from a set in the respective space.

4. Numeric operations. These are closely related to the aggregate functions and compute
some numeric value from a set, e.g., the perimeter of a region value.

5. Distance and direction operations. This type of function allows for the computation of,
e.g., the minimum distance between two sets of points.

6. Specific base type operations. Some operations on base types outside the generic view are
needed.
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Table 2 gives an overview, listing just the names of operations. The corresponding section
(Section 4.2 in this case) explains these operations in detail and gives their signature. The
semantics of all operations is defined formally in the Appendix.

| Class | Operations |

Predicates isempty

=, #, intersects, inside

<, <, >, >, before

touches, attached, overlaps, on_border, in_interior

Set Operations intersection, union, minus
crossings, touch_points, common_border
Aggregation min, max, avg, center, single
Numeric no_components, size, perimeter, duration, length, area

Distance and Direction | distance, direction

Base Type Specific and, or, not

Table 2: Classes of Operations on Non-Temporal Types

Also the kernel algebra is defined as the set of operations of this section, restricted to the
types in BASE U SPATIAL.

Section 4.3 defines operations on temporal types. There we are interested in the following
classes of operations, which are summarized in Table 3:

1. Projection to domain and range. For each temporal type, an operation to project into the
time domain or the range is available.

2. Interaction with values from domain and range. This allows one, for example, to restrict
a temporal value to certain times or certain range values.

3. The when operation. A powerful operation to evaluate a generic predicate on a temporal
value.

O

. Lifting. For all operations of the kernel algebra corresponding operations on temporal
types are introduced.

5. Operations related to rate of change. This includes operations like speed, derivative.

‘ Class

Projection to Domain/Range deftime, rangevalues, locations, trajectory
routes, traversed, inst, val

Operations ‘

Interaction with Domain/Range | atinstant, atperiods, initial, final, present
at, atmin, atmax, passes

When when
Lifting (all new operations inferred)
Rate of Change derivative, speed, turn, velocity

Table 3: Classes of Operations on Temporal Types

Some operations are needed that are based on our data types, but require a manipulation
of a set of objects in the database (e.g., a relation). Such operations are treated in Section 4.4
and shown in Table 4.
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‘ Class ‘ Operations ‘

‘ Operations on Sets of Objects ‘ decompose ‘

Table 4: Operations on Sets of Database Objects

4.2 Operations on Non-Temporal Types

As motivated above we take the view that we are dealing with single values and sets of these
values in one-dimensional and two-dimensional spaces. The types can then be classified according
to Table 5.

1D Spaces 2D Space
discrete continuous
Integer | Boolean | String Real | Time 2D
point int bool string real instant | point
point set | range(int) | range(bool) | range(string) | range(real) | periods | points, line
region

Table 5: Classification of Non-Temporal Types

Table 5 shows that we are dealing with five different one-dimensional spaces called Integer,
Boolean, etc. and one two-dimensional space called 2D. The two types belonging to space Integer,
for example, are int and range(int). One-dimensional spaces are further classified as being
discrete or continuous. The distinction between 1D and 2D spaces is relevant because only the
1D spaces have a total order. The distinction between discrete and continuous one-dimensional
spaces is important for certain numeric operations. To have a uniform terminology, in any of
the respective spaces we call a single element a point and a subset of the space a point set, and
we classify types accordingly as point types or point set types.

Example 4.1 We introduce the following example relations for use within this section, repre-
senting cities, countries, rivers, and highways in Europe.

city(name: string, pop:int, center:point)
country(name: string, area:region)
river(name: string, route:line)
highway(name: string, route:line)

4.2.1 Notations for Signatures

Let us briefly introduce notations for signatures that are partly based on Table 5.

In defining operation signatures and semantics (e.g., in Tables 6 and 8 and in the Appendix),
7 and o are type variables, ranging over all point and all point set types of Table 5, respectively.
If several type variables occur in a signature (e.g., for binary operations), then they are always
assumed to range over types of the same space. Hence in a signature # X ¢ — « we can, for
example, select the one-dimensional space Integer and instantiate 7 to int and o to range(int).
Or we can select the two-dimensional space 2D where we can instantiate = to point and o to
either points, line, or region.

A signature oy X 09 — «a means that the type variables oy and o5 can be instantiated
independently; nevertheless, they have to range over the same space. In contrast, a signature
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0 X 0 — « says that both arguments have to be of the same type. The notation o ® f — + is
used if any order of the two argument types is valid, hence it is an abbreviation for signatures
axXf—vand X a— 7.

Some operations are restricted to certain classes of spaces. The classes of interest are:

1D Integer, Boolean, String, Real, Time
2D 2D

1Dcont Real, Time

1Dnum Integer, Real, Time

cont Real, Time, 2D

A signature is restricted to a class of spaces by putting the name of the class behind it in square
brackets. For example, a signature o —  [1D] is valid for all one-dimensional spaces.

A single operation may have several functionalities (signatures), as shown in Table 6 for
isempty. Sometimes for a generic operation there exist more appropriate names for arguments
of more specific types. For example, there is a size operation for any point set type; however,
for type periods it makes more sense to call this size duration. In such a case, we introduce the
more specific name as an alias with the notation size[duration].

In defining semantics, u, v, ... denote single values of a 7 type, and U, V, ... generic sets of
values (point sets) of a o type. For clarity, single values and sets in one-dimensional spaces are
denoted z,y,... and X,Y, ..., respectively.

The default syntax for using operations in queries is the prefix notation op(argy, ..., arg,).
An exception are the comparison operators =, <, etc. and the Boolean operators and and or,
for which it is customary to have infix notation. For two operators, when and decompose, a
special syntax is defined explicitly below.

4.2.2 Predicates

To achieve some completeness, the design of predicates is based on the following strategy.

First, we consider unary and binary predicates. For the latter, we consider possible rela-
tionships between two points (single values), two point sets, and a point vs. a point set in the
respective space.

Second, orthogonal to this, predicates are based on three different concepts, namely set
theory, order relationships, and topology. Order means total order here, which is available only
in one-dimensional spaces. Topology means considering boundaries and interiors of point sets.

On this abstract level, there are not many unary predicates one can think of. For a single
point, we can ask whether it is undefined, and for a point set, we can ask whether it is empty.
The generic predicate isempty is used for this purpose.

‘ Operation ‘ Signature ‘

isempty |7 — bool
o — bool

Table 6: Unary Predicates

The design space for binary predicates according to the two “dimensions” mentioned above
is shown in Table 7.
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‘ Sets ‘ Order (1D Spaces) ‘ Topology ‘

point vs. point | u =v,u # v <y, <y
T>y,z>y
point set U=V, U#V X before Y OU N0V # 0 (touches)
vs. point set UNV # 0 (intersects) dUNV® #( (attached)
U CV (inside) U°NV®#( (overlaps)
point u € U (inside) = before X u € U (on_border)
vs. point set X before z u € U° (in_interior)

Table 7: Analysis of Binary Predicates

The idea of Table 7 is to systematically evaluate the possible interactions between single
values and sets and, based on that, to introduce (names for) operations. For example, we find
that a check whether boundaries intersect is important, and then introduce touches as a name
for that. Note that operations in the middle column are available in one-dimensional (ordered)
spaces in addition to those in the other columns.

This design should be complete with respect to the first and the last column, as all possible
interactions between the involved points and point sets have been considered. In contrast, for
the comparison of one-dimensional point sets we have just offered a single predicate, before. A
deeper study of configurations of sets of intervals (e.g., temporal elements) is beyond the scope
of this paper.

Nevertheless, for comparing single intervals, Allen’s interval predicates [AlI83] provide a
yardstick for the temporal aspects of expressiveness and completeness. It has been shown that all
Allen’s interval predicates can be expressed in terms of inequality predicates on the interval start
and end points [AH85]. These can be extracted with the min and max functions introduced
below, respectively. So, with the standard ordering predicates, the set of operations has the
expressive power of Allen’s interval predicates.

Apart from completeness, another important issue is redundancy. It is obvious that some
operations in Table 7 can be expressed by others if we have Boolean operators available (which
is the case, see Section 4.2.7). There are actually two somewhat conflicting goals in this design.
One is to obtain a concise set of operations. In the extreme this would mean a minimal set of
operators, as would be the goal of a more theoretical study. The other goal is language design;
it should be easy to express natural concepts. This allows for some redundancy. For example,
every programming language offers all the six comparison operators =, #, <, <, >, > even though
only two of them (=, <) are strictly needed. We strive for a good balance between these goals.

As a result, we obtain the signature in Table 8.

We have not offered any predicates related to distance or direction (e.g. “north”). However,
such predicates can be obtained via numeric evaluations (see Section 4.2.6).

Example 4.2 “What are the neighbor countries of Belgium?”

SELECT C.name
FROM country B, country C
WHERE B.name = "Belgium" and touches(B.area, C.area) 0O

4.2.3 Set Operations

Set operations are fundamental and are available for all point-set types. Where feasible, we also
allow set operations on point types, thus allowing expressions such as ¥ minus v and U minus u.
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‘ Operation ‘ Signature ‘

=,# TXT — bool

o1 X 09— bool
intersects o1 X 09— bool
inside o1 X 09— bool

T X0 — bool
<, <> > TXT — bool [1D]
before o1 X 0y — bool [1D]

TROo — bool [1D]
touches, attached, overlaps | 01 X 09— bool
on_border, in_interior TXOo — bool

Table 8: Binary Predicates

Singleton sets or empty sets that result from this use are interpreted as point values. This is
possible because all domains include the undefined value (L), whose meaning we identify with
the empty set. Permitting set operations on point types is especially useful in the context of
temporal types, as we shall see later.

There is no union operation on two single points, because the result could be two points,
which cannot be represented as a value of point type.

Defining set operations on a combination of one- and two-dimensional point sets is more
involved. This is because we are using arbitrary closed or open sets (see the definition of the
range constructor) in the one-dimensional space, whereas only closed point sets (points, line,
and region) exist in the two-dimensional case.

The restriction to closed point sets in the two-dimensional case is a natural and common
one. Regions lacking part of their boundary (Figure 3) are rather strange entities. Similarly,
regions lacking isolated interior points or curves appear unnatural. The same holds for curves
lacking single interior points.

Figure 3: The Closure Operation p Completes an Open Set with the Points on the Boundary

Because our two-dimensional types are closed, it is necessary to apply a closure operation
after applying the set operations on such entities. The closure operation adds all points on the
boundary of an open set to make it closed (see Figure 3).

For example, if Ry and Ry are point sets of region values, then Ry minus R, E p(R1\ R2).
Hence any points on the boundary of Ry subtracted from Ry will again belong to Ry minus Rs.

This seems to suggest that for uniformity, in the 1D space we should also work only with
closed sets. However, there are also arguments to the contrary. Consider subsets of the domain
of temporal types, the periods data type. For example, consider the simple stepwise constant
function over time u(t) of Figure 4. From time 1 to time 5, the value is 2, and from 5 to 9, it
is 4. But what is the value at time 5?7 Since u is a function of time, there can only be a single
value at time 5. Therefore, to be precise, we have to say that the value is 2 in the half-open
time interval [1,5), and 4 in the closed interval [5,9]. If we ask for the time period when the
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value is 2, we get a half-open interval. Thus, as far as mappings are concerned, there is no way
to avoid open intervals in their domains.

YA

6 1

Figure 4: Stepwise Constant Functions in the Time Domain Require Open Boundaries

The same argument would force us to use open sets in 2D space if we considered mappings
defined over 2D space. But they do not occur in our context. This justifies a different treatment
of one- and two-dimensional point sets.

Whereas in all the one-dimensional spaces there is only a single point set type, in 2D space
there are three. This requires an analysis of which argument type combinations make sense
(return interesting results), and what the result types are.

Generally, if we apply set operations to values of different types, we get results that are a
mixture of zero-, one-, and two-dimensional point sets, i.e., points, lines, and proper regions.
Usually one is interested mainly in the result of the highest dimension. This is reflected in the
concept of regularized set operations [Til80]. For example, the regularized intersection removes
all lower-dimensional pieces from the result of the corresponding intersection result. We will also
adopt regularization in our framework as the semantics of the three “standard” set operations
union, minus, intersection in 2D.

The behavior of the three set operations on different argument type combinations can be
described as follows.

e Union of arguments of equal types has the usual semantics. For unions on different types,
the argument values don’t really merge; regularization throws away the lower-dimensional
pieces and the result is the higher-dimensional argument. This result is not interesting as
we know it already. Hence we will define union only for equal types.

e Difference always results in the type of the first argument. Closure has to be applied to
the result. Among the argument combinations, only those return new results where the
dimension of the second argument is equal or higher to that of the first. In the other cases,
by closure, the first argument value is returned unchanged. We will allow difference on all
type combinations even though some of them are not relevant.

e Intersection produces results of all dimensions smaller or equal to the dimension of the
lowest-dimensional argument. For example, the intersection of two region values may yield
a mixture of zero-, one-, and two-dimensional point sets, i.e., points, lines, and proper
regions. The intersection of a line value with a region value may result in points and
lines. We will define the intersection operator for all type combinations with regularized
semantics, i.e., it returns the highest-dimensional result. To make the other kinds of
results available, we introduce specialized operators. For example, common_border is
introduced to return the line parts of region /region intersection, and touch_points returns
resulting (isolated) points.
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As a result we obtain the signature shown in Table 9.

‘ Operation ‘ Signature

intersection, minus TXT =7
intersection TR o =T
minus TX O =7

oXm =0
union TR o -0
intersection, minus, union | o X ¢ — 0 [1D]
intersection o1 X 03 — min(oq, 02)[2D]
minus o1 X 09 — o [2D]
union oxXo — 0 [2D]
crossings line X line — points
touch_points region @ line — points

region X region — points
common_border region X region — line

Table 9: Set Operations

Here signatures are divided into five groups, the first two concerning point/point and point
vs. point-set interaction. The last three groups deal with point-set/point-set interaction in one-
and two-dimensional spaces; the last group introduces specialized intersection operations to
obtain lower-dimensional results. The notation min(oy, o3) refers to taking the minimum in an
assumed “dimensional” order points < line < region.

The formal definition of the semantics of all set operations along the principles explained
above can be found in the Appendix.

The following example shows how with union and intersection we also have the corre-
sponding aggregate functions over sets of objects (relations) available.

Example 4.3 “Determine the total land area of Europe.”

LET sum = AGGREGATE(union, TheEmptyRegion)
LET Europe = SELECT sum(area) FROM country

This makes use of the facility for constructing aggregate functions described in Section 2.
TheEmptyRegion is some empty region constant defined in the database. |
4.2.4 Aggregation

Aggregation reduces sets of points to points (Table 10).

‘ Operation ‘ Signature ‘
min, max |o —7T [1D]
avg o — 7 [1Dnum]
avg[center] | 0 — 7w [2D]
single o -7

Table 10: Aggregate Operations

In one-dimensional space, where total orders are available, closed sets have minimum and
maximum values, and functions (min and max) are provided that extract these. For open and
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half-open intervals, we choose to let these functions return infimum and supremum values, i.e.,
the maximum and minimum of their closure. This is preferable over returning undefined values.
In all domains that have addition (e.g., 1Dnum), we can compute the average (avg). In 2D,
the average is based on vector addition and is usually called center (of gravity).
It is often useful to have a “casting” operation available to transform a singleton set into its
single value. For example, some operations have to return set types although often the result is
expected to be a single value. The operation single does this conversion.

Example 4.4 The query “Find the point where highway A1 crosses the river Rhine!” can be
expressed as:

LET RhineAl = ELEMENT(
SELECT single(crossings (R.route, H.route))
FROM river R, highway H
WHERE R.name = "Rhine" and H.name = "A1" and
R.route intersects H.route)

The result can be used as a point value in further queries, whereas crossings returns a points
value. |

4.2.5 Numeric Properties of Sets

For sets of points some well known numeric properties exist (Table 11).

‘ Operation ‘ Signature ‘
no_components | o — int
size o — real [cont]
perimeter region — — real [cont]
size[duration] periods — real
size[length] line — real
size[area] region  — real

Table 11: Numeric Operations

For example, the number of components (no_components) is the number of disjoint max-
imal connected subsets, i.e., the number of faces for a region, connected components for a line
graph, and intervals for a 1D point set. The size is defined for all continuous set types (i.e.,
for range(real), periods, line, and region). For 1D types, the size is the sum of the lengths of
component intervals, for line it is the length, and for region it is the area. For the region type,
we are additionally interested in the size of the boundary, called perimeter.

The second part of Table 11 introduces some alias names for the specific types.

Example 4.5 “List for each country its total size and the number of disjoint land areas.”

SELECT name, area(area), no_components(area)
FROM country O
Example 4.6 “How long is the common border of France and Germany?”

LET France = ELEMENT(SELECT area FROM country WHERE name = "France");
LET Germany = ELEMENT(SELECT area FROM country WHERE name = "Germany");
length (common _border(France, Germany)) O
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4.2.6 Distance and Direction

A distance measure exists for all continuous types. The distance function determines the
minimum distance between the closest pair of points where the first element is from the first
argument and the second element is from the second argument. The distance between two points
is the absolute value of the difference in one-dimensional space and the Euclidean distance in
two-dimensional space. The time domain inherits arithmetics from the domain of real numbers,
to which it is isomorphic.

‘ Operation ‘ Signature ‘

distance |7 X7 — real [cont]
T®Oo — real [cont]
oXao — real [cont]

direction | point X point — real

Table 12: Distance and Direction Operations

The direction between points is sometimes of interest. A direction function is thus included
that returns the angle of the line from the first to the second point, measured in degrees (0 <
angle < 360). Hence if ¢ is exactly north of p, then direction(p,q) = 90. If p = ¢, then the
direction operation returns the undefined value L.

Example 4.7 “Find all cities north of and within 200 kms of Munich!”

LET Munich = ELEMENT(SELECT center FROM city WHERE name = "Munich");

SELECT name

FROM city

WHERE distance(center, Munich) < 200 and direction(Munich, center) >= 45
and direction(Munich, center) <= 135

In this way we can express direction relationships such as north, south, etc. via numeric rela-
tionships. |

4.2.7 Specific Operations for Base Types

Some operations on base types are needed that are not related to the point/point set view. We
mention them because they have to be included in the scope of operations to be lifted, i.e., the
kernel algebra.

‘ Operation ‘ Signature ‘

and, or bool x bool — bool
not bool — bool

Table 13: Boolean Operations

4.2.8 Scope of the Kernel Algebra

The kernel algebra is defined to consist of the types in BASE U SPATIAL together with all
operations defined in Section 4.2, restricted to these types.
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4.3 Operations on Temporal Types

Values of temporal types (i.e., types moving(«)) are partial functions of the form
f : Ainstant — Aoz

In the following subsections we discuss operations for projection into domain and range, inter-
action with values from domain and range, the when operation, lifting, and operations related
to rate of change.

4.3.1 Projection to Domain and Range

For values of all moving types — which are functions —, operations are provided that yield the
domain and range of these functions. The domain function deftime returns the times for which
a function is defined.

In 1D space, operation rangevalues returns values assumed over time as a set of intervals.
For the 2D types, operations are offered to return the parts of the projections corresponding to
our data types. For example, the projection of a moving point into the plane may consist of
points and of lines; these can be obtained by operations locations and trajectory respectively.

For values of intime types, the two trivial projection operations inst and val are offered,
yielding the two components.

‘ Operation ‘ Signature ‘

deftime moving(c) — periods
) — range(a) [1D]

rangevalues | moving(«a
locations moving(point) — points
moving(points) — points

(@
(
(
trajectory moving(point)  — line
moving(points) — line
routes moving(line) — line
traversed moving(line) — region
moving(region) — region
inst intime(a) — instant
val intime(a) —

Table 14: Operations for Projection of Temporal Values into Domain and Range

All the infinite point sets that result from domain and range projections are represented in
collapsed form by the corresponding point set types. For example, a set of instants is represented
as a periods value, and an infinite set of regions is represented by the union of the points of the
regions, which is represented in turn as a region value. That these projections can be represented
as finite collections of intervals, faces, etc. and hence correspond to our data types is due to the
continuity condition required for types moving(a) (see Section 3.2.4).

The design is complete in that all projection values in domain and range can be obtained.
This was one of the major principles in the design of the type system, as discussed in Section 3.3.

Example 4.8 For illustration of operations on temporal types we use the example relations:

flight(airline:string, no:int, from:string, to:string, route:mpoint)
weather (name: siring, kind:string, area:mregion)
site(name: string, pos:point)
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Attributes airline and no of the relation flight identify a flight. In addition, the relation
records the names of the departure and destination cities and the route taken for each flight.
The last attribute is of type moving(point). We have chosen to not record the scheduled departure
and arrival times. The actual departure and arrival times may be derived from the route, as will
be illustrated shortly. We assume that a flight’s route is defined only for the times the plane is
in flight and not when it is on the ground.

The relation weather records weather events such as high pressure areas, storms, or temper-
ature maps. Some of these events are given names to identify them. The attribute kind gives
the type of weather event, such as, “snow-cloud” or “tornado,” and the area attribute provides
the evolving extent of each weather event.

Relation site contains positions of certain well-known sites such as the Eiffel tower, Big
Ben, etc. a

Example 4.9 With the operations of this subsection we can formulate queries:
“What distance traverses flight LH 257 over France?”

LET route2b7 =
ELEMENT (SELECT route FROM flight WHERE airline = "LH" and no = 257);
length (intersection(France, trajectory(route257)))

“What are the departure and arrival times of flight LH 2577”

min{(deftime(route257));
max(deftime (route257))

Example 4.10 “At what time and distance passes flight 257 the Eiffel tower?”

We assume a closest operator exists with signature mpoint x point — intime(point), which
returns time and position when a moving point is closest to a given fixed point in the plane. We
will later show how such an operator can be defined in terms of others.

LET EiffelTower =
ELEMENT (SELECT pos FROM site WHERE name = "Eiffel Tower");
LET pass = closest(route257, EiffelTower);
inst (pass) ;
distance(EiffelTower, val(pass))

4.3.2 Interaction With Points and Point Sets in Domain and Range

In this subsection we systematically study operations that relate the functional values of moving
types with values either in their (time) domain or their range. For example, a moving point
moves through the 2D plane; does it pass a given point or region in this plane? Does a moving
real ever assume the given value 3.57 Besides comparison, one can also restrict the moving entity
to the given domain or range values, e.g., get the part of the moving point when it was within
the region, or determine the value of the moving real at time ¢ or within time interval [t,?5].
In Table 15, the first group of operations concerns interaction with time domain values, the
second interaction with range values. Operations atinstant and atperiods restrict a moving
entity to a given instant, resulting in a pair (instant, value), or to a given set of time intervals,
respectively. The atinstant operation is similar to the timeslice operator found in most temporal
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‘ Operation ‘ Signature

atinstant moving(c) X instant — intime(o)

atperiods moving(c) X periods — moving(«)

initial, final moving(«) — intime()

present moving(c) X instant — bool
moving(a) X pemods — bool

at moving(a) X — moving(a) [1D]
moving(a) x — moving(min(a, 3)) [2D]

atmin, atmax | moving(a) — moving(o) [1D]

passes moving(a) X — bool

Table 15: Interaction of Temporal Values With Values in Domain and Range

relational algebras. Operations initial and final return the first and last (instant, value) pair,
respectively. Operation present allows one to check whether the moving value exists at a given
instant, or is ever present during a given set of time intervals.

In the second group, the purpose of at is again restriction (like atinstant, atperiods), this
time to values in the range. For 1D space, restriction by either a point or a point-set value
returns a value of the given moving type. For example, we can reduce a moving real to the times
when its value was between 3 and 4. In 2D, the resulting moving type is obtained by taking the
minimum of the two argument types o and § with respect to the order point < points < line <
region. For example, the restriction of a moving(region) by a point will result in a moving(point).
This is analogous to the definition of result types for intersection in 2D in Section 4.2.3.

In one-dimensional spaces, operations atmin and atmax restrict the moving value to the
times when it was minimal or maximal with respect to the total order on this space. Operation
passes allows one to check whether the moving value ever assumed (one of) the value(s) given
as a second argument.

All of these operations are of interest from a language design point of view. Some of them
are derived, however, so they can be expressed by other operations in the design. For example,
we have

present(f, t) = not(isempty(val(atinstant (f, t))))

Example 4.11 “When and where did flight 257 enter the territory of France?”

LET entry = initial (at(route257, France));
inst (entry) ;

val(entry) a

Example 4.12 “For which periods of time was the Eiffel Tower within snow storm ‘Lizzy’?”

LET Lizzy = ELEMENT(SELECT area FROM weather
WHERE name = "Lizzy" and kind = "snow storm");
deftime(at (Lizzy, EiffelTower)) 0

4.3.3 The Elusive when Operation

We now consider (speculate about) an extremely powerful yet conceptually quite simple opera-
tion called when, whose signature is shown in Table 16.
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‘ Operation ‘ Signature ‘ Syntax ‘

| when | moving(@) x (a = bool) — moving(a) | arg, oplarg,] |

Table 16: The when Operation

The idea is that we can restrict a time dependent value to the periods when its range value
fulfils some property specified as a predicate. If we had such an operator, we could express a
query such as “Restrict a moving region mr to the times when its area was greater 1000” as:

mr when[FUN (r:region) area(r) > 1000]

Here the result would be of type mregion again.

Whereas such an operation would be very powerful and desirable, it is questionable whether
such a definition makes any sense. This is because the operator has to call for evaluation of
the parameter predicate infinitely many times, since our moving entities are functions over a
continuous domain. Looping over an infinite domain is inherently impossible. So for the moment
this operation seems impossible to implement.

4.3.4 Lifting Operations to Time-Dependent Operations

Section 4.2 systematically defines operations on non-temporal types, the kernel algebra. This
section uniformly lifts these operations to apply to the corresponding moving (temporal) types.

Consider an operation to be lifted. The idea is to allow any argument of the operation to
be made temporal and to return a temporal type. More specifically, the lifted version of an
operation with signature oy X ... X ap — 3 has signatures

o) X ... X o) — moving(f)

with o! € {a;, moving(a;)}. So, each of the argument types may change into a time-dependent
type which will transform the result type into a time-dependent type as well. The operations
that result from lifting are given the same name as the operation they originate from. For
example, the intersection operation with signature

region X point — point
is lifted to the signatures

mregion X point — mpoint,
region X mpoint — mpoint, and
mregion X mpoint — mpoint.

This lifting of operations generalizes existing operations that did not appear to be of great
utility to operations that are quite useful. For example, an operator that determines the inter-
section of a region with a point may not be of great interest, but the operation that determines
the intersection between a region and an mpoint (“get the part of the mpoint within the region”)
is quite useful. This explains why Section 4.2.3 took care to define the set operations for all
argument types, including single points.

After lifting we find that some operations introduced earlier from a systematic point of view
can now be expressed as derived operations. For example, the at operation can be explained in
terms of lifted intersection:
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at(mx, y) = intersection(mx, y)

In fact, the purpose of at is restriction, and it is not too surprising that this is related to
intersection.

The fact that now all operations of the kernel algebra are available also as time-dependent
operations results in a very powerful query language. Here are some examples.

Example 4.13 We can formulate pretty involved queries such as “For how long did the moving
point mp move along the boundary of region r?”

duration (deftime(at (on_border (mp, r), TRUE)))

Here predicate on_border yields a result of type mbool. Operation at reduces the definition
time of this mbool to the times when it has value TRUFE. — We can also check whether mp was
always on the border of r:

min (rangevalues (on_border(mp, r)))

Note that this assumes an order FALSFE < TRUF on the domain bool. The range operator,
applied to the mbool value resulting from the on_border operation yields a set of intervals
{[TRUF, TRUE]} iff on_border was true at all times. In this case, the whole expression
evaluates to true. |

Example 4.14 “Determine the periods of time when snow storm ‘Lizzy’ consisted of exactly
three separate areas.”

deftime(at (no_components(Lizzy) = 3, TRUE))

Again, this works because ‘Lizzy’ is of type mregion, hence the lifted versions of no_components
and of equality apply. |

Example 4.15 We are now able to define the closest operator of Example 4.10 within a query:

LET closest = FUN (mp:mpoint, p:point)
atinstant (mp, inst (initial (atmin (distance(mp, p)))))

This depends on the lifted distance operator. We reduce the resulting mreal to the times when
it is minimal, take the first such (instant, value) pair and then the instant from this pair. Finally,
the original moving point is taken at this instant. |

Lifting is the key to achieving the goal of consistency and closure between non-temporal and
temporal operations, as explained earlier in Section 3.3 (design principle 2).

4.3.5 The Elusive when Revisited

After lifting the operations of the kernel algebra, it turns out that we have another way of
expressing the query of Section 4.3.3 “Restrict a moving region mr to the times when its size
was greater 1000”. Using when this was written:

mr when[FUN (r:region) area(r) > 1000]
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Using the lifted versions of area and >, this is equivalent to:
atperiods (mr, deftime(at(area(mr) > 1000, TRUE)))

Why is it suddenly possible to realize the effect of the apparently unimplementable when?
The reason is that we do not try to evaluate the parameter expression

area(r) > 1000
on infinitely many instances of parameter r, but instead evaluate its “lifted version”
area(mr) > 1000

on the original argument mr of when.

This is in fact a general technique for translating when queries. It is applicable for all
parameter expressions of when that are formed using only operations of the kernel algebra.
The translation is:

x when[FUN(y:a) p(y)] = atperiods(x, deftime(at(p(y)é, TRUE)))

The substitution § = {y/z}, applied to p(y), replaces each occurrence of y with the original
moving object x (of type moving(a)). So, based on lifting and rewriting, we have in fact obtained
an effective implementation of the when operator.

4.3.6 Rate of Change

An important property of any time-dependent value is its rate of change, i.e., its derivative.
To determine to which of our data types this concept is applicable, consider the definition of the
derivative, given next.

This definition, and thus the notion of derivation, is applicable to any temporal type moving(«)
with a range type a that (i) supports a difference operation, and (ii) supports division by a
value of type real.

Type real clearly qualifies as a range type. For type point, at least three operations may
assume the rule of difference in the definition, namely the Euclidean distance, the direction
between two points, and the vector difference (viewing points as 2D vectors). This leads to
three different derivative operations, which we call speed, turn, and velocity, respectively.

‘ Operation ‘ Signature ‘
derivative mreal — — mreal
speed, turn | mpoint — mreal
velocity mpoint — mpoint

Table 17: Derivative Operations

Note that one can get the acceleration of a moving point mp as a number by

derivative(speed(mp))
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and as a vector, or moving point, by velocity(velocity (mp)).

The notion of derivation does not apply to the discrete data types int, string, and bool
because there is no division available (for string and bool a difference operation is also absent).

An interesting question is whether one can define the derivative of a moving region. One
possibility is to define difference on regions based on set difference of the underlying point sets.
Since the definition of difference requires a neutral element and “negative values”, one could
view a region as a pair (R, S), consisting of a “positive” point set R, and a “negative” point
set S. The empty region, playing the role of the neutral element, is represented as (0, ), and
the difference (0,0)\ (@, 0) is (0,Q). So far, so good. However, there seems to be no obvious
definition of a division operation. Also, it is hard to imagine what the derivative of a moving
region defined in this way means. Therefore we have not introduced a derivative on moving
regions.

Example 4.16 Nevertheless, one can still observe, for example, the growth rate of a moving
region: “At what time did snow storm Lizzy expand most?”

inst (initial (atmax (derivative (area(Lizzy))))) -

Example 4.17 “Show on a map the parts of the route of flight 257 when the plane’s speed
exceeds 800 kmh.”

trajectory (atperiods (route257, deftime(at(speed(route257) > 800, TRUE))))

Of course, the background of the map still has to be produced by a different tool or query. O

4.4 Operations on Sets of Objects

All operations defined in Sections 4.2 and 4.3 apply to “atomic” data types only, i.e., attribute
data types with respect to a DBMS data model. All data types of our design, as described in
Section 3, and including the temporal ones, are atomic in this sense.

However, sometimes in the design of data types for new applications there are operations
of interest that cannot be formulated in terms of the atomic data types alone, but need to
manipulate a set of database objects (with attributes of the new data types) as a whole. A
striking example in spatial databases is the computation of a Voronoi diagram. Given a set of
points P in the plane, the Voronoi diagram is a partition of the plane into regions such that for
each point p € P there is a region V(p) which consists of all points of the plane that are closer to
p than to any other point in P. Hence the region V(p) describes some kind of “neighborhood”
of p.

Although for each point a region is computed, it is clearly impossible to formulate this as
an operation with signature point — region, since the region V(p) depends not only on p but
also on all or some of the other points in P. This operation can, however, be defined as a
manipulation of a set of database objects with an attribute of type point (e.g., a relation with a
point attribute). The result will be the same set of objects extended with an attribute of type
region, containing the Voronoi region.

Operations on sets of objects are essentially motivated by the need to manipulate sets of
values of atomic data types. However, each of these values is associated with (an attribute of) a
database object, and it is important to maintain the connection between the value and the object
it belongs to. For this reason it makes sense to formulate these operations as manipulations of
sets of database objects.
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Such data type related operations on sets of objects have been introduced earlier, for example,
in the geo-relational algebra [Giit88], in [SV89], and in the ROSE algebra [GS95]. The geo-
relational algebra has a Voronoi operator as described above.

In the design of this paper we need only a single set operator called decompose which has
been defined similarly in the context of the ROSE algebra. This one, however, is crucial, as it
allows us to access the internal structure of many of our data type values.

‘ Operation Signature

Syntax ‘

decompose | set(w) X (w; — o) X ident — set(wq) | arg, oplarg,, args]
set(w) X (w1 — moving(a)) X ident — set(ws)

Table 18: Operations on Sets of Database Objects

The purpose of decompose is to make the components of values of point set types accessible
within a query. “Components” refers to connected components; all our point set types are defined
to have a structure that consists of a finite number of connected components. For any range
type a component is a single interval, for the types points, line, and region, a component is a
single point, a maximal connected subgraph, and a face, respectively.

Decomposition basically transforms a value of some point set type o into a set of values of
the same type o such that each value in the result set contains a single component. For example,
a value of the periods type consists of a number of intervals. Such a value is decomposed into a
set of periods values, with each value being a single interval.

Similarly, decompose makes available the connected components of temporal data types.
Here a component is a maximal continuous part of the function value.

As a manipulation of a set of database objects, this is treated as follows. The first argument
of decompose is a set of database objects (e.g., a set of tuples in the relational model). The
second argument is a function (e.g., an attribute name) that maps an object (e.g., a tuple) into
a value of some point set type. The third argument is an identifier, used as a name for a new
attribute. The result set of objects is produced as follows: For each object u with an attribute
value that has k£ components, decompose returns k copies of u, each of which is extended by
one of the £ component values (under the new attribute).

Example 4.18 Consider the relation country(name:string, area:region) introduced earlier.
The query

country decomposelarea, part]

returns a relation with schema (name: string, area:region, part:region) a

In the signature of Table 18, w; denotes an object (tuple) type and o one of our point set
types, hence wy — o is an attribute of type o. Similarly, wqy — moving(«) is an attribute of
type moving(a). The resulting set of objects has a different object (tuple) type wq due to the
extension by the new attribute ident of type o or moving(a), respectively.

These operations can be used as follows.

Example 4.19 “Determine the area of the smallest connected region of any country.”

LET country2 = country decompose[region, part];
LET country3 = SELECT partsize AS area(part) FROM country2;
SELECT MIN(partsize) FROM country3
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Example 4.20 Let us assume that flight 257 alternates between being over land areas of Europe
and over sea. We would like to see a list of time periods, ordered by duration, when flight 257
was over land.

LET land257 =
SET(route, at(route257, Europe)) decompose[route, piece];
SELECT start AS min(deftime(piece)), end AS max(deftime(piece)),
duration AS duration(deftime(piece))
FROM land257
ORDER BY duration

Here the at operation restricts flight 257 to the parts above Europe (the area of which has been
computed earlier, in Example 4.3). The SET constructor transforms this into a relation with
one tuple and a single attribute route containing this value. To this relation, decompose is
applied which puts each component of the moving point into a separate tuple. The relation
1and257 created in this way is then processed in the next part of the query. |

5 Application Examples

To illustrate the query language resulting from our design, in this section we consider two rather
different example applications. The first, related to multimedia presentations, has relatively
simple spatio-temporal data that change only in discrete steps. The second, forest fire analysis,
allows us to show some more advanced examples on moving objects, and moving regions in
particular.

5.1 Multimedia Scenario

Multimedia presentations are good examples of spatio-temporal contexts. Here we have multi-
media objects that are presented for some time occupying space on the screen (we assume that
they are rectangles) and then they disappear. A crucial part of a multimedia scenario is the
set of spatio-temporal relationships/constraints that define the spatial and/or temporal order of
media object presentations [VTS98]. The ability to query the spatio-temporal configuration of
a multimedia presentation would be an important aid to multimedia application designers.

A sample scenario for a news clip might be described as follows.

The news clip starts with presentation of image A, located at point (50, 50) relative
to the application origin. At the same time a background music E starts. 10 seconds
later a video clip B starts. It appears to the right side (18cm) and below the upper
side of A (12 cm). Just after the end of B, a video clip C starts that shows the
highlights of a fashion show. It appears 7 cm below (and left aligned to) the position
of B. 3 seconds after the start of C, a text logo D (e.g. the designer’s logo) appears
inside C, 8 cm above the bottom side of C, aligned to the right side. D will remain
for 4 seconds on the screen. Meanwhile, at the 10th second of the news clip, the
TV channel logo (F') appears at the bottom-left corner of the application window. F
disappears after 3 seconds. The application ends when music background E ends.

The spatial and temporal configuration of the scenario is illustrated in Figure 5.
We assume that the following relational schema is used to store information about objects
that participate in the presentation as moving regions:
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Figure 5: Spatial and Temporal Layout of a News Clip

object(name: string, actor:mregion)

In this case actors are boxes (trivial moving regions) that result from the presentation of an
object for some time. We can then formulate the following queries.

Example 5.1 “What is the screen layout at the 5th second of the application?”
SELECT val(atinstant (actor, 5)) FROM object WHERE present(actor, 5) 0

Example 5.2 “What is the temporal layout of the application between the 10th and the 18th
second of the application?”

SELECT name, intersection(deftime(actor), [10,18])
FROM object
WHERE intersects(deftime(actor), [10,18])

O
Example 5.3 “Which objects overlap spatially object A during its presentation?”
SELECT Y.name
FROM object X, object Y,
WHERE intersects(X.actor, Y.actor) and X.name = "A" and Y.name =/= "A"
Example 5.4 “Find the objects that spatially overlap B before its presentation.”
SELECT X.name
FROM object X, object Y,
WHERE Y.name = "B" and before(deftime(X.actor), deftime(Y.actor))
and intersects(traversed(X.actor), traversed(Y.actor)) 0

5.2 Forest Fire Control Management

In a number of countries like the USA, Canada, and others, fire is one of the main agents of
forest damage. Forest fires are often caused by the carelessness of people abandoning campfires
in and around forests. Another essential reason is self-ignition through lightning strikes, long
drought, or underground fire sources like coal seams. Forest fire control management mainly
pursues the two goals of learning from past fires and their evolution and of preventing fires in the
future by studying weather and other factors like cover type, elevation, slope, distance to roads,
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and distance to human settlements. Specialized geographical information systems enriched by
a temporal component and by corresponding analysis tools could be appropriate systems to
support these tasks.

In a very simplified manner this application example considers the first goal of learning from
past fires and their evolution in space and time. We assume a database containing relations
with schemas

forest(forestname: siring, territory:mregion)
forest_fire(firename:siring, extent:mregion)
fire fighter(fightername:string, location:mpoint)

The relation forest records the location and the development of different forests growing and
shrinking over time through clearing, cultivation, and destruction processes, for example. The
relation forest fire documents the evolution of different fires from their ignition up to their
extinction. The relation fire_fighter describes the motion of fire fighters being on duty from
their start at the fire station up to their return. The following sample queries illustrate enhanced
spatio-temporal database functionality.

Example 5.5 “When and where did the fire called ‘The Big Fire’ reach what largest extent?”

LET TheBigFire = ELEMENT(
SELECT extent FROM forest fire WHERE firename = "The Big Fire");
LET max_area = initial (atmax (area(TheBigFire)));
atinstant (TheBigFire, inst(max_area));
val(max_area)

The second argument of atinstant computes the time when the area of the fire was maximum.
The area operator is used in its lifted version. O

Example 5.6 “Determine the total size of the forest areas destroyed by the fire called ‘The Big
Fire’.”

LET ever = FUN (mb:mbool) passes(mb, TRUE);
LET burnt =
SELECT size AS area(traversed(intersection(territory, extent)))
FROM forest_fire, forest
WHERE firename = "The Big Fire" and ever(intersects(territory, extent));
SELECT SUM(size)
FROM burnt

Here the intersects predicate of the join condition is a lifted predicate. Since the join condition
expects a Boolean value, the ever predicate checks whether there is at least one intersection
between the two mregion values just considered. a

299

Example 5.7 “When and where was the spread of fires larger than 500 km=?

LET big_part =
SELECT big_area AS extent when[FUN (r:region) area(r) > 500]
FROM forest_fire;

SELECT =*

FROM big_part

WHERE not (isempty (deftime(big_area)))
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The first subquery reduces the moving region of each fire to the parts when it was large. For
some fires this may never be the case. These are eliminated in the second subquery. O

Example 5.8 “Which fire fighters had been enclosed by a fire but could always escape from
the flames?”

LET times =

SELECT fightername, maxtime_ on_duty AS inst(final(location)),
maxtime_in fire AS inst(final(intersection(location, extent)))

FROM forest fire, fire fighter
WHERE ever(inside(location, extent));

LET times2 =
SELECT fightername, maxtime_on_duty, last_in fire AS MAX(maxtime_in fire)
FROM times
GROUPBY fightername, maxtime_on_duty;

SELECT fightername

FROM times2

WHERE maxtime_on duty > last_in fire

The first subquery finds all fire fighter/forest fire pairs for which holds that the fire fighter was
at some time inside the forest fire. We record his/her name, the time when he/she was on duty
the last time, and the time when he/she left the fire. Since each fire_fighter may have been in
several fires, and so have several values of maxtime_in fire, in the next subquery we group
by fightername and determine the last time the person was in any fire. Finally, the person
survived, if he/she was still on duty after this time. |

Example 5.9 “ How long was fire fighter Th. Miller enclosed by the fire called ‘The Big Fire’
and which distance did he cover there?

SELECT time AS duration(deftime(intersection(location, TheBigFire))),
distance AS length(trajectory(intersection(location, TheBigFire)))

FROM fire fighter

WHERE fightername = "Th. Miller"

We assume that the value ‘TheBigkire’ has already been determined as in Example 5.5, and
that we know that Th. Miller was in this fire (otherwise time and distance will be returned as
zero). O

Example 5.10 “How many times was each forest victim of fires?”

SELECT forestname, fireno AS COUNT(*)

FROM forest, forest_fire

WHERE ever(intersects(territory, extent))

GROUP BY forestname O

Example 5.11 “Determine the times and locations when ‘TheBigliire’ started.”

We assume that a fire can start at different times with different initial regions which may
merge into one or even stay separate. The task is to determine these initial regions. This
is a fairly complex problem and one may wonder whether it can be expressed with the given
operations at all. We will show that it is possible.
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The crucial point is that with no_components we have a tool to find the transitions when
a new region (face) was added to the moving region describing the fire. We will find the times of
these transitions and then go back to the moving region itself to determine the new face starting
at this time.

LET number history =

SET(number, no_components(TheBigFire)) decompose[number, no];
LET history =

SELECT period AS deftime(no), value AS single(no)

FROM number_history;
LET pairs =

SELECT intervall AS X.period, interval2 AS Y.period

FROM history X, history Y

WHERE max(X.period) = min(Y.period) and X.value < Y.value;
SELECT starttime AS min(interval?2),

region AS minus(val(initial (atperiods(TheBigFire, interval2))),

val(final (atperiods (TheBigFire, intervall))))

FROM pairs

In the first step, the lifted version of no_components produces a moving integer describing how
many components ‘TheBigFire’ had at different times. We put this into a single attribute/single
tuple relation and then apply decompose. For a moving integer each change of value produces
another component, hence after decompose there is one tuple for each value with its associated
time interval.

In the second step, relation history is computed which has for each of these components
its time interval and value. In the third step, a self-join of history is performed to find pairs
of adjacent time intervals where the number of components increased. In the final step, we
compute the transition times (when the number of components increased) as well as the new
fire regions. These can be obtained by subtracting the final region of the earlier time interval
from the initial region of the later time interval.

Since this observes only changes in the number of components, but not yet the change from
0 to 1, we still have to get the very first time and region of the fire. However, these are very
easy to determine by inst (initial (TheBigFire)) and val(initial (TheBigFire)). O

Note that the capability of observing structural changes via no_components, as demon-
strated in the previous example, is important for many applications. For example, one can find
transitions when states merged or split (e.g. reunification), when disjoint parts of a highway
network were connected, etc.

6 Related Work

The core of this paper’s contribution is a framework of data types for capturing the time-
varying spatial extents of moving objects. We cover in turn the relation to spatial and temporal
databases, then consider a variety of related spatio-temporal proposals. Finally, attention is
devoted to the relation to the data types available in object-relational database systems.

The traditional database management systems, offering a fixed set of types for use in columns
of tables, are generally inadequate for managing spatial, let alone spatio-temporal, data. The
restriction to the use of standard data types such as integers, reals, and strings in columns forces
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a decomposition of spatial values into simple components, thus distributing the representation
of even a single polygon over many rows. This renders even simple queries such as “find regions
adjacent to a given region” difficult to formulate; and they are hopelessly inefficient to process
because the decomposed spatial values must be reconstructed.

Observations such as these have led to an abstract data type view of spatial entities with
suitable operations, used as attribute types in relational or other systems. Spatial types and
operations have been used in many proposals for spatial query languages, e.g., [Giit88, SH91,
Ege94]; and they have been implemented in prototype systems, e.g. [OMS88, RFS88, Giit89].
Dedicated designs of spatial algebras with formal semantics are given in [SV89, GNT91, GS95].

Perhaps in part because of the pervasiveness of time and their simpler structures, time
types are already supported by existing database systems, and the SQL standard offers types
such as DATE, TIME, and TIMESTAMP [MS93]. In the research domain, semantic foundations for
interpreting time values [Sno95, Ch. 5] and efficient formats [Sno95, Ch. 25] for storing time
values have been proposed [DS94], as has extensible, multi-cultural support, including support
for multiple languages, character sets, time zones, and calendars. Most proposals adopt bounded,
discrete, and totally ordered types for the representation of time.

The temporal database community has also explored the use of temporal types, but mainly
with a focus on temporal base types and at an abstract data-model level. Thus, a number of
temporal data models (e.g., TERM [KL83], HRDM [Cli82, CC87], and Gadia’s temporal data
model [Gad88]) offer types that are functions from time to types corresponding to the base types
in this paper. The related time-sequences data model [TCGT93, Ch. 11] allows attribute values
that are basically sequences of time-value pairs.

Next, temporal data models may be generalized to be spatio-temporal. The idea is simple:
Temporal data models provide built-in support for capturing one or more temporal aspects of the
database entities. It is conceptually straightforward to also associate the database entities with
spatial values. Concrete proposals include a variant of Gadia’s temporal model [TCG*193, Ch. 2],
a derivative of this model [CG94], and STSQL [BJS98]. Essentially, these proposals introduce
functions from the product of time and space to base domains, and they provide languages
for querying the resulting databases. These proposals are orthogonal to the specifics of types
and simply abstractly assume types of arbitrary subsets of space and time; no frameworks of
spatio-temporal types are defined. Over the past decade, Lorentzos has studied the inclusion of
a generic interval column data type in multiple papers (see, e.g., [LM97] for further references).
This type may be used for representing time intervals as well as lengths, widths, heights, etc.

From the other side, it is also possible to generalize spatial data models to become spatio-
temporal. The data model by Worboys [Wor94] represents this approach. Here, spatial objects
are associated with two temporal aspects, and a set of operators for querying is provided.
However, this model does not provide an expressive type system, but basically offers only a
single type, termed ST-complex, with a limited set of operations. In addition, two papers exist
that consider spatio-temporal data as a sequence of spatial snapshots and in this context address
implementation issues related to the representation of discrete changes of spatial regions over
time [Kam94, RYG94].

Reference [SWCD97] presents a model for moving objects along with a query language. This
model represents the positions of objects as continuous functions of time. However, the model
captures just the current and anticipated, near future positions, in the form of motion vectors.
The main issue addressed is how often motion vectors need to be updated to guarantee some
bound on the error in predicted positions. This model does not describe complete trajectories
of moving objects, as is done in this paper, nor does it offer a comprehensive set of types and
operations. Moving regions are not addressed.
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Reference [NNS97] proposes a model for moving multimedia objects. There, discrete snap-
shots of the trajectories of the objects composing a scene are captured using a graph notation.
Objects are at the nodes, loops are labeled by trajectories, and non-loop edges are labeled by
spatio-temporal relationships. A set of operations for the retrieval of moving objects is provided,
and the model encompasses topological and directional relationships for space and time. In con-
trast to this paper’s contribution, this quite different model is limited in its non-continuous
representation of objects motion and its assumption that object shapes are non-changing.

Work in constraint databases is applicable to to spatio-temporal settings, as arbitrary shapes
in multidimensional spaces can be described. Papers that explicitly address spatio-temporal
examples and models include [GRS98, CR97]. However, this kind of work essentially assumes
the single type “set of constraints,” and is not concerned with types in the traditional sense.
Operations for querying are basically those of relational algebra on infinite point sets. Recent
work recognizes the need to include other operations, e.g., distance [GRS98].

The Informix Dynamic Server with Universal Data Option offers type extensibility [Inf97a].
So-called DataBlade modules may be used with the system, thus offering new types and asso-
ciated functions that may be used in columns of database tables. Users may design their own
DataBlades or may use some of the already available DataBlades. Of relevance for this paper,
the Informix Geodetic DataBlade Module [Inf97b] offers types for time instants and intervals as
well as spatial types for points, line segments, strings, rings, polygons, boxes, circles, ellipses,
and coordinate pairs. An underlying ellipsoidal representation of the Earth is assumed for the
spatial types; separate altitude range values may be associated with spatial values, to obtain
three-dimensional support.

Informix does not offer any integrated spatio-temporal data types. Limited spatio-temporal
data support may be obtained only by associating separate time and spatial values. The frame-
work put forward in this paper provides a foundation allowing Informix or a third-party developer
to develop a DataBlade that extends Informix with expressive and truly spatio-temporal data
types.

Since 1996, the Oracle DBMS has offered a so-called spatial data option, also termed a
Spatial Cartridge, that allows the user to better manage spatial data [Ora97]. Current sup-
port encompasses geometric forms such as points and point clusters, lines and line strings, and
polygons and complex polygons with holes. However, this is just a layer on top of the DBMS
(the so-called layered architecture, see, e.g., [Giit94]), hence there are no such data types in the
DBMS itself. Future versions of Oracle will allow for the use of the geometric forms as types of
columns of tables. However, neither spatio-temporal types nor layers are available in Oracle.

The support offered by Oracle resembles the support offered by DB2’s Spatial Extender
[Dav98], which offers spatial types such as point, line, and polygon, along with “multi-” versions
of these, as well as associated functions, yielding several spatial ADT’s. Unlike in Oracle, the
Spatial Extender allows these types in columns of tables. But like Oracle, spatio-temporal types
are absent.

7 Conclusions

The contribution of this paper is an integrated, comprehensive design of abstract data types in-
volving base types, spatial types, time types, as well as consistent temporal and spatio-temporal
versions of these. Embedding this in a DBMS query language, one obtains a query language for
spatio-temporal data, and moving objects in particular, whose flexibility, expressivity, and ease
of use is so far unmatched in the literature. — Some unique aspects of our framework are the
following:
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e The emphasis on genericity, closure, and consistency. This is to some extent due to the
fact that we had to deal with many more data types than any previous proposal (e.g., an
algebra for just spatial types like [GS95]). Without this emphasis, such a design would
become unmanageable.

e The abstract level of modeling. This design includes the first comprehensive model of
spatial data types (going beyond the study of just topological relationships) formulated
entirely at the abstract infinite point set level. Previous designs have been given in terms
of polygons or simplicial complexes, for example.

e Continuous functions. This is also to our knowledge the first model that deals systemati-
cally and coherently with continuous functions as values of attribute data types.

e Lifting. The idea of defining a kernel algebra over non-temporal types that is then lifted
uniformly to operations over temporal types seems to be a new and important concept to
achieve consistency between non-temporal and temporal operations.

Complete, precise definitions of signatures for all operations and of the semantics of types
and operations have been provided. The usability of the design as a query language has been
demonstrated by example applications and queries. — Future work suggested by this paper
includes:

e Checking the bounds of expressivity. On the one hand this could mean a comparison with
theoretical models such as constraint databases. On the other hand one should consider
example applications at more depth and see whether their needs are fulfilled by this design.
Whereas we are convinced that this is a conceptually clean and very powerful core design,
a study of applications might still reveal that certain kinds of operations are missing.

e Design a discrete model. As mentioned earlier, the abstract model of this paper has to
be instantiated by selecting discrete representations. The issues arising at this step are

discussed in some detail in [EGSV97].

e Given a discrete model, design appropriate data structures for the types and algorithms
for the operations.

e [Implement these data structures and algorithms in the form of a DBMS extension package
for some extensible DBMS interface (e.g., as a data blade).
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A Definition of Continuity

We are interested in a generalized definition of continuity that is valid for all our temporal
data types (i.e., types moving(c)) whereas the well-known classical definition refers only to real-
valued functions. The definition should capture “discrete changes”. A discrete change occurs
when, for example, a new point appears in a points value, a curve in a [ine value suddenly turns
by 90 degrees, or a region value suddenly (“from one instance to the next”) is displaced to a
new position. Intuitively, discontinuity means that the value changes in a single step without
traversing all the intermediate stages.

We start by slightly modifying the basic definition of continuity. Since we are interested in
temporal functions, the definition is given for them directly, rather than in more abstract terms.

Definition A.1 Let f: A;notant — Ao, and t € Ajpstans. f is -continuous in ¢ iff
Vv > 0 Je > 0 such that Vé < e: (f(t£9), f(t)) <y
where 7,¢,6 € R, and % is a function ¥ : A, x A, = R. a

Continuity is hence determined by the function 1) which expresses a measure of “dissimilarity”
of its two arguments. It should be zero iff the two values are equal, and it should approach zero
when the two values get more and more similar. The definition then says that for any chosen
threshold ~, we can find an e-environment of ¢ where dissimilarity is bounded by ~.
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Definition A.2 For any type o to which the moving type constructor is applicable, the dissim-
ilarity function % is defined as follows:

0 ifz=
a € {int, string, bool} : P(z,y) = ne y
1 otherwise
a=real: P(z,y) = |z—y|

o = point: (p1, p2) d(p1, p2)
a=points: P(P, P) = Z d(p, P2) + Z d(p, 1)

pEP) PEP;
1
a=line: P(Li,L) = Z / d(e(u), La) du+ Z / du
c€sc(Ly) 0 c€sc(Ls)

a=region: (R, Ry) = size(Ry\ Rg) + size(R2 \ Ry)

Here d(p1, p2) denotes the Euclidean distance between two points, d(p, P) the distance from p to
the closest point in P. Similarly, for a line L, d(p, L) denotes the distance from p to the closest
point in L. For a line L, sc(L) denotes the set of simple curves of which L is composed; this
notation is defined in Appendix B. Finally, size(R) denotes the area of a region R. O

This means that there are no continuous changes for the three discrete types; whenever the
value changes, a discontinuity occurs. For points, dissimilarity is the sum over the distances
from each point of one set to the closest point in the other set. For lines, the idea is the same;
one just needs to integrate over the simple curves. For regions, dissimilarity is the area of the
symmetric difference. Note that the definition fulfils the requirements stated for % above.

Based on this, the values of our types moving(a) can be partitioned along the time domain
into maximal continuous pieces. For a value p € A,,,4ing(a) We denote by ['() its set of maximal
continuous components.

B Definition of Semantics of Operations

For the definition of the semantics of operations we generally assume their strict evaluation, i.e.,
for each function operation op we demand:

Foplii L) =1

In the semantics definitions we use the following variable naming conventions: z,y (u,v) range
over arbitrary values (2D-points), and X,Y (U, V) range over corresponding sets of values. b
(B) ranges over values (sets of values) of base types, and predicates are denoted by p. We use
i to range over moving objects and ¢ (7') to range over instant values (periods).

Predicates

‘ Operation ‘ Signature ‘ Semantics ‘

isempty |7 — bool | u= 1
o —bool | U=10

Table 19: Semantics of Unary Predicates
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‘ Operation ‘ Signature ‘ Semantics
=# TXT — bool u=v,uFv
o1 X 09— bool U=V, U#V
intersects | o0y X 03 — bool Unv #0
inside o1 X 09— bool UcCcv
TXO — bool uevV
<G 2> | TXTw — bool [1D] | z < y etc.
before o1 X0y —bool[ID] | Vz € X,VyeY 2z <y
TXOo — bool [1D] | VyeY 2 <y
oXT — bool [1D] | Vz € X 1z <y
touches o1 X 09 — bool AUNIV £0
attached o1 X 09 — bool daUNVe £
overlaps o1 X 09 — bool Uuenve£§Q
on_border | 7 X & — bool u € U
in_interior | 7 X o — bool ue U’

Table 20: Semantics of Binary Predicates

Set Operations

‘ Operation ‘ Signature Semantics
intersection TXT -7 if w=wv then u else L
minus TXT =T if w = v then L else u
intersection TR o =T ifw €V then u else L
minus TXOo =7 if w eV then L else u
oXT —0 if is2D(U) then p(U \ {v})
else U\ {v}
union TROo —0 if is1D(V') or type(V) = points
then V U {u} else V
intersection, oXo -0 [ID] | XNnY, X\Y, XUY
minus, union
intersection o1 X 09 — min(oy,02) [2D] | see Def. B.1
minus o1 X 09 — o 2D] | p(Q1\ Q2)
union oXo — 0 2D] | Q1 U Q2
crossings line X line — points see Def. B.1
touch_points region @ line — points
region X region — points
common_border | region X region — line

Table 21: Semantics of Set Operations

Definition B.1 The semantics of intersection operations is defined as follows. Let P, L, and

R, possibly indexed, denote arguments of type points, line, and region, respectively. Let ) be

fintersection(P7 Q) =

2 pnQ
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for one order of the arguments as it is identical for the other order. Definitions are ordered by
argument combinations.




= p € Ly N Ly | pisisolated in Ly N Ly}

(L1 N La) \ ferossings (L1, L2)
{p€ LN R|pisisolated in L N R}
fintersection (L, R) (LN R) \ fiouch_points(L, R)
Fintexsection(R1, B2) = p((R1 0 Ra)°)
feommon border(R1, R2) = fintersection (9 R1, O1R2)
frouch_points (F1, R2) 2 Jerossings (0R1, 0Ry) U

fcrossings (Ll ) LQ)
fintersection (Ll s LQ)
ftouch_points (L7 R)

{
&

2
2

Recall that p(Q),Q°, and 0@ denote closure, interior, and boundary of @, respectively.

Aggregation

Let sc(U) denote the set of simple curves from which line U is built, that is,
sc(U)=C e CC(S) : points(C) = U

We define the 2- and y-projections of a curve: ¢;(u) = 2 and ¢y (u) = y iff ¢(u) = (z,y). Then
the length of a curve c is defined as:

llc|]| = /\/C’ )2+ ¢, (u)?du

d cm (u)

where, e.g., ¢/ is the derivative of ¢,, that is, . The length of a line U is given by the sum

of lengths of its curves:

[Uit=">" lel

c€sc(U)

The average of a curve c is defined as a point vector:

:jmdu

Below, an unbound variable n always denotes the cardinality of the (finite) point set in scope.

Let S be an element of range(a) with o € BASEU TIME. We define a function intvls which
maps a set S into its corresponding set of intervals. Let intvls(S) = {T1,...,T,},n € N, such
that

2.Vie{l,..., n}Ve,yeTiV2€ A, 12 <2<y=2€T;

3. V1 <i<j<n:T;and T; are not adjacent
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Operation Signature Semantics

min(p(X)), max(p(X))
sup (T)+inf (T)

min, max | o - [1D

L

]
avg g - T [1DHUH1] [intols(T)] ETGintuls(U) 2
avg[center] | region — 7 [2D] | 77 Jr P dA where M = [, dA
]
]

avg[center| | line - 2D ||L1_’|| Ecesc(U) |||l

%ZpeU 7

single o = if Ju: U ={u} then u else L

avg[center| | points — 7 2D

Table 22: Semantics of Aggregate Operations

Operation Signature ‘ Semantics ‘
no_components | o — [[1D] | |intols(U)|

no_components | points = — [ |U]

no_components | line = [ |blocks(U)| (see Def. B.2)
no_components | region — [ |faces(U)| (see Def. B.2)
perimeter region  — real fiengtn (OU)

size[duration] periods — real > TeintusuySup (1) — inf (T')
size[length] line — real U

size[area] region — — real Jr dA

Table 23: Semantics of Numeric Operations

Numeric Operations

Definition B.2 The definition of no_components for an argument L of type line is as follows.
A non-empty set A C L is called connected iff Vo,y € A3Jec € C : rng(c) C A and ¢(0) =
z and ¢(1) = y. Ais called mazimally connected iff A is connected and Vz € AVy € L\ Afc €
C:rng(c) C Aand ¢(0) =z and ¢(1) = y.

Let blocks(L) = {L1,...,L,} such that

2. V1 <i<n: L;is maximally connected

We define: fno_components(L) = |blocks(L)| =n
For an argument R of type region the definition of no_components is as follows. Let

faces(R) = {Ry, ..., R,} such that
1. V1 <i<mn: R;is regular closed
2. R=UJ", R,
3. V1<i<j<n:R;and R; are quasi-disjoint
4.¥1<i<nAX,Y CR:X and Y are quasi-disjoint, regular closed sets and R; = X UY

We define: fno_components(R) = |faC€S(R)| =n -
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Distance and Direction

Definition B.3 The definition of the direction operation is as follows. Let u and v be point
values. Then

1 ifu=v
arctan ~—= if (v.z < v.z) and (v.y < v.y)
90 if (.2 =v.z) and (u.y < v.y)
Jaicection (1, v) = 180 + arctan “g ZZ if wx >v.x
270 if (v.z =wv.z) and (u.y > v.y)
360 4+ arctan 72—~ if (u.x < v.z) and (uw.y > v.y)
a
‘ Operation ‘ Signature ‘ Semantics ‘
distance | real X real — real lu — v
instant X instant — real |u — o]
point X point — real dist(u,v) = /(w7 — v.2)% + (w.y — v.y)?
TR o — real [1Dcont] | min{|u —v| |[v € V}
TROo — real [2D] | min{dist(u,v)|ve V}
oXo — real [1Dcont] | min{|u —v| |[u € U,v € V'}
oX0o — real [2D] | min{dist(u,v)|u € Uve V}
direction | point X point — real see Def. B.3

Table 24: Distance and Direction Operations

Boolean Operations

The obvious definitions of boolean operators. Note that they are interpreted strictly.

Projections of Temporal Values

‘ Operation ‘ Signature ‘ Semantics

deftime moving(c) — periods dom(p)

rangevalues | moving(o) — range(a) [1D] | intvls(rng(p))

locations moving(point)  — points isolated(rng(p))
moving(points) — points isolated(|Jrng(p))

trajectory moving(point)  — line rng (i) \ fiocations (1)
momng(pomts) — line U rng (:u) \ Jlocations (,u)

traversed moving(line) — region p((Urng(p))°)
moving(region) — region Urng(p)

routes moving(line) — line p(Urng(1)) \ feraversed (1)

inst intime(a) — instant t where u = (t,v)

val intime(a) — v where u = (t,v)

Table 25: Operations for Projection of Temporal Values into Domain and Range
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Domain/Range Interactions

For a partial function f : A — B we write f(z) = L whenever f is undefined for z € A. To
adjust the undefined value L for values of type points, line, and region to (), we use the function:

JETa:{@

if =1L A a € {points, line, region}
x otherwise

The domain of f is given by dom (f) = {z € A | J(z) # L}. Similarly, the range of J is defined
by rng(f) ={y € B| 3z € A: f(z) = y}.

‘ Operation ‘ Signature ‘ Semantics
atinstant | moving(a) X instant — intime(a) (t, u(t) T @)
atperiods | moving(a) X periods — moving(«a) {(t,y) eplFieT tei}
initial moving(a) — intime(a) My Sin(dom () #(2)
final moving(a) — intime(a) imy gup(dom () #(t)
present moving(a) X instant — bool p(t) # L
present moving(a) X pemods — bool fatperiods (11, T) # 0
at moving(a) X — moving(o) [1D] | {(t,y) € ply = b}
at moving(a) X mnge( ) — moving(«) (D] | {(t,y) € ply € B}
at moving(a) X pomt — mpoint 2D] | {(t,y) € ply = u}
at moving(a) X — moving(min(«, 3))[2D] | {(t,y) € uly € U}
atmin moving(c) — moving(o) (D] | {(t,y) € ply = min(rng(u))}
atmax moving(c) — moving(o) (D] | {(t,y) € ply = max(rng(u))}
passes moving(a) X — bool Jat(p,z) 0
Table 26: Semantics of Domain/Range Interactions
When

Lifting

An operation op : aq X ...
types. Such a combination can be conveniently described by a set of indices L C {1,...
the lifted parameters, and we define:

Thus, the signature of any lifted version of op can be written as op :

‘ Operation ‘ Signature

‘ Semantics ‘

| when | moving(a) x

(av = bool) — moving(«a

) [{ty) en]py)}]

Table 27: Semantics of the when Operator

itielL

moving(a;)
otherwise

a5

X a — [ can be lifted with respect to any combination of argument

,k} for

L

Lx. . oxal — moving(B).

If f,, is the semantics of op, we now have to define the semantics of ffp for each possible lifting
L. For this we define what it means to apply a possibly lifted value to an instant-value:

L
L;

0=

ifieelL
otherwise

xz(t)

T
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Now we can define the functions ffp pointwise by:
fng (5617 cee 7$k) — {(ta fop('rlL(t)a s 7$£(t))) | [ Ainstant}

Derivative Operations

‘ Operation | Signature ‘ Semantics ‘

) = limso(f(t+90) = f(1))/6

) = limso fdistance(f(t + 5)7 f(t))/(s
) = lims—0 fdirection (f(t + 5)7 f(t))/(S

velocity mpoint — mpoint | u' where p/(t) = lims_yo(f(t + 0) — thj)/cS

Table 28: Semantics of Derivative Operations

derivative | mreal — mreal | p' where p'(t) =
speed mpoint — mreal | p' where p'
turn mpoint — mreal | p' where p

(
(
'
(

Decompose
‘ Operation ‘ Signature ‘ Semantics ‘
decompose | set(w;) X (w1 — 0) X ident — set(wq) | see Def. B.4

set(wr) X (w1 — moving(a)) X ident — set(ws) | see Def. B.4

Table 29: Operations on Sets of Database Objects

Definition B.4 Let I'(1) be the function which determines the maximal continuous components
of a moving object pu. Let o € BASE U TIMFE, 3 € BASE U SPATIAL, and S € range(a) U
moving(«). Let comp(S) compute the maximally connected components of S as follows:

intvls(S) if S € range(a)
S it S € points
comp(S) = < blocks(S) if S € line
faces(S) if S € region
I'(s) if S € moving(3)

Let O = {o1,...,0,} be a set of database objects (tuples in the relational model), and
let attr(o) be a function yielding a range(a) or a moving(3) value as an attribute value of a
database object 0 € O. Moreover, we introduce an “object extension” function ¢ which at the
instance level adds a data type value to a database object. Hence, o @ v is a database object o
extended by a value v. At the type level, the given object type w; is extended to an object type
wo by appending an attribute of type v. That is wy results from wy & (name,y) where name is
the name of the new attribute of type ident and vy € {range(a), moving(3)}. We are now able
to give the semantics of the decompose operator.

fdecompose (O, attr,name) = {o @ vlo € O,v € comp(attr(o))}

Tdecomposel 5€t(w1), w1 — v, name) = set(wy @ (name, 7))

Here 7 is a type mapping function defining the result type of a decompose application. O
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