
Stratum Approaches to Temporal DBMS Implementation

Kristian Torp Christian S. Jensen
Department of Computer Science

Aalborg University, Denmark
ftorp,csj g@cs.auc.dk

Richard T. Snodgrass
Department of Computer Science,

University of Arizona, USA
rts@cs.arizona.edu

Keywords: Temporal databases, database systems architec-
tures, database interfaces, legacy systems.

Abstract

Previous approaches to implementing temporal DBMSs
have assumed that a temporal DBMS must be built from
scratch, employing an integrated architecture and using new
temporal implementation techniques such as temporal in-
dexes and join algorithms. However, this is a very large
and time-consuming task. This paper explores approaches
to implementing a temporal DBMS as a stratum on top of
an existing non-temporal DBMS, rendering implementation
more feasible by reusing much of the functionality of the un-
derlying conventional DBMS. More specifically, the paper
introduces three stratum meta-architectures, each with sev-
eral specific architectures. Based on a new set of evaluation
criteria, advantages and disadvantages of the specific archi-
tectures are identified. The paper also classifies all existing
temporal DBMS implementations according to the specific
architectures they employ. It is concluded that a stratum ar-
chitecture is the best short, medium, and perhaps even long-
term, approach to implementing a temporal DBMS.

1 Introduction

Most database application manage temporal data [9, 16],
such as time and date of withdrawal of money from an ATM
machine, closing values of stocks on the stock exchange,
or the periods over which employees are associated with
projects.

Temporal data management is currently being (re-)-
implemented in each individual application in an ad-hoc
manner, with little support from the DBMS. Writing tem-
poral queries in SQL-92 can be very tedious, and it has
been shown that a temporal SQL can significantly reduce
the amount and difficult of code needed to express temporal
queries [18, Ch. 1]. Temporal data management applications
could thus benefit substantially from built-in support.

Temporal databases extend conventional databases by as-

sociating timestamps with facts. Implementing a temporal
database management system (temporal DBMS) on top of a
conventional DBMS has generally not been pursued because
it cannot take advantage of well-known temporal implemen-
tations techniques such as temporal indexes (e.g., [12]), tem-
poral storage structures (e.g., [1]), and temporal join (e.g.,
[21]) and coalescing algorithms [5]. Further, it seems that
there has been an implicit assumption (e.g., in [17]) that the
performance of temporal DBMSs should be similar to that
of conventional DBMSs, even when a temporal DBMS man-
ages multiple versions of data and a conventional DBMS
manages only one version. However, building a complete
DBMS from bottom up is a very large task that may only be
accomplished by the major DBMS vendors.

With the general goal of providing built-in support for
time-varying data without having to construct a temporal
DBMS from scratch, we explore in this paper how a tem-
poral DBMS can be implemented in a stratum on top of an
existing, conventional DBMS. The idea is to reuse the func-
tionality of existing DBMS technology. The limitation of
building on top of an existing DBMS is that it is not possible
to modify existing core DBMS functionality, e.g., the data
manager, the query processor component, and the transac-
tion manager.

While the stratum approach may bring built-in temporal
support in the DBMS to application programmers, the ap-
proach also provides a means of experimenting with new
temporal database technologies. The approach makes it fea-
sible for research teams to implement and experiment with
temporal query languages, and it also allows some exper-
imentation with parts of the back end of a database, e.g.,
query evaluation and special temporal operator implemen-
tations [5]. The experiences gained from using the stratum
approach can be helpful when realizing the long-term goal of
building temporal functionality directly into the DBMS.

We list eight criteria that a stratum should satisfy. Among
others, the criteria include these: no changes to the underly-
ing DBMS, retention of all desired properties of the DBMS,
minimal impact on middleware. We then define three meta-
architectures to building a stratum, namely (a) imposing a

©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.



stratum directly, (b) using middleware as the stratum (e.g.,
ODBC [13]), and (c) using a preprocessor. Each overall ar-
chitecture captures several specific architectures, which are
discussed in turn. We classify existing systems according to
their architecture, including the temporal DBMSs listed in
a recent survey [4]. The specific architectures are evaluated
against the eight criteria.

The paper concludes that a stratum approach makes it pos-
sible to implement a temporal DBMS with reasonable re-
sources. It will take years before an integrated architecture
will become available. In the meantime, a stratum approach
can be used. In addition, a stratum is not necessarily a un-
intelligent converter—new temporal functionally can be im-
plemented in a stratum.

The paper is organized as follows. Section 2 discusses
the general idea of a stratum and lists our evaluation crite-
ria for stratum implementations of a temporal DBMS. A to-
tal of 15 specific stratum architectures, partitioned into three
meta architectures, and their current use are explored in Sec-
tions 3 and 4, respectively. In Section 5, we compare the spe-
cific architectures to the criteria. Related work is the topic of
Section 6, and Section 7 summarizes the paper.

2 The Stratum Approach

This section describes the general idea of a stratum ap-
proach, it considers how the approach applies to temporal
databases, and it lists our design criteria for a temporal stra-
tum.

2.1 The Stratum Architecture

The general idea of a stratum architecture is illustrated
in Figure 1, where the downward arrows denote a flow of
queries, and the upward arrows denote a flow of data. All
boxes denote software components. The round boxes denote
components that we can alter, and the square boxes denote
components we cannot alter, i.e., black-boxes. There are
three levels in the stratum approach. The application level
consists of the applications that access the DBMS. At the
stratum level, the stratum is implemented as an interface to
the DBMS. Finally, at the representational level, we have the
DBMS where the data is actually stored.

Application Application Application

DBMS

Stratum

Stratum Level

Representational Level

Application Level

Figure 1. The Stratum Approach

In the stratum approach, the database applications are not
directly connected to the DBMS. All communication be-
tween the applications and the DBMS is interposed by a stra-
tum. There are two important potential advantages of using
a stratum. First, it is possible to provide applications with
a different data model than what is actually implemented by
the DBMS. Second, a new data model implemented in a stra-
tum does not have to be supplied by the DBMS vendor.

When the stratum approach is applied to temporal
databases, the idea is to convert the conventional DBMS,
which supports SQL-92, to a temporal DBMS, which sup-
ports some temporal SQL. The applications send temporal
queries to the temporal DBMS. The queries are received by
the stratum, are converted into SQL-92 queries, which, in
turn, are sent to the DBMS (in [6] it has been shown that
all temporal queries can be converted to equivalent SQL-92
queries).

The result from the DBMS is returned to the stratum,
which may do some processing of the data before is is passed
to the applications. The purpose of the stratum is to make the
conventional DBMS look like a DBMS supporting a tempo-
ral data model from the applications’ point of view, as done,
e.g., in [2, 7, 22, 27].

We restrict our attention to considering only new applica-
tions that may exploit the built-in temporal support. We do
not consider the (orthogonal) problem of converting legacy
applications with built in ad-hoc temporal support to applica-
tions using the temporal support implemented in the stratum.

2.2 Design Criteria for the Stratum Approach

In evaluating a stratum-implemented temporal DBMS,
we stress the set of eight design criteria introduced next.
The criteria are used in Section 5 to evaluate the different
stratum architectures.

No modifications to the underlying DBMS are required
The DBMS is used entirely as a black-box by the stratum.
From the DBMS’s point of view, the stratum is an applica-
tion. The stratum uses only the DBMS’s, or a middleware’s,
call level interface (CLI) and does not rely on the DBMS
being extended with any temporal functionality. Because
the stratum encapsulates the DBMS entirely, it is the only
application that uses the DBMS directly. It is important
that the stratum does not require the DBMS to be modified
because we do not have the source code for the DBMS
available.

Minimal impact on middleware The stratum may not use
the DBMS’s native CLI, but may instead use a generic API,
e.g., ODBC [13]. We allow changes to this middleware,
which can be used in the implementation of the stratum (to
be discussed in Section 3.2) because generic APIs are open
standards with their source code available. An example
can be to change the middleware to initiate a temporal
SQL-to-SQL-92 conversion. The criterion on middleware is

2



more flexible than the criterion on the DBMS because we do
not assume we have the specification or the source code for
the DBMS. Minimal impact on middleware is important to
avoid side effects on existing applications.

Independence of applicationsThe stratum implemen-
tation should encapsulate the DBMS for all applications.
Applications implemented using the DBMS directly, e.g.,
via its native CLI, and applications using the DBMS
indirectly, e.g., via a library, should all see the data model
exposed by the stratum. If applications do not see the same
data model, several versions of new applications must be
implemented, and existing applications may be affected by
the addition of time attributes to tables they use.

Maximum reuse of existing technology We want a thin
stratum and therefore want to reuse as much of the function-
ality of the underlying DBMS as possible. We do not want
to implement functionality already in the DBMS, e.g., the
log and the transaction managers. Only functionality not
found in the DBMS should be implemented in the stratum.
The motivation for maximum reuse and a thin stratum is
that limited resources are available for implementing the
stratum.

Gradual availability of temporal functionality Again,
because we assume limited resources and because an early
return on the resources invested in the development of
the temporal DBMS is desirable, it should be possible to
make new temporal functionality available in a stepwise
fashion. This provides a foundation for early availability
of a working temporal DBMS with functionality that may
increase gradually. Gradual availability is important to be
able to demonstrate and evaluate temporal functionality.

Retention of desired properties of the underlying DBMS
The underlying DBMS satisfies core database properties,
e.g., the ACID properties of transactions. We want to
retain these properties in the stratum, so that applications
are not adversely affected by a stratum being interposed.
The criterion ensures that the functionality provided by
the stratum is an extension of the functionality provided
by the underlying DBMS. However, it also means that if
the underlying DBMS does not ensure a certain database
property, the stratum will not support it either.

Adequate Performance We define adequate performance
as follows. First, legacy applications should have the same
performance as before a stratum is interposed. Performance
is essential to the acceptance of temporal functionality. We
cannot require existing (legacy) applications to be rewritten
because new applications are built that use temporal support.
Second, temporal queries on temporal databases should
be as fast as the corresponding SQL-92 queries on the
corresponding “snapshot” databases with temporal data. Put
differently, SQL-92 code, for temporal-data access, gen-
erated by the stratum’s temporal SQL-to-SQL conversion

should be as fast as hand-optimized SQL-92 code for the
same purpose. Otherwise, application programmers may not
want to use the automatic converter.
DBMS independence The stratum should be independent
of the underlying DBMS. This may be achieved by using
standards, such as SQL-92. It is also desirable that the tech-
niques used in the implementation of the stratum be generic.
As an example, we want to avoid that the temporal SQL-to-
SQL conversion uses recursive SQL as found in IBM’s DB2,
but not in most other DBMSs.

The criteria are somewhat conflicting. As examples, the
“independence of applications” criterion may conflict with
the “adequate performance” criterion, and the “maximum
reuse of existing technology” criterion may conflict with the
“DBMS independence” criterion. The stratum implementor
must consider these trade-offs.

Several observations are in order for a stratum that fulfills
all the criteria. First, no legacy application that now uses the
stratum was affected when the stratum was introduced (this
assumes that the temporal SQL is upward compatible with
SQL-92). They work as before and have the same perfor-
mance. However, legacy applications not using the stratum
will be affected if table they use are altered to support time.

Second, it is not possible to encapsulate the DBMS from
the DBA’s point of view. The DBA must be aware that, e.g.,
tables have been extended with time attributes to implement
the built-in support for time offered by the stratum. Third,
all update statements on temporal tables must be performed
via the stratum if integrity constraints specified in the stratum
are to be enforced. Alternatively, the stratum must rely on the
integrity constraint mechanisms of the DBMS to implement
new temporal constraints. Otherwise, it may be possible to
update a temporal table to an inconsistent state, by circum-
venting the stratum. Finally, to make it possible for the stra-
tum to do semantic checking of temporal SQL queries, all
DDL statements altering tables to support time dimensions
must be executed via the stratum.

3 Stratum Implementation Approaches
The next step is to explore how a stratum may be imple-

mented. The outset is the general architecture from Figure 1.
We assume that we have a set of applications that use tempo-
ral SQL, but that we do not have a temporal DBMS. There-
fore, we simulate a temporal DBMS by using a conventional
DBMS and interposing a stratum between the applications
and the conventional DBMS.

The stratum can be implemented in different positions,
leading to the following three overall architectures, each of
which is explored in more detail in the sequel.

� Interposing a stratum directly between the applications
and the conventional DBMS.

� Interposing a stratum in middleware (e.g., ODBC) be-
tween the applications and the conventional DBMS.

3



� Interposing a stratum using a preprocessor software
component.

In the subsequent discussions of the three architectures,
we will only consider applications where an API is used to
communicate with the DBMS. This is a general approach to
accessing a DBMS.

The discussions and figures use sample specific APIs,
e.g., the DBMS-specific APIs for the DB2, Oracle, and
Sybase DBMSs. Different specific DBMSs are used simply
to make the discussion easier to follow, and we do not in-
vestigate the differences between, e.g., between the DB2 and
Sybase APIs—from our point of view, they are simply rep-
resentatives of DBMS-specific APIs. Similarly, we use the
ODBC API [13] simply as a representative of any generic
API (because it is the best documented such one). We could
have used other generic APIs such as the JDBC API [10] or
the Perl DBI API [3].

3.1 Interposing a Stratum Directly

Interposing a stratum directly between the applications
and the DBMS is illustrated in Figure 2. As for Figure 1,
upward and downward arrows denote the flow of queries and
data, respectively. The round boxes and the square boxes
are software components that we can and cannot alter, re-
spectively. The dashed lines show the input interface and the
output interface of the stratum.

Sybase App.
Using Lib.

Application
Using ODBC Using API

Oracle App.

API

Sybase

DBMS

API

Oracle

DBMS

DB2

DBMS

API

Driver
Sybase

Driver
DB2 Oracle

Driver

Driver Manager

API

Proprietary

Library

API

Translation
ODBC Oracle

API

Translation

Figure 2. Interposing a Stratum Directly

Before the stratum was interposed in Figure 2, the ODBC
Translation and Oracle Translation components did not exist.
Further, the proprietary library was not temporally enhanced.
The applications were linked with the Proprietary Library,
the ODBC driver manager, or the Oracle API.

After the stratum is interposed, the API calls made by the
applications are intercepted (the ODBC and Oracle examples
in Figure 2). The temporal-SQL code in the call is translated
to SQL-92 code, and the stratum calls a DBMS or the driver
manager at the representational level with this code.

When a stratum is interposed in a proprietary library,
as shown in the Sybase example, we will assume that
no temporal-SQL code is passed as a parameter, but that
the library implements high-level functions specific to the
database being managed. For example, if an employee ta-
ble is present, the library may implement a functionCre-
ate Employee(<parameters>) that creates a new employee,
specified by theparameters, by inserting a tuple into the
employee table in the underlying DBMS. Note that in the
proprietary-library approach, no SQL-92 code is passed as
a parameter. This is in contrast to the API approach, and it
gives the two approaches different properties.

To implement a stratum by interposing it directly, the stra-
tum must support an API (or library interface) that is a su-
perset of the API (or library) the applications used before
the stratum was interposed. We next turn to discussing the
examples in Figure 2 in greater detail.

The Sybase application to the left in Figure 2 is an exam-
ple of an application that uses a proprietary library. Before
the stratum was interposed, the Sybase application used the
proprietary library, which, in turn, used the Sybase DBMS.
After interposing the stratum in the library, we do not want
to alter the possibly many applications that use this library.
Instead we change the implementation of the library. We re-
tain, or strictly extend, the library’s interface to the applica-
tions. We have the flexibility in the stratum to either make it
use a DBMS-specific API or a generic API. This flexibility is
indicated in the figure by the arrows from the proprietary li-
brary at the stratum level to the Sybase API and to the Driver
Manager API at the representational level.

In the middle of Figure 2, we have an example of an
ODBC application which, before the stratum was interposed,
was linked to the ODBC driver manager. After the stratum is
interposed, the application is connected to a stratum ODBC
driver manager component. This component must comply
fully with the ODBC API specification. When the ODBC
application connects to a DBMS (now via the stratum), the
stratum converts the arguments passed, if necessary. Again,
we have the flexibility in the stratum to either map the input
API calls to a generic API or a DBMS-specific API.

The example to the right in Figure 2 shows an Oracle ap-
plication that used the Oracle-specific call-level interface be-
fore the stratum was interposed. After the stratum is inter-
posed the application uses the component at the stratum level
that complies with the Oracle call-level interface. The Ora-
cle call-level interface component in the stratum has the same
functionality as the stratum ODBC driver manager, convert-
ing temporal SQL to SQL-92 and forwarding the function
calls.

Studying the input and output APIs of the stratum compo-
nents, it can be seen that the six combinations shown in Fig-
ure 3 exhaust the possibilities. Interposing a stratum directly
between the applications and the DBMSs or driver manager

4



thus yields a total of six specific architectures for implement-
ing a stratum.

Input Interface Output Interface(
Proprietary Library

Specific API
Generic API

)
�

�
Specific API
Generic API

�

Figure 3. Interposed Stratum Interfaces

3.2 Using Middleware as the Stratum
Next, we turn to the use of middleware for implement-

ing a stratum. Again note that we use ODBC as our pro-
totypical middleware only because it is a mature and well-
documented interface. Other types of middleware such as
JDBC and DBI are based on ODBC and resemble it. The
idea of using ODBC as the stratum is shown in Figure 4.
The dashed arrows inside the driver manager indicate differ-
ent paths that can be taken and are explained further shortly.

PowerBuilder
Using Lib.

PowerBuilder

Using ODBC Using ODBC
Oracle App.Sybase App.

Using ODBC

Temporal

Driver
ODBC

Temporal
Sybase
Driver Driver

DB2 Oracle
Driver

Sybase
Driver

Translate

Sybase

DBMS

API

DB2

DBMS

API

Oracle

DBMS

API

API

Library
Proprietary

Figure 4. Using ODBC as the Stratum

Both before and after the stratum is interposed in Figure 4,
the applications communicate with the ODBC driver man-
ager.

The stratum can be implemented in two places using a
generic API as ODBC. First, the stratum can be implemented
within the driver manager. This is indicated with the compo-
nent “Translate” in the figure. Second, the stratum can be
implemented entirely in an ODBC driver. This is indicated
with the components “Temporal Sybase Driver” and “Tem-
poral ODBC Driver.”

When implementing the stratum within the driver man-
ager, the driver manager itself is extended by a component
that translates temporal SQL to SQL-92. When an appli-
cation makes an ODBC call, the driver manager normally
just forwards the call (assuming a connection has been es-
tablished). With the extra temporal SQL-to-SQL-92 trans-
lation component added, the driver manager checks whether

the arguments in the call contain temporal SQL that must
be translated, performs the translation if necessary, and then
forwards the call and translated arguments to the appropriate
“plain” ODBC-driver. By “plain” we mean an off-the-shelf
ODBC driver. In Figure 4 the three ODBC drivers in the mid-
dle, i.e., the Sybase, DB2, and Oracle drivers, are the “plain”
ODBC-drivers. With this approach, the paths taken within
the driver manager are from the API through “Translate” to
a “plain” driver.

The other alternative when using ODBC is to implement
the stratum entirely in an ODBC-driver. The driver manager
is then not altered. Instead, the translation is done in “tempo-
ral” ODBC drivers. In Figure 4, we show two types of such
a “temporal” driver. To the left, there is a “Temporal Sybase
Driver,” and to the right, there is a “Temporal ODBC Driver.”
We discuss each in turn.

Using a DBMS-specific “temporal” ODBC driver, as ex-
emplified by the “Temporal Sybase Driver,” when an appli-
cation makes an ODBC call, the driver manager performs
the same actions as for a “plain” ODBC driver: it simply for-
wards the call and arguments. In the “temporal” driver, tem-
poral SQL is converted to SQL-92, and the DBMS is queried.

When using a generic “temporal” ODBC driver (i.e., the
“Temporal ODBC Driver”), the driver manager forwards the
call and the arguments to the driver. The generic “temporal”
driver converts temporal SQL to SQL-92. It does not forward
the call directly to a specific DBMS, but instead reconnects
to the ODBC driver manager. This second connection uses
the “plain” driver for the appropriate specific DBMS. The
reconnection to the driver manager is possible because an
ODBC driver can function as an application.

The combinations of input and output from the stra-
tum components using the ODBC driver architecture as
the stratum are shown in Figure 5. The architecture pro-
vides a total of three specific stratum architectures: (1) A
generic API/specific API architecture obtained by imple-
menting a DBMS specific “temporal” ODBC driver; (2) a
generic API/generic API architecture realized by implement-
ing a generic “temporal” ODBC driver; and (3) a generic
API/specific API achieved by adding a translation compo-
nent to the driver manager. Note that the first and third ar-
chitectures, while different, have identical input and output
interface.

Input Interface Output Interface�
Generic API

	
�

�
Specific API
Generic API

�

Figure 5. ODBC Stratum Interfaces

3.3 Preprocessing

The third overall architecture for implementing a stratum
is to use a preprocessor. The idea is shown in Figure 6, where
the dashed arrows show the flow of program code. A stratum
implemented in a preprocessor does the conversion at com-

5



pile time, as opposed to the two overall architectures dis-
cussed previously, where the stratum does the conversion at
runtime. The preprocessor architecture is therefore only pos-
sible for applications that do not generate temporal SQL code
at runtime, e.g., it cannot be used for applications handling
ad-hoc queries against a temporal DBMS. The preprocessor
idea is widely used to embed SQL code into a host language
such as C or COBOL.

Preprocessor
Sybase

Preprocessor
ODBC

Preprocessor
Oracle

Using API
Sybase App. PowerBuilder

Using ODBC Using API
Oracle App

Application
Using ODBC Using API

Oracle App
Using API

Sybase App.

API

Sybase

DBMS

API

DB2

DBMS

API

Oracle

DBMS

Oracle
DriverDriver

DB2Sybase
Driver

Driver Manager

API

PowerBuilder

Using ODBC

Application

Using API

Figure 6. The Preprocessor Architecture
There is no difference between the architectures before

and after the preprocessor stratum is interposed. The source
code of the “temporal” applications is converted using a pre-
processor, being compiled into an executable. The only
difference is that the preprocessors are extended. First, a
preprocessor converts temporal-SQL code to SQL-92 code.
Next, the SQL-92 code is run through the preprocessor sup-
plied by the DBMS vendor. We do not show the DBMS
vendors’ preprocessors in Figure 6; rather, the two prepro-
cessing steps are both done in the preprocessor components
at the stratum level.

As an example consider the Sybase application using
the Sybase API. Before the temporally-enhanced application
code is used, it is run through the “temporal” Sybase prepro-
cessor at the stratum level. This converts the temporal SQL
in queries to SQL-92 and may convert the API used to being
either the Sybase-specific API or the generic ODBC API.

The different type of input and output from the stratum
components are the same as for interposing a stratum directly
as shown in Figure 3, leaving six specific architectures for
building a temporal DBMS in a preprocessor.

4 Applications of the Different Architectures
In this section we discuss the utility of the different stra-

tum architectures and, when possible, provide concrete ex-

amples of their use. Specifically, we have tried to categorize
all the existing temporal DBMS implementations found in a
recent survey [4] that use the stratum approach. Where we
have not been able to find an example relating to temporal
DBMS implementation, we discuss non-temporal examples.

4.1 Interposing a Stratum Directly
As shown in Figure 3, there are six combinations of input

and output from the stratum components. The resulting six
different architectures will be discussed in turn.

The proprietary library/specific APIarchitecture can be
used if a site has a large number of applications using a single
DBMS and wants to change the underlying DBMS to a tem-
poral DBMS. The applications are targeted towards a specific
DBMS that is considered a strategic component. There is no
reason for porting the library to support different DBMSs.

The advantage of using a single DBMS is that it is pos-
sible to use all the features of the DBMS. It may have “that
one essential feature,” providing the reason why this specific
DBMS is used. The feature can be a hardware feature, e.g.,
the DBMS runs on an IBM mainframe, or a software feature,
e.g., it supports data blades.

We assume this architecture can be used, e.g, for com-
panies that are extensively using one DBMS in their appli-
cations, e.g., banks and insurance and telephone companies.
The DBMS may be a part of a high-performance mission-
critical transaction processing system. This architecture has
been used by the Swiss Regional Banks to implement a
bitemporal DBMS library on top of Oracle 7.3 [2].

The proprietary library/generic APIarchitecture can be
used if a company has an existing library targeted towards a
specific DBMS which is used by a large set of applications.
However, the company now wants to add temporal support
to the DBMS. Further, the company gradually wants to move
from a closed environment to an open one. Instead of chang-
ing all the applications, the proprietary library is reimple-
mented to support the mapping from temporal SQL to SQL-
92. To make the library open, the reimplementation makes
connections to DBMSs via a generic API, e.g., ODBC in-
stead of via a DBMS-specific API.

The Perl 5 ODBC module [14] is an example of this ar-
chitecture. The module makes it possible to access the C-
language ODBC API from Perl programs. Note that the Perl
ODBC module is an example of a library that is schema in-
dependent. The module is not built to support a specific set
of applications, but targets a generic API, making it applica-
ble to any database. In contrast, the Swiss bank proprietary
library/specific API example mentioned above is a database-
specific, or schema-dependent, library where the library im-
plementor is aware of the underlying schema of the DBMS
targeted.

The specific API/specific APIarchitecture can be used
where a large set of applications use only one DBMS.

6



The architecture is more general than using the propri-
etary library/specific API architecture because the specific
API/specific API architecture is schema independent. The
architecture converts the DBMS-specific API calls, and not
only the calls to the proprietary library. It is likely to be
used for the same reasons as the proprietary library/specific
API architecture: a specific DBMS is a strategic product, and
all the features of the specific DBMS can be utilized in the
mapping, possibly leading to better performance. The archi-
tecture is also useful for custom-built applications where the
DBMS to be used is known at design time, and where this
DBMS is used throughout the lifetime of the applications.

The architecture can be used by the major DBMS vendors
to extend their database products with temporal support. Dif-
ferent research prototypes have added temporal support to
existing DBMSs by using this architecture, e.g., Chronolog,
HDBMS, TimeDB, and T-Square DBMS [4]. These are all
examples of temporal extensions of a specific conventional
DBMS. The prototypes are not implemented as an API con-
version. Instead, they convert a temporal SQL dialect to
SQL-92 (in fact, to vendor-specific SQL-92 dialects) and
then query the SQL–92 database. However, they all adopt
the the overall idea of the specific API/specific API architec-
ture.

Thespecific API/generic APIarchitecture can be used if
the source code from an application generator tool contains
DBMS-specific API-calls and the user prefers the application
to access another DBMS, e.g., via ODBC.

Thegeneric API/specific APIarchitecture can be used if a
set of ODBC applications have a performance problem and
the applications are only connected to one specific DBMS.
By interposing a stratum that connects directly to the DBMS
instead of using the ODBC driver manager, it may be possi-
ble to enhance the performance of the applications by mov-
ing temporal functionality from the stratum into the DBMS,
e.g., as stored procedures.

The generic API/generic APIarchitecture can be used
where a set of ODBC-enabled applications are connected to
several DBMSs, each of which is updated to support tem-
poral data. When the temporal SQL-to-SQL-92 conversion
occurs before the driver manager, all DBMSs previously ac-
cessed can still be accessed without building a converter for
each specific DBMS.

4.2 Using Middleware as a Stratum

For this type of architecture, the combinations of input
and output to the stratum level are shown in Figure 5.

The generic API/specific APIarchitecture is the normal
way of using ODBC. A set of applications are using a DBMS
which is enhanced to support temporal data management. To
enable the existing applications to use the enhanced DBMS,
all the conversion from temporal SQL to SQL-92 is done in
the DBMS-specific driver.

An example is the NNODBC driver [11], which allows
users to query an NNTP news server with a subset of SQL-
92 via ODBC. The NNODBC driver encapsulates the news
server with a relational interface, i.e., makes it look like a ta-
ble from the driver manager’s point of view. Another similar
example is the flat-file ODBC driver [13] that allows users to
query ASCII files via SQL.

Thegeneric API/generic APIarchitecture is useful when
applications are connected to different DBMSs via a generic
API, but there are no DBMS-specific drivers available for
the DBMS to be used. However, there is a “temporal” driver,
which bridges to a generic API for which a DBMS-specific
driver exists.

An example of this architecture is the JDBC-ODBC
bridge [10], which allows Java applications, using the
generic JDBC API, to access databases via ODBC. As a dif-
ference from the example shown in Figure 4, not one but two
different driver managers are used. The applications using
the JDBC-ODBC bridge connect to the JDBC driver man-
ager. The JDBC-ODBC driver then connects to the ODBC
driver manager, which establishes a connection to a specific
DBMS.

The extended driver managerarchitecture is an alterna-
tive to the generic API/generic API architecture. Extending
the driver manager has the advantage that only a single soft-
ware components has to altered to provide temporal support
in multiple underlying DBMSs.

4.3 Preprocessor Stratum

The preprocessor approach is a simple one that is cur-
rently in wide use for permitting the embedding of SQL code
in host language code, e.g., C/C++, Pascal, and COBOL
code. Such host language code is run through a preprocessor
before being compiled. The preprocessor converts the em-
bedded SQL code into, e.g., function calls using a DBMS-
specific API. The converted source code is then compiled. In
the stratum approach, this scenario must be extended with a
temporal SQL-to-SQL-92 conversion.

The combinations of input and output to the stratum level
are shown in Figure 3. The main difference between inter-
posing a stratum directly and using a preprocessor architec-
ture is that the former does the conversion of temporal SQL
to SQL (and possiblely between APIs) at runtime, whereas
the latter does the conversion at compile time. For this rea-
son, we omit the discussion of all six specific architectures
and instead refer the reader to Section 4.1. However, we have
the following comments on two of the specific architectures.

Thespecific API/specific APIpreprocessor architecture is
highly relevant for DBMS vendors. As already mentioned,
preprocessors are widely used; and a temporal preprocessor
does not necessitate any changes to the underlying DBMS.
However, it does require the DBMS vendor to define a tem-
poral SQL. Thespecific API/generic APIand thegeneric

7



API/generic APIarchitectures are of relevance to indepen-
dent software houses that support more than one DBMS and
are interested in a single product that is relevant to as many
customers as possible. Again, a prerequisite is the specifica-
tion of a temporal SQL.

5 Comparison of the Architectures
The following three subsections compare the 15 specific

stratum architectures identified in Section 3 against the crite-
ria introduced in Section 2.2. We use the following notation
for evaluating the architectures. A table field is empty if a
criterion is not fulfilled. A check-mark (

p
) indicates that a

criterion is fulfilled, and a check-mark-plus (
p+) indicates

that a criterion is fulfilled to a higher degree than required.
We use NA if a criterion is not applicable to the specific ar-
chitecture.

5.1 Interposing a Stratum Directly
The six specific architectures for interposing a stratum di-

rectly are compared in Table 1. The criteria are listed as rows
in the table in the order they were discussed in Section 2.2.

Input Interface Prop. Lib. Specific Generic

Output Interface Spec. Gen. Spec. Gen. Spec. Gen.

No DBMS Mods.
p p p p p p

Minimal Impact NA
p+ NA

p+ NA
p+

Indep. of Apps.
p p p p

Reuse of Tech.
p p p+ p+ p+ p+

Gradual Avail.
p+ p+ p p p p

Retention Props.
p p p p p p

Adequate Perf.
p+ p p+ p p+ p

Indep. of DBMS
p p p+

Table 1. Interposed Architectures
None of the architectures require modifications to the un-

derlying DBMS. The stratum is an application that uses the
DBMS; specifically, the stratum uses the public interface to a
specific DBMS or a generic API. To implement the architec-
tures that use a generic API as either the input or output in-
terface, no modifications are required to the middleware. Be-
cause “no modifications” is the absolute minimum impact on
the middleware, we give these architectures a check-mark-
plus.

The two architectures that use a proprietary library as their
input interface are not independent of applications. The ap-
plications have to call the proprietary library to use the new
temporal functionality. Even if some some applications use
the library, this does not rule out that other applications ac-
cess the DBMS directly. And as mentioned in Section 2.2,
exposing different data models to same database may cause
problems. The remaining four architectures are independent
of the applications because all calls to the input interface (an
API) are interposed.

With respect to reuse of existing technology, all architec-
tures are in compliance. However, the two architectures us-
ing a proprietary library as input interface require the library

to be reimplemented. For this reason, we find that the archi-
tectures that use an API as input interface may reuse existing
technology better. On the other hand, using a proprietary li-
brary as input interface may provide the best possible way of
ensuring gradual availability of temporal functionality. Tem-
poral functionality can be provided on a per-table basis. As
time dimensions are added to tables, all the functions using
tables must be updated. Using an API as the input inter-
face requires more coding before application programmers
can start using the temporal functionality, because these ar-
chitectures are more general than the proprietary library ar-
chitectures.

We assume that the architectures where the output inter-
face is a specific API can achieve better performance than
the architectures where the output interface is a generic API.
The justification is that the former can be tuned to a specific
DBMS, e.g., rely on stored procedures. The cost of better
performance is that they become dependent on the DBMS,
as shown in the last row in Table 1.

5.2 Using Middleware as a Stratum

The three specific architectures that use middleware as
the stratum are compared in Table 2. The leftmost generic
API/specific API architecture is the DBMS-specific “tempo-
ral” driver architecture. The rightmost generic API/specific
API architecture is the architecture that alters the driver man-
ager.

Input Interface Generic
Output Interface Spec. Gen. Spec.

No DBMS Mods.
p p p

Minimal Impact
p+ p+ p

Indep. of Apps.
p p p

Reuse of Tech.
p+ p+ p

Gradual Avail.
p p p

Retention Props.
p p p

Adequate Perf.
p+ p p

Indep. of DBMS
p+ p

Table 2. Middleware Architectures
As can been seen from Table 2, all architectures are

DBMS independent—they only rely on additions to the mid-
dleware. Regarding their impact on the middleware, the
two “temporal” driver approaches require no changes to the
driver manager. The drivers are added to the driver manager
as “plain” drivers. Altering the driver manager requires addi-
tion of software components to the middleware. The changes
are likely to be isolated and do not require reimplementing
the entire driver manager. Having to change the middleware,
we find that this is a minimal impact.

All the architectures are independent of applications (the
input interface is a generic API), can provide temporal func-
tionality gradually, and retain the desired properties of the
underlying DBMS. Regarding performance, the first archi-
tecture can be tuned to a specific DBMS. Again, the better
performance is at the cost of DBMS independence. The tun-
ing is not possible for the third architecture, even though it

8



also uses a specific API as output interface. The DBMSs
are accessed via “plain” ODBC drivers, which cannot be al-
tered. However, the architecture becomes independent of the
DBMS because multiple specific APIs can be used.

5.3 Preprocessor Stratum

The six specific architectures for the overall preprocessor
architecture are compared in Table 3.

Input Interface Prop. Lib. Specific Generic

Output Interface Spec. Gen. Spec. Gen. Spec. Gen.

No DBMS Mods.
p p p p p p

Minimal Impact NA
p+ NA

p+ NA
p+

Indep. of Apps.
p p p p

Reuse of Tech.
p+ p+ p+ p+ p+ p+

Gradual Avail.
p+ p+ p p p p

Retention Props.
p p p p p p

Adequate Perf.
p+ p p+ p p+ p

Indep. of DBMS
p p p+

Table 3. Preprocessor Architectures

With respect to modifications to the DBMS, impact on
middleware, and independence of applications, the prepro-
cessor architectures are similar to their equivalent architec-
tures (based on input and output interface) for imposing a
stratum directly, as discussed in Section 5.1.

All the preprocessor architectures are very good for
reusing existing technology. The preprocessor approach is
widely used, so we assume DBMS vendors and software
houses have experience with implementing preprocessors in
general. Further, the preprocessor architectures make the
coupling between the stratum and the DBMSs lower because
there is no run-time interaction between the stratum and the
DBMSs. The strata (preprocessors) are only used at compile-
time, not at run-time. We also assume that because of their
widespread use, many applications programmers are familiar
with the concept of a DBMS preprocessor.

Regarding performance, we have rated the preprocessor
architectures similar to the performance of the architectures
when the stratum is interposed directly. However, we believe
that the performance of the preprocessor architectures will
be better because queries are optimized at compile time in-
stead of at runtime. As before, we assume that performance
and DBMS independence are inversely related for the archi-
tectures.

6 Related Work
The use of strata, or layers, is a general software design

technique useful for decreasing the complexity of systems.
The use of a layer can be found in several design patterns.
TheFacadedesign pattern [8] can be used to provide a high-
level interface to subsystems. The Facade pattern is useful
for layering the system and can do work on its own, e.g., if
the interface to the subsystems does not apply directly to the
interface provided by the Facade. In the context of this paper,

the Facade would then be the stratum and a specific DBMS
would be a subsystem. Other types of layers, also called
wrappers, can be found in theDecoratorand theAdaptor
design patterns [8].

An alternative to a stratum approach to building a tempo-
ral DBMS is the integrated architecture where a DBMS is
built from scratch and the implementation incorporates tem-
poral support. The Postgres DBMS [24, 25] is the most well-
known example of such an architecture. It supports trans-
action time and so-calledtime travelin the query language
PostQuel. The TempIS Temporal DBMS supports both valid
and transaction time [15] and extends academic Ingres [23].
This system implements the TQuel temporal query language
[17]. (The implementation of the TempIS Temporal DBMS
is discontinued.) The TimeMultiCal is another temporally
enhanced DBMS built from scratch [19]. It supports multiple
calendars, but neither valid time nor transaction time. The T-
Requiem system has an integrated architecture (for contact
information, see [4]). This system extends a public domain
DBMS (Requiem) with valid and transaction time support.
The prototype is not publicly available.

The stratum approach has recently be used for implement-
ing a temporal DBMS prototype, called TimeDB, which sup-
ports both valid time and transaction time [22]. It is built on
top of the Oracle DBMS and supports the ATSQL2 temporal
query language [20], a descendent of the TSQL2 [18] tempo-
ral query language. The Tiger prototype [7] is a close relative
of TimeDB. It implements ATSQL [6] and can be tested on-
line.

A mixture of an integrated and a stratum architecture is
documented in [27]. Here, a temporal DBMS prototype sup-
porting valid time is implemented partly on top of the Ingres
DBMS and partly as an extension of the Ingres DBMS. The
Ingres kernel is extended with support for an interval data
type. The rest of the temporal functionality is built on top of
the extended kernel.

Vassilakis et al. [28] have provided a survey of temporal
DBMS architectures that complements the study provided by
this paper. While both papers present surveys, there are fun-
damental differences. They describe and evaluate three ar-
chitectures that provide built-in temporal support in a client-
server environment; in contrast, we have explored 15 stra-
tum architectures. More specifically, Vassilakis et al. do not
assume that the underlying DBMS is a black-box, as is as-
sumed here. Next, they assume that temporal SQL is not,
and cannot be, translated to regular SQL. Not performing
this translation leads to very different types of architectures.
For example, query optimization must be partly done in the
DBMS and partly in the stratum. Further, they assume that
application may connect directly to the underlying DBMS,
In contrast, we disallow direct access from applications to
the underlying DBMS because this may cause problems with
respect to data integrity, as discussed in Section 2.2.

9



Finally, in [26] it is discussed how a temporal DBMS can
be implemented on top of an existing system with a minimal
effort. Several implementation techniques are covered.

7 Summary
Building a temporal DBMS from scratch is a daunting

task, which may only be successfully taken on by the major
DBMS vendors. To enable the efficient implementation of
applications that may benefit from built-in support for time
in the DBMS and to enable experimentation with a temporal
DBMS, we have investigated how the task of building a tem-
poral DBMS can be reduced by building on top of an existing
conventional DBMS, maximally reusing its functionality.

A set of criteria for evaluating a stratum architecture is
proposed. Three overall architectures to building a stratum
are identified and fifteen specific architectures are discussed.
We categorize the existing temporal DBMS implementations
that we are aware of according to the specific architectures.

The specific architectures are then compared against our
criteria. There is no best architecture. Which architecture
is preferred depends on the situation where the stratum is to
be used. Those who want temporal functionality available
quickly can use a temporally enhanced library to provided
temporal support. A library can also be tailored to a spe-
cific DBMS for maximum performance. The DBMS vendors
can extend their products by, e.g., providing a temporally
enhanced preprocessor or a stratum on top of the specific
DBMS. DBMS vendors should make the temporal extension
general, requiring more work compared with only extending
a single library with temporal support.

We believe that the best short and medium term approach
to building a temporal DBMS is to build on top of an existing
conventional DBMS. This way, resources can be focussed on
implementing new temporal functionality without having to
reimplement existing functionality.

Acknowledgements
This research was supported in part by the Danish Techni-

cal Research Council through grant 9700780, by the National
Science Foundation through grants IRI-9632569 and IRI-
9202244, and by the CHOROCHRONOS project, funded by
the European Commission DG XII Science, Research and
Development, contract no. FMRX-CT96-0056.

References

[1] I. Ahn and R. T. Snodgrass.Partitioned Storage for Temporal
Databases. Information Systems, 13(4):369–391, 1988.

[2] R. Barnert and G. SchmutzDie zeitbezogene Datenhaltung
bei den Schweizer Regionalbanken. Wirtschaftsinformatik,
39(1):45–53, 1997.

[3] T. Bunce et al. Perl DBI API. www.hermetic.com/ -
technologia/DBI/ , Dec. 1997.

[4] M. H. Böhlen. Temporal Database System Implementations.
SIGMOD Record, 24(4):53–60, 1995.

[5] M. H. Böhlen, M. D. Soo, and R. T. Snodgrass.Coalescing
in Temporal Databases. VLDB Proceedings, pp. 180–191,
1996.

[6] M. H. Böhlen and C. S. Jensen.A Seamless Integration of
Time into SQL. TR R-96–2049, Aalborg University, 1996.

[7] M. H. Böhlen. The Tiger Bitemporal Database Prototype.
www.cs.auc.dk/ �tigeradm/ , Dec. 1997.

[8] E. Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software.Addison-Wesley, 1995.

[9] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, 1993.

[10] G. Hamilton and R. Cattell.JDBC: A Java SQL API version
1.20. JavaSoft, 1997.

[11] K. Jin. NNTP ODBC Driver. ftp.uu.net/pub/ -
database/perl-interfaces/other/ , Dec. 1997.

[12] D. Lomet and B. Salzberg.Access Methods for Multiversion
Data. ACM SIGMOD, pp. 315–324, 1989.

[13] Microsoft Corp.Microsoft ODBC Software Development Kit
Version 2.0.Microsoft Press, 1994.

[14] D. Roth. The Win32::ODBC Module. www.roth.net/ -
odbc/ , Dec. 1997.

[15] K. Ryu. A Temporal Database Management Main Memory
Prototype. TempIs TR 26. University of Arizona, 1991.

[16] A. R. Simon. Strategic Database Technology: Management
for the Year 2000. Morgan Kaufmann Publishers, 1995.

[17] R. T. Snodgrass. The Temporal Query Language TQuel.
ACM TODS, 12(2):247–298, 1987.

[18] R. T. Snodgrass (ed.).The TSQL2 Temporal Query Lan-
guage. Kluwer Academic Publishers, 1995.

[19] R. T. Snodgrass et al. The MultiCal System.
ftp.cs.arizona.edu/tsql/multical/ , 1997.

[20] R. T. Snodgrass, M. H. B¨ohlen, C. S. Jensen, and A. Steiner.
Adding Valid Time to SQL/Temporal. ANSI X3H2-96-501r2,
ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.

[21] M. D. Soo, R. T. Snodgrass, and C. S. Jensen.Efficient Eval-
uation of the Valid-time Natural Join. ICDE Proceedings,
pp. 282–292, 1994.

[22] A. Steiner et al. TimeDB. www.cs.auc.dk/general-
/DBS/tdb/TimeCenter/Software/ , Dec. 1997.

[23] M. Stonebraker, E. Wong, and P. KrepsThe Design and
Implementation of INGRES. ACM TODS, 1(3):189–222,
1976.

[24] M. Stonebraker.The Design of the Postgres Storage System.
VLDB Proceedings, pp. 289–300, 1987.

[25] M. Stonebraker, M. Hirohama, and L. A. Rowe.The
Implementation of Postgres. IEEE TKDE, 2(1):125–142,
1990.

[26] K. Torp, C. S. Jensen, and M. H. B¨ohlen.Layered Implemen-
tation of Temporal DBMSs—Concepts and Techniques. TR
R-96-2037, Aalborg University, 1996.

[27] C. Vassilakis, P. Georgiadis, and N. Lorentzos.Transaction
Support in a Temporal DBMS. In Recent Advances in
Temporal Databases, Springer-Verlag, pp. 255–271, 1995.

[28] C. Vassilakes, P. Geogiadis, and A. Sotiropoulou.Compara-
tive Study of Temporal DBMS Architectures. 7th Intl. Work-
shop on Database and Expert Systems Applications Proceed-
ings, pp. 153–164, 1996.

10


