
&+252&+52126
$�1HWZRUN�IRU�6SDWLRWHPSRUDO�'DWDEDVH�6\VWHPV

1DWLRQDO�7HFKQLFDO�8QLYHUVLW\�RI�$WKHQV��178$�
$DOERUJ�8QLYHUVLW\��$$/%25*�
)HUQ8QLYHUVLWDHW�+DJHQ��+$*(1�
8QLYHUVLW\�RI�/
$TXLOD��81,9$4�

8QLYHUVLW\�RI�0DQFKHVWHU���,QVWLWXWH�RI�6FLHQFH�DQG�7HFKQRORJ\��80,67�
3ROLWHFQLFR�GL�0LODQR��32/,0,�

,QVWLWXW�1DWLRQDO�GH�5HFKHUFKH�HQ�,QIRUPDWLTXH�HW�HQ�$XWRPDWLTXH��,15,$�
$ULVWRWOH�8QLYHUVLW\�RI�7KHVVDORQLNL��$87�

7HFKQLFDO�8QLYHUVLW\�RI�9LHQQD��78�9,(11$�
6ZLVV�)HGHUDO�,QVWLWXWH�RI�7HFKQRORJ\��=XULFK��(7+=�

7(&+1,&$/�5(3257�6(5,(6

TECHNICAL REPORT CH-99-03

,QGH[LQJ�7UDMHFWRULHV�RI�0RYLQJ�3RLQW�2EMHFWV
'LHWHU�3IRVHU��<DQQLV�7KHRGRULGLV��DQG�&KULVWLDQ�6��-HQVHQ

2FWREHU�����

&+252&+52126��705�5HVHDUFK�1HWZRUN�3URMHFW��1R�(5%)05;&7������
&RQWDFW�3HUVRQ��3URI��7LPROHRQ�6HOOLV��'HSW��RI�(OHFWULFDO�DQG�&RPSXWHU�(QJLQHHULQJ��1DWLRQDO
7HFKQLFDO�8QLYHUVLW\�RI�$WKHQV��=RJUDIRX��������*5�7HO�����������������)$;����������������

WLPRV#FV�QWXD�JU

2

$EVWUDFW
Spatiotemporal applications attract more and more attention, both, from researchers as well as

application developers. Especially the peculiarities of spatiotemporal data are the focus of an

increasing research effort. In this paper we extend the well-known R-tree method to handle

trajectory data stemming from moving point objects. The resulting access method, termed

(Spatio-Temporal) STR-tree, differs from the R-tree in that it stores additional information in

the entries at the leaf level and, further, has modified insertion and split algorithms. Besides

the description of the STR-tree algorithms, we provide an extensive performance study

examining the behaviour of the new method as compared to the original R-tree under a

varying set of queries and datasets. The collection of queries comprises the typical point and

range queries as well as pure spatiotemporal queries based on the semantics of objects’

trajectories, the so-called trajectory and navigational queries.

�� ,QWURGXFWLRQ
There are two properties that are inherent to any object in the real world, VSDFH and WLPH. For many

applications it is further necessary to model those properties as attributes in a database system. For several

years, a lot of effort was devoted to the respective areas of temporal and spatial database research. However,

the integration of issues poses further research questions. As we will thoroughly discuss in the paper, it is

sometimes not enough to take the “best” of both worlds to find a satisfactory solution to a given

spatiotemporal problem. A particular problem in the context of spatiotemporal databases is indexing of

spatiotemporal information. That is, to construct a spatiotemporal access method (STAM) to index spatial

data changing over time. More specifically, in this work we focus on data stemming from the PRYHPHQW�RI
VSDWLDO�SRLQW�REMHFWV. We deal with point objects, since in many applications the size and shape of an object is

of no importance but only its positions matters, e.g., navigational systems.

The data obtained from moving point objects can be seen similar to a “string” arbitrary oriented in three-

dimensional space, where two dimensions correspond to space and one dimension corresponds to time. By

sampling the movement of a point object, we obtain a polyline instead of a “string” representing the

trajectory of the moving point object. In pure geometrical terms this object movement is termed WUDMHFWRU\
(cf. Figure 1).

To define a proper access method, we not only have to be aware of the nature of the data, but also must know

about the type of queries the index is used for. Typical queries in spatial and temporal databases are range

(window) queries. Queries for spatiotemporal data are more demanding. They are not only related to the

spatiotemporal extent of the data but are also connected to objects’ trajectories. The spatiotemporal data as

described above can be treated as spatial data, where the third dimension is time. Thus, a first step in finding

an appropriate index is to study spatial access methods.

3

In literature there exist several approaches about how, essentially, spatial data can be processed using

indexes. Jagadish (1990) suggests a method in which, both, the data as well as the queries are transformed

into two simpler geometries to a new space. In the so-called feature space, classical spatial access methods

can be used to index the data. The drawbacks of the method are that proximity is not preserved under the

transformation (Nievergelt and Hinrichs 1985), and several queries cannot be mapped at all into the feature

space (Henrich et al. 1989, Orenstein 1990, and Pagel et al. 1993). Another approach to access

spatiotemporal information is to use access methods in the original (also, called native) space. Examples are

the R-tree family (Guttman 1984) and the Quad-tree family (Samet 1984 and Tayeb et al. 1998). A drawback

of the Quad-tree family is that the space the objects will eventually occupy has to be known in advance. The

R-tree was evaluated in its ability to index spatiotemporal information (Nascimento et al. 1999).

A problem not addressed by using any of the above access methods, however, is the preservation of

trajectories. All the above access methods treat the data merely as a set of line segments, regardless whether

some belong to the same trajectory. Line segments are grouped together merely according to spatial

properties such as closeness. This is not enough, since certain type of queries require access to parts of the

whole trajectory.

To capture this issue, we propose an access method, namely the Spatiotemporal R-tree (STR-tree), which is

based on the popular R-tree method. Through modifications to the original R-tree algorithms we overcome

the shortcomings of the original method.

The outline of the paper is as follows. Section 2 describes the nature of the data as well as the type of queries

encountered in applications dealing with moving point objects. Section 3 derives the requirements to a

spatiotemporal access method starting with the description of the R-tree. In Section 4 we present the

algorithms comprising the proposed access method, the STR-tree. Section 5 describes the performance

studies in which we compare the STR-tree with the R-tree under varying parameter settings. Finally, in

Section 6 we give conclusions and directions for future research.

Figure 1: The movement of a spatial object and the corresponding trajectory

4

�� 0RYLQJ�3RLQW�2EMHFWV
In this section we discuss our type of spatiotemporal data by giving a motivating example. We further

introduce sampling as a method to measure positions over time. Also, we introduce a set of queries that are

of importance in the given application context.

The optimisation of transportation, especially in highly populated areas, is a very challenging task that may

be supported by an information system. A core application in this context is fleet management. Vehicles

equipped with GPS devices transmit their positions to a central computer using either radio communication

links or mobile phones. At the central site, the data is processed and utilized.

���� 6DPSOLQJ
In order to record the movement of an object, we would have to know the position at all times, i.e., on a

continuous basis. However, GPS and telecommunications technologies only allow us to sample an object’s

position, i.e., to obtain the position at discrete instances of time, such as every few seconds.

A first approach to represent the movements of objects would be to simply store the position samples. This

would mean that we could not answer queries about the objects’ movements at times in-between sampled

positions. Rather, to obtain the entire movement, we have to interpolate. The simplest approach is to use

linear interpolation, as opposed to other methods such as polynomial splines (Bartels et al. 1987). The

sampled positions then become the end points of line segments of polylines, and the movement of an object

is represented by an entire polyline in three-dimensional space. In geometrical terms, the movement of an

object is termed a WUDMHFWRU\ (we will use ‘‘movement’’ and ‘‘trajectory’’ interchangeably). The solid line in

Figure 2(a) represents the movement of a point object. Space (x and y-coordinates) and time (t-coordinate)

are combined to form one coordinate system. The dashed line shows the projection of the movement in two-

dimensional space (x and y coordinates) (Pfoser and Jensen 1999).

Figure 2(b) shows the spatiotemporal space (the cube in solid lines) and several trajectories (the solid lines).

Time moves in the upward direction, and the top of the cube is the time of the most recent position sample.

The wavy-dotted lines at the top symbolise the growth of the cube with time.

(a) (b)

Figure 2: Moving point objects: (a) a trajectory and (b) a spatiotemporal space containing several trajectories

5

���� 4XHULHV
Through the combination of space and time further query types emerge. Current research in spatiotemporal

databases deals mostly with the handling of now-relevant data (Sistla et al. 1997, Kollios et al. 1999), i.e.,

one is only interested in the current position, speed, and heading of a moving object (dynamic information).

Storing the trajectories of moving objects would not only allow us to determine dynamic information for the

current position of the object but IRU�DOO�KLVWRULF�SRVLWLRQV stored in the database. We distinguish two types of

queries involving trajectories of moving objects:

• &RRUGLQDWH�EDVHG� TXHULHV, such as point, range, and nearest-neighbor queries in the resulting three-

dimensional space, and

• 6HPDQWLFV�EDVHG�TXHULHV, usually involving WUDMHFWRU\�PHWDGDWD, such as speed and heading of objects.

The former ones comes as an inheritance from spatial and temporal databases. Queries of the form “ ILQG�DOO
REMHFWV�WKDW� OLHG�ZLWKLQ�D�JLYHQ�DUHD��RU�DW�D�JLYHQ�SRLQW��GXULQJ�D�JLYHQ�WLPH� LQWHUYDO� �RU�DW�D�JLYHQ� WLPH
LQVWDQW�” or “ ILQG�WKH�N��FORVHVW�REMHFWV�ZLWK�UHVSHFW�WR�D�JLYHQ�SRLQW�DW�D�JLYHQ�WLPH�LQVWDQW” (Theodoridis et

al. 1998) are still very important for STDBMS users. On the other hand, novel queries are also introduced

due to the specific nature of data. The so-called semantics-based queries are classified in ‘WUDMHFWRU\’ queries,

which involve the whole information of the movement of an object, and ‘QDYLJDWLRQDO’ queries. We discuss

semantics based queries in more detail in the sequel. Both coordinate- and semantics- based queries will be

involved in our performance study later in Section 5.

2.2.1 Trajectory queries

Queries involving the whole trajectory of an object are very important (and rather expensive). A definition of

a well-established set of predicates, such as the 9-intersection model (Egenhofer and Franzosa 1991) for

spatial data and the thirteen relations between intervals (Allen 1983) for temporal data is not yet available for

spatiotemporal data. In one of the first approaches, Erwig and Schneider (1999) discuss extending SQL by

the spatiotemporal versions of the eight basic spatial predicates GLVMRLQW, PHHW, RYHUODS, HTXDO, FRYHUV,
FRQWDLQV, FRYHUHG�E\, and LQVLGH, defined by the 9-intersection model as well as composite predicates based

on the basic ones, namely HQWHU (and its reverse OHDYH), FURVV, and E\SDVV.
Whether an object HQWHUV, FURVVHV, or E\SDVVHV a given area can be replied only after examining more than

one parts of its trajectory (i.e., the line segments stored in the database) under a respective set of constraints.

For instance, an object HQWHUHG into an area with respect to a given time horizon, iff the start- point of its least

recent segment (respectively, the end- point of its most recent segment) was outside (respectively, inside) the

given area. Similar definitions hold for the OHDYH, FURVV, and E\SDVV predicates as can be extracted from the

illustration in Figure 3.

6

2.2.2 Navigational Queries

In our data model dynamic information is not explicitly stored but has to be derived from the trajectory

information. The speed of an object is determined by the fraction of travelled distance over time. The

heading of an object is computed by determining a vector between two specified positions. From these

definitions one can see that neither speed nor heading are unique but depend on the WLPH�KRUL]RQ we consider.

The heading of an object in the last ten minutes was strictly east, but considering the last hour it was

Northeast. The same is true for speed. At the moment the speed of an object might be 100 mph but during the

last hour it averages out to 30 mph.

Queries involving speed or heading are expected to be very important in real-life applications. Consider for

example the following (Erwig et al. 1999): “$W�ZKDW�VSHHG�GRHV�WKLV�SODQH�PRYH"�:KDW�LV�LWV�WRS�VSHHG"” or

“$UH�WZR�SODQHV�KHDGLQJ�WRZDUGV�HDFK�RWKHU��JRLQJ�WR�FUDVK�"” The former one is a VSDWLRWHPSRUDO�VHOHFWLRQ
and considers the QRZ instance as the time horizon for the first part while an aggregation on a longer time

horizon is necessary for the second part. The latter one is a VSDWLRWHPSRUDO� MRLQ, if both planes are left

unspecified. Obviously, ‘approach’ is different from ‘lie close’ and in order to support queries involving

‘approach’ using R-tree-based methods the information about line segment orientation needs to be

maintained. What is common in both cases is that we want to examine a set of line segments selected by

belonging to the same trajectory as opposed selected by a spatiotemporal range.

Figure 3: Trajectory-based spatiotemporal operations: ‘enter’ ,

‘leave’ , ‘cross’ , and ‘bypass’

Figure 4: ‘Approach’ is different from ‘lie close’

7

Further queries could involve the combination of range and navigational subqueries, which are also very

interesting from the query optimisation view. For example, the TXHU\�³:KDW�LV�WKH�VSHHG�DQG�KHDGLQJ�RI�DOO
WKH� REMHFWV� WKDW� FURVVHG� 1HZ�0H[LFR� IURP� -XO\� �� WR� �� LQ� ����´ pipelines the results of a range query

involving spatial (New Mexico) and temporal (July 2 to 5, 1947) ranges with a navigational query about

speed and heading.

Along this line one can construct various combinations of query combinations, which are all plausible in the

spatiotemporal application context.

�� 6SDWLDO�$FFHVV�0HWKRGV�DQG�WKH�5�WUHH
In this section, we first give an overview of what types of spatial access methods do exist. Subsequently, we

give a brief introduction to the R-tree.

���� 6SDWLDO�$FFHVV�0HWKRGV
The main idea behind spatial indexing is to support spatial selection, that is, to retrieve from a large set of

spatial objects those in some particular relationship with the query region. A technique generally adopted in

indexing spatial objects is approximation. A 0LQLPXP� %RXQGLQJ� %R[(MBB), or Minimum Bounding

Rectangle (MBR) in 2-D, is used to approximate the spatial object to construct the spatial index. This use

leads to a filter-and-refine strategy for query processing. First, based on the approximations, a filtering step is

executed that returns a superset of the objects fulfilling the query predicate. Second, in the refinement step,

the exact extents are checked against the query predicate (Gueting 1994).

Spatial access methods (SAM) using MBB approximations can be grouped into four categories (Stefanakis et

al. 1998). First, the RUGHULQJ�WHFKQLTXH introduces a one-dimensional ordering among the set of MBBs based

on both their location and extent using a space-filling curve (Abel and Smith 1983, Orenstein 1986, and

Faloutsos 1988). Second, with the WUDQVIRUPDWLRQ�WHFKQLTXH MBBs are transformed into higher dimensional

space, where they can be represented as points (Nievergelt et al. 1984). Third, with the FOLSSLQJ�WHFKQLTXH the

space occupied by the set of spatial objects is partitioned into a set of disjoint regions. Thus, a spatial object

is associated with all regions which intersect its MBB. Prominent examples of this technique are the R+-tree

(Sellis et al. 1987) and the Cell-tree (Guenther 1989).

The fourth category comprises access methods employing the RYHUODSSLQJ� WHFKQLTXH. Contrary to the

clipping technique, regions are derived from MBBs, and each MBB is inserted into a unique region. The

most prominent example here is the R-tree (Guttman 1984).

���� 7KH�5�WUHH
In the following we give a short overview of R-tree operations (Gaede and Guenther 1998). From the

algorithmic point of view, the R-tree is a height-balanced tree with index records in its leaf nodes containing

pointers to actual data objects. Leaf node entries are of the form (id, MBB), where id is the pointer to the

actual object and MBB represents an n-dimensional interval. A node in the tree (intermediate and leaf)

corresponds to a disk page. Every node contains between P and 0 entries (except the root). The lower bound

P prevents the degeneration of the trees. Whenever the number of node entries drops below P, the node is

8

deleted and its entries reinserted. The upper bound 0 is called fanout and is determined by the page size.

Whenever the number of node entries would rise above 0, the node is split. Figure 5 illustrates an exemplary

R-tree of fanout 0=3 for a given set of spatial objects.

The most important operation of an access method is to LQVHUW a new entry into the index. We insert the MBB

into the index by traversing a single path starting from the root node to the leaf level. At each level we

choose the child node whose MBB needs least enlargement by including the new entry. In case several

MBBs satisfy this criterion, we choose the smallest one. This algorithm is called &KRRVH/HDI in Guttman

(1984). Upon reaching the leaf level, we insert the new entry, adjust the covering MBB, and propagate the

change upwards. If the leaf node does not have space (already 0�entries inside), we split the node. Covering

MBBs are adjusted accordingly, and the split is propagated upwards. When VSOLWWLQJ a node we want to

divide its entries between two nodes. To minimise node access during search, the total area of the two

covering MBBs after the split should be minimised. Guttman (1984) suggests one H[KDXVWLYH and two

heuristic algorithms, one with TXDGUDWLF �4XDGUDWLF6SOLW� and a simpler one with OLQHDU complexity.

As for GHOHWLRQ of an entry in the index, a reversed insertion procedure applies, i.e., covering MBBs are

adjusted accordingly. In case the deletion causes an underflow in a node, i.e., node occupancy falls below a

given threshold, the respective entries of that particular node are deleted and re-inserted into the index.

In searching an R-tree, we check whether a given node entry satisfies the search range (window query). If so,

we visit the child node and thus recursively traverse the tree. Due to the overlapping MBBs, at each level of

the index, there may be more entries that satisfy the search range. An example is given in Figure 5, where a

point query for point X results into the paths R6-R2-m5 and R7-R4-m8.

In the context of spatiotemporal data this technique proves to be inefficient. Consider the data shown in

Figure 4. As shown in Figure 6, approximating the line segments using a MBB introduces large amounts of

dead space (Theodoridis et al. 1998). It is evident that the corresponding MBB covers a large portion of the

space, whereas the actual space occupied by the trajectory is small1. This leads to high overlap and

consequently to a small discrimination capability of the index structure.

1 Dependant on the granularity of the underlying space, the occupied space could be zero. This is true since

the volume of a line in three-dimensional space equals zero.

R5
R4

R7

R2

R3

R6

R1

m1

m3
m2

m4

m5

m6

m7

m8

m9

m10 m11

m12 m1 m2 m3 m10 m11 m12 m4 m5 m6 m7

R1 R2 R3 R4 R5

R6 R7

m8 m9

;�

Figure 5: An R-tree index

9

Another drawback of this method is that in storing approximations rather than the actual spatial object, the

line segments, in the index, a refinement step is required when processing a query.

Also, in using a regular R-tree, trajectory information is not preserved, since nodes are split purely according

to spatial characteristics. Due to this side effect, it is necessary to find alternative representations and/or

approximation schemes for these kinds of data.

�� 7KH�675�7UHH�6WUXFWXUH
The STR-tree is an R-tree based access method supporting efficient query processing of three-dimensional

trajectories of spatial data. In the following, we outline its modifications as compared to the R-tree.

���� /HDI�1RGH�(QWULHV
When using a MBB to approximate a line segment, the exact extent of the object is not known in the index.

However, as can be seen in Figure 7, a line segment can only be contained in four different ways in a MBB.

We can store this extra information in the leaf node by simply modifying the entry format to (id, MBB,

orientation), where orientation is of domain {1,2,3,4}.

���� ,QVHUWLRQ
The insertion process is considerably different from the procedure known from the R-tree. In the R-tree for

inserting a new entry two algorithms are involved, &KRRVH6XEWUHH and 6SOLW. ChooseSubtree chooses the best

place for the insertion of the new entry based on minimum enlargement of existing nodes in the tree. If the

Figure 6: Approximating a trajectory using MBBs

1
4 3

2

Figure 7: Different line segments are mapped

into a single MBB

10

chosen leaf node contains the maximum number of entries, the node is split and the split propagated up the

tree2.

The insertion in the STR-tree works differently in that our considerations are not only of pure spatial nature,

but we also try to keep line segments belonging to the same trajectory together, i.e., partially preserve

trajectories. As a consequence, when inserting a new line segment the target should be to insert it as close as

possible to its predecessor in the trajectory. Thus, insertion in the STR-tree involves a new algorithm,

)LQG1RGH, which returns the node that contains the predecessor. As for the insertion, if there is room in this

node, the new segment is inserted there. In any other case we have to apply a node split strategy. In Figure 8,

we show an exemplary index, in which the node returned by FindNode is marked with an arrow. In the

following we will discuss how the above insertion strategy works together with the known R-tree Split

algorithm.

Consider the case in which not only the leaf level node but also the parent nodes at the intermediate level 1

and 2 are full (bold boxes in Figure 8). The leaf nodes would be split and the split propagated upwards. In the

case of the R-tree and with data arbitrary distributed in space, both resulting leaf nodes would have an equal

chance of being the subject of insertion again. However, in our case, entries are inserted with an increasing

time horizon. This characterises even the ordering of entries in a single node. Consequently, the split

algorithm puts “ newer” entries in the new node. As a result, “ older” nodes have fewer chances for the

insertion of new segments, i.e., they do not connect to any new segment, and remain empty to a large degree.

Since the nodes of the index are oriented along trajectories, we would further have a high degree of overlap,

and the overall space discrimination of the index would be very low. The overall behaviour of the index

would be to thinly slice the spatiotemporal cube according to time. The overall preservation of trajectories

would be minimal. Since this situation is not satisfactory, we have to rethink our split strategy in the context

of this new insertion paradigm of preserving trajectories.

2 In the sequel, the so-called ChooseSubtree and QuadraticSplit algorithms will be used in discussion of the

STR-tree algorithms without further details, since they are identical to the original Guttman algorithms.

. . .

intermediate level 1

intermediate level 2

intermediate level 3

leaf level

preservation
parameter = 2

insertion

Figure 8: Insertion into the STR-tree

11

The ideal characteristics for an index suitable for object trajectories, would be to decompose the overall

space according to time, the dominant dimension in which “ growth” occurs, and at the same time to preserve

trajectories. In the following we devise the Insert algorithm shown in Figure 9, which has an additional

parameter, called SUHVHUYDWLRQ�SDUDPHWHU�S. This parameter indicates the number of levels we “ reserve” for

the preservation of trajectories. Given the case a leaf node is full, the algorithm checks whether S-1 parent

nodes are full (in Figure 8, for S = 2, we only have to check the node drawn in bold at intermediate level 1).

In case one of them is not full, the leaf node is split. In case all of the S-1 parent nodes are full, Insert invokes

ChooseSubtree on a subtree including all the nodes further to the right of the current insertion path (subtree

to the right of the bold grey line in Figure 8).

The split algorithm differs from what is known from the R-tree. Since we try to preserve trajectories in the

index, splitting a leaf node requires an analysis of what kinds of segments are contained inside a node. A

node can contain four different types of segments,

• GLVFRQQHFWHG segments, i.e., a segment is not connected to any other segment in the node,

• IRUZDUG connected segments, i.e., the recent (in time) end is connected to another segment,

• EDFNZDUGV connected segments, i.e., the old (in time) end is connected to another segment, and

• GRXEOH�FRQQHFWHG segments, i.e., both ends, recent and old, are connected to other segments.

With this, we can distinguish the three split scenarios of Figure 10. The bold line indicates the split strategy

in each case. In the first case, all segments are disconnected (cf. Figure 10(a)) and a QuadraticSplit algorithm

is invoked to determine the split. In the second case, we encounter all types of segments, and we place the

disconnected ones in a new node. In the third case, all segments are forward, backward, or double connected

(no disconnected ones), and we place the most recent forward connected segment in a new node. Figure 11

summarizes the split algorithm.

Figure 9: Insert algorithm

Algorithm Insert
INS1 Invoke FindNode
INS2 IF node found

IF node has space,
insert new segment.

ELSE
IF the p-1 (preservation parameter) parent nodes are full

invoke ChooseSubtree but exclude the current branch
ELSE invoke Split.

ELSE ChooseSubtree.

Algorithm FindNode
FN1 Set N to be the root node.
FN2 IF N is a leaf,

IF N contains an entry that is connected to the new segment,
RETURN N.

ELSE
Choose N to be the entry which intersects with the new segment

FN3 Set N to be the childnode pointed to by the childpointer of the chosen entry and
repeat from FN 2.

12

The general idea behind the split algorithm is to put newer, and thus, more recent segments, into new nodes.

Following that, more recent segments are stored in nodes further to the right of a STR-tree.

Finally, splitting of intermediate nodes is simple, in that we only create a new node for a new entry.

Using this insertion and split strategy, we obtain an index that preserves trajectories and considers time as the

dominant dimension to decompose the occupied space.

���� 6HDUFK
The search algorithms for the STR-tree can be grouped according to the query categories FRRUGLQDWH�EDVHG
and VHPDQWLFV�EDVHG queries. (cf. Section 2.2). Algorithms for the first category are similar to the one used in

R-tree. The idea is to descent the tree with respect to intersection properties until the entries are found in the

leaf nodes [Guttman 1984].

Algorithms for the second category of queries are different in that not only a spatial but also a semantic

search is performed, i.e., we not only retrieve all entries contained in a given sub-space (range query) but

retrieve entries belonging to the same trajectory. Figure 12 presents an outline of such an algorithm. In the

algorithm SemanticSearch a query predicate is used to determine a subset of line segments which will be

used as input for DetermineTrajectory to extract a partial trajectory. This algorithm retrieves the connected

segments necessary for the query specific computation, e.g., speed and heading. The algorithm stops when

the newly found segment does not satisfy a condition anymore, e.g., it is outside a given range, or more than

X number of segments were retrieved already. This condition can be of any kind and is derived from the

(a) (c) (b)

time

x

y

Figure 10: Different split scenarios

Figure 11: Split algorithm

Algorithm Split
S1 IF node is intermediate node, invoke SplitIntermediateNode.

ELSE invoke SplitLeafNode.

Algorithm SplitIntermediateNode
SIN1 Put the new entry into a new node and keep the old one as it is

Algorithm SplitLeafNode
SLN1 IF entries in node are all disconnected segments,

invoke QuadraticSplit.
ELSE IF node contains disconnected, and other types of segments,

put all disconnected segments in a new node.
ELSE IF node contains single and disconnected segments,

put the newest single connected segment in new node

13

semantics-based query type. DetermineTrajecotry invokes either FindFwdSegment, FindBwdSegment, or

both. The choice of algorithm depends, again, on the query and what segments (forward or backward

connected) are needed. These algorithm, the actual “ trajectory trackers,” try to find a connected segment in

the same leaf node first, but, if unsuccessful, proceed to a classical search starting at the root.

The algorithm in Figure 12 should only provide a framework for specific algorithms answering semantics-

based queries as they are shown in Section 2.2. Further research into this subject is necessary.

�� 3HUIRUPDQFH�6WXG\
After outlining the principles and algorithms behind the STR-tree, we present results of the performance

study comparing it to the R-tree. We first explain the overall design and objectives of the performance study.

Subsequently we outline the process of building datasets. The core of this section comprises the results of

comparing the STR-tree with the R-tree for a varying set of data and queries. A summary of the results is

included at the end of the section.

���� *HQHUDO�&RQVLGHUDWLRQV
Our goal for the performance study is two-fold. First, we experiment in choosing the suitable preservation

parameter S for the STR-tree (cf. Section 4). We demonstrate how varying S values affect index creation.

Second, we compare the STR-tree with the R-tree under the aspects of different types of data and queries.

The different types of data are distinguished by having

• a� YDU\LQJ� WLPH� KRUL]RQ, i.e., creating indices for data obtained by the same set of moving objects at

different instances of time,

Figure 12: Alternative search algorithm for semantics based queries

Algorithm SemanticSearch
SS1 Set N to be the root node
SS2 IF N is a leaf

for all entries E that satisfy the query predicate invoke DetermineTrajectory(E,N)
SS3 Set N to be the childnode of the current node and repeat from SS2

Algorithm DetermineTrajectory(E,N)
DT1 While FindFwdSegment (FindBwdSegment) returns segments that fulfil a condition

Add found segment E to set of solutions
Invoke FindFwdSegment(E,N) (FindBwdSegment)

Algorithm FindFwdSegment(E,N)
FFS1 Loop through N and find forward connected segment to E
FFS2 IF not found set N to be the root
FFS3 IF N is a leaf

IF N contains an entry E’ that is forward connected to E
return E’

ELSE Choose N to be the entry which intersects with E
FFS4 Set N to be the childnode of the current node and repeat from FFS3

14

• data stemming from a YDU\LQJ� QXPEHU� RI�PRYLQJ� REMHFWV, i.e., creating indices for data obtained by a

varying number of moving objects at the same instance of time, and

• data stemming from objects with YDU\LQJ PRYHPHQW�FKDUDFWHULVWLFV, i.e., objects moving faster or slower

with respect to each other.

The different types of queries are SRLQW� TXHULHV, i.e., find all line segments which contain the specified

position in time, UDQJH�TXHULHV, i.e., find all line segments which intersect a given spatiotemporal range, and

VHPDQWLF� TXHULHV, i.e., for a queried set of positions in time, determine the cost for finding and a certain

number of connected segments.

The performance studies were conducted using a C implementation of the proposed access methods. As for

the parameters of the experiments, we chose the page sizes for data and directory pages to be 1024 bytes.

With a size of 28 bytes for a data and 32 bytes for a directory entry, we obtain 31 and 28 entries per page,

respectively. To compare the performance of the access methods we chose various data files, containing up

to 1.000.000 three-dimensional line segments stemming from up to 100 moving objects.

���� 7\SHV�RI�'DWDVHWV
Unlike spatial data, where there exist several popular real datasets for experimentation purposes (e.g., the

TIGER/Line files of geographic features, such as roads, rivers, lakes, boundaries, etc., covering the entire

United States [Census]), well-known and widely accepted spatiotemporal datasets for experimental purposes

are missing. Due to the lack of real data, our performance study consists of experiments on synthetic

datasets. We utilise the GSTD generator of spatiotemporal datasets (Theodoridis et al. 1999) to create

trajectories of moving objects under various distributions3. GSTD allows the user to generate a set of line

segments stemming from a specified number of moving objects. Probability functions are used to describe

the movement of the objects as a combination of several parameters. More precisely, the user can specify the

initial positional distribution of the objects in the unit workspace [0, 1)2 as well as the stepping in time and

space for each movement using either uniform, gaussian, or skewed probability function.

The parameters of the generator were given the following values:

• The spatial range for the movement of objects was restricted to 10K times 10K points. The temporal

extent ranges from 10K to 200K points

• The initial distribution of points was gaussian, i.e., all points were distributed around the centre of the

workspace. The movement of points was always ruled by a random distribution of the form random(-

x,x), thus achieving unbiased spread of points. The x parameter was tuned to different values to

simulate slow (x = 0.02) versus fast (x = 0.06) moving points.

• The number of different possible snapshots or, in other words, the resolution of time, was held constant

by 100K.

3 The GSTD generator has been also used in the performance comparison that appears in [Nascimento et al.,

1999] between the three-dimensional R-tree and several of its persistent variations for spatiotemporal

indexing.

15

• Finally, the number of moving objects varied between 5 and 100 resulting to datasets consisting of

between 5K and 1000K tuples (i.e., line segments)4.

Table 1 formalises the collection of datasets used in our experiments.

'DWDVHW 0RYHPHQW
IXQFWLRQ

7LPH�KRUL]RQ ��REMHFWV ��WXSOHV

t1_10 -0.03, 0.03 10K 10 5K

t4_10 -0.03, 0.03 40K 10 20K

t8_10 -0.03, 0.03 80K 10 40K

t12_10 -0.03, 0.03 120K 10 60K

t16_10 -0.03, 0.03 160K 10 80K

t20_10 -0.03, 0.03 200K 10 100K

t20b_10 -0.02, 0.02 200K 10 100K

t20c_10 -0.04, 0.04 200K 10 100K

t20d_10 -0.06, 0.06 200K 10 100K

t20_5 -0.03, 0.03 200K 5 50K

t20_20 -0.03, 0.03 200K 20 200K

t20_50 -0.03, 0.03 200K 50 500K

t20_100 -0.03, 0.03 200K 100 1000K

Table 1: The collection of datasets

���� 3UHVHUYDWLRQ�3DUDPHWHU
An important parameter of the STR-tree is the number of levels we use in the index to preserve the moving

object trajectories. In the first set of experiments, we show the effects of a varying preservation parameter S
on the quality of the created index. The data file used in the experiments shown in Figure 13 was t20_10, i.e.,

100K segments stemming from 10 moving objects with a time horizon of 200K points.

An important characteristic of an access method is the cost for the creation as well as the quality of the

resulting index. In the context of this study we measure cost as the QXPEHU�RI�QRGH�DFFHVVHV. The quality of

the index is depicted by VSDFH�XWLOLVDWLRQ.

Figure 13 shows the number of nodes accessed during index creation, where access means reading a page

from disk. We distinguish node accesses at intermediate levels and at the leaf level, since varying the

preservation parameter has different effects on intermediate and leaf levels during insertion (FindNode), we

consider the number of node accesses grouped accordingly. Space utilisation shows the average number of

entries per node in percent, i.e., an average space utilisation of 100% means that all nodes are filled. In our

experiments, the STR-tree usually exhibits an average space utilisation (without considering the root node for

this average) of 96%, whereas the corresponding value for the R-tree is 56%. This figure does not change for

STR-tree for varying preservation parameters.

4 Note that the resulting number of tuples is not equal to the number of objects times the number of snapshots

(actually, it is much smaller than that) since GSTD outputs only the necessary ones to reproduce the dataset

motion, as defined by the user through the probability functions (Theodoridis et al. 1999).

16

From Figure 13 one can see that a SUHVHUYDWLRQ�SDUDPHWHU S� �1 or 2 seems to be the best choice. The total

number of node accesses is almost the same. For S = 3 the number of intermediate node accesses increases

drastically. In this case, more levels in the tree are used to preserve trajectories, i.e., the overlap between

nodes increases, and finding a segment during insertion requires more node accesses. However, in using S =

1, trajectories are hardly preserved (cf. Section 4.2). Thus the obvious choice is a preservation parameter of

2. Compared to the R-tree, the STR-tree has fewer node accesses during index creation. In the next section

we will more closely examine the index quality of the STR-tree when compared to the R-tree.

���� ,QGH[�&UHDWLRQ
In this section we show the behaviour of the two measures (node accesses and space utilisation) for various

indices created for the following types of datasets.

• A fixed number of moving objects, fixed objects’ speed, and an increasing time horizon (t1_10 to

t20_10)

• A varying number of moving objects, fixed speed, and fixed time horizon (t20_5 to t20_100)

• A fixed number of moving objects, varying speed, and fixed time horizon (t20_10, t20_10b to t20_10d).

In the following figures, we only show the results for node accesses. Space utilisation does not dependant on

any of those parameters. It is around 96% for the STR-tree, without considering the root node for this

average, and 56% for the R-tree.

 Figure 14 shows the results for the number of node accesses during index creation. From Figure 14 (a) and

(b) we can see that independent of the time horizon, the STR-tree outperforms the R-tree for a datasets

stemming from 30 or less moving objects. This also holds when creating indices using larger page sizes (cf.

Figure 15). The reason here is that for a larger number of moving objects, more and more trajectories exist in

the index. Thus, more and more trajectories want to be preserved. This preservation decreases the capabilities

of the index with respect to spatial subdivision, and consequently the overlap between nodes increases. As a

result, the number of node accesses increases during insertion.

Figure 13: Comparison STR/R-tree number of node accesses

for insertion with varying preservation parameter S

0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

3,0E+05

1 2 3

preservation parameter

no
de

 a
cc

es
se

s
STR, intermed.

STR, leaf

R, intermed.

R, leaf

17

A varying objects’ speed affects the geometry of the trajectories (cf. Figure 14(c)). Thus, the alignment in the

index and consequently the number of node accesses during insertion changes.

���� 3RLQW�DQG�5DQJH�4XHULHV
Query processing is the foremost important task for the use of indices. In this section we compare the STR

and R-tree using two different types of indices stemming from datasets with varying number of moving

objects and constant speed (t20_5 to t20_100) and constant number of objects with varying speed (t20_10,

t20b_10 to t20d_10). Since the time horizon does not affect the quality of the index, we fixed it to 200K

points. We used three different sets of queries (cf. Table 2), one for point and two for range queries. In Table

2, temporal and spatial extent indicate the size of the query window in the respective dimension.

�D� �E� �F�

Figure 14: Node access for insertion STR/R-tree: (a)varying time horizon, (b) number of objects, and (c)

varying objects’ speed

Figure 15: Node accesses for varying page sizes

1.000

10.000

100.000

1.000.000

10.000.000

5 10 20 50 100

moving objects

no
de

 a
cc

es
se

s

STR, 1K

STR, 2K

STR, 3K

R, 1K

R, 2K

R, 3K

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

1 4 8 12 16 20

 time horizon * 10.000 [points]

no
de

 a
cc

es
se

s

STR, total

STR, intermed.

STR, leaf

R, total

R, intermed.

R, leaf

1.000

10.000

100.000

1.000.000

10.000.000

5 10 20 50 100

moving objects
no

de
 a

cc
es

se
s

STR, intermed.

STR, leaf

STR, total

R, intermed.

R, leaf

R, total

0

50.000

100.000

150.000

200.000

250.000

t20b_10 t20_10 t20c_10 t20d_10
object speed

no
de

 a
cc

es
se

s

STR, total

STR, intermed.

STR, leaf

R, total

R, intermed.

R, leaf

18

In the following experiments, we measure the cost of a query by the total number of node accesses, but also

subdivided into intermediate and leaf node accesses.

'DWDVHW ��7XSOHV 7HPSRUDO�([WHQW 6SDWLDO�([WHQW
qpt20 2000 1pt 1pt

q1boxt20 1000 1000pt(0.5%) 50(0.5%)

q2boxt20 1000 2000pt(2%) 50(0.5%)

Table 2: Query files

Figure 16 shows the results for querying indices stemming from datasets with YDU\LQJ�REMHFWV¶�VSHHG. It can

be clearly seen that the STR-tree outperforms the R-tree in most cases for point queries. However, for both

cases of window queries the R-tree remains superior to the STR-tree. Also, observe that the larger the query

window, the larger is the gap between the two indices.

Figure 17 shows the results for querying indices stemming from datasets with D�YDU\LQJ�QXPEHU�RI�PRYLQJ
REMHFWV. For point queries (cf. Figure 17 (a)) the STR-tree exhibits a lower cost than the R-tree for up to ca.

50 moving objects. For range queries, the larger the range, this advantage in performance is more and more

reduced. For a temporal and spatial range of 2% and 0.5%, respectively (cf. Figure 17(c)), the R-tree has a

lower cost in all cases.

�D� �E� �F�

Figure 16: Query processing for indices containing data from slow/fast moving objects: point queries, (a)

qpt20, and region queries, (b) q1boxt20 and (c) q2boxt20

0

1000

2000

3000

4000

5000

6000

t20b_10 t20_10 t20c_10 t20d_10

object speed

no
de

 a
cc

es
se

s

STR, total

STR, intermed.

STR, leaf

R, total

R, intermed.

R, leaf

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

t20b_10 t20_10 t20c_10 t20d_10

object speed

no
de

 a
cc

es
se

s

STR, total

STR, intermed.

STR, leaf

R, total

R, intermed.

R, leaf

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

t20b_10 t20_10 t20c_10 t20d_10

object speed

no
de

 a
cc

es
se

s

STR, total

STR, intermed.

STR, leaf

R, total

R, intermed.

R, leaf

19

���� 6HPDQWLFV�%DVHG�4XHULHV
Spatiotemporal applications are peculiar in that besides the classical spatial queries new types can be derived

from the semantics of the data. As we saw in Section 2.2, semantics-based queries require the extraction of a

partial trajectory to either derive information (speed and heading), or to simply evaluate a spatiotemporal

relationship (enter, cross, etc.).

The STR-tree was designed to store connected segments close to each other by at the same time considering

spatial decomposition. In this section we give the result of an experiment that should demonstrate the

superiority of the STR-tree in querying a partial trajectory. We compare the STR-tree with a modified

version of the R-tree that stores the orientation of the line segments in its leaf nodes. Essentially, we compare

the Insertion and Split algorithms of the STR and R-tree.

For the experiments we measure the number of connected segments found depending on how many leaf

levels are visited. Consider the example shown in Figure 18. Using an ordinary range query we find the bold

�D� �E� �F�

Figure 17: Query processing for indices containing data a varying number of moving objects: point queries,

(a) qpt20, and region queries, (b) q1boxt20 and (c) q2boxt20

initially found segment

front

back node containing
segment that connects
to front

node containing
segment that connects
to front

Figure 18: Finding connected line segments

0

5000

10000

15000

20000

25000

5 10 20 50 100

moving objects

no
de

 a
cc

es
se

s

STR, intermed.

STR, leaf

STR, total

R, intermed.

R, leaf

R, total

0

5000

10000

15000

20000

25000

5 10 20 50 100

moving objects

no
de

 a
cc

es
se

s

STR, intermed.

STR, leaf

STR, total

R, intermed.

R, leaf

R, total

0

10000

20000

30000

40000

50000

60000

5 10 20 50 100

moving objects

no
de

 a
cc

es
se

s

STR, intermed.

STR, leaf

STR, total

R, intermed.

R, leaf

R, total

20

segment in the center. Within the same leaf node (box) we find more segments that are connected to the first.

The most extreme ones are labelled “ front” and “ back” . Depending on the parameter in the experiment we

search only in the initial node (number of levels = 1), or two more leaf nodes which contain the segments

connected to front and back, respectively (number of levels = 2), thus, visiting a total of three leaf nodes. In

case the number of levels = 3, we would visit five leaf nodes, etc.

The cost of this whole operation is determined by the number of node accesses. Here, we distinguish visits to

a node and node reads. When visiting a certain leaf node, a part of its path is already in memory, e.g., if the

current leaf node has the same parent node as the one visited before, we only have to read the new leaf node

from disk since the rest of its path through the tree is already in memory. Visiting in this context means

accessing a node, whereas reading means actually reading it from disk.

According to the experiments in the previous sections, the number of moving objects is the most important

parameter that alters the performance characteristics of the STR-tree. For these experiments, we chose three

different datasets, t20_5, t20_10, and t20_50. For querying the initial line segments we use the range query

file q1boxt.

In Figure 19 we measure the cost for searching. For level = 1 the cost is equal to the cost of a range query as

shown in Figure 17. The cost for searching Q levels is generally lower for the STR-tree than for the R-tree.

However, the rate of increase in the cost increases in both cases with the number of moving objects.

In Figure 20 we see the actual number of connected line segments which were found for a given number of

levels. Here, the STR-tree outperforms the R-tree by a factor of up to four. Interestingly, for indices from a

large number of moving objects the STR-tree shows the highest factor. This seems to be plausible, since

trajectories are preserved “ accidentally” in the R-tree, and for a larger number of moving objects this

preservation vanishes. The number of found segments decreases with the number of moving objects,

although, the rate of decrease is higher for the R-tree than it is for the STR-tree.

�D� �E� �F�

Figure 19: Number of node accesses for different number of levels and datasets, (a) t20_5, (b) t20_10, and (c)

t20_50

0

1000

2000

3000

4000

5000

6000

7000

1 5 10 15 20

levels, visited leaf nodes / 2

no
de

 a
cc

es
se

s

STR, intermed_visit

STR, leaf_visit

STR, intermed_read

STR, leaf_read

R, intermed_visit

R, leaf_visit

R, intermed_read

R, leaf_read

0

2000

4000

6000

8000

10000

12000

14000

16000

1 5 10 15 20

levels, visited leaf nodes / 2

no
de

 a
cc

es
se

s

STR, intermed_visit

STR, leaf_visit

STR, intermed_read

STR, leaf_read

R, intermed_visit

R, leaf_visit

R, intermed_read

R, leaf_read

0

10000

20000

30000

40000

50000

60000

70000

1 5 10 15 20

levels, visited leaf nodes / 2

no
de

 a
cc

es
se

s

STR, intermed_visit

STR, leaf_visit

STR, intermed_read

STR, leaf_read

R, intermed_visit

R, leaf_visit

R, intermed_read

R, leaf_read

21

���� 6XPPDU\�RI�3HUIRUPDQFH�6WXGLHV
The performance studies can be concluded by saying that the STR-tree is an index supporting trajectory and

navigational queries more efficiently than the R-tree. At the same time, its performance on typical point and

range queries is within the range of the R-tree. As shown in the experiments, the STR-tree performance is

closely connected to the “ number of moving objects” parameter of the datasets; the STR-tree performance

degrades with an increasing number of moving objects.

�� &RQFOXVLRQV
The paper presents a new access method for indexing the trajectory data of moving point objects. First,

trajectory data of moving point objects and a set of queries are defined to derive the requirements to the

access method. Trajectory data is obtained by discretely sampling the movement of point objects in time. A

linear interpolation is used in between the samples. The set of queries comprises classical spatial queries,

e.g., point and range queries, as well as pure spatiotemporal queries, e.g., trajectory and navigational queries.

Subsequently, the R-tree is discussed to determine the shortcomings of this method with respect to

spatiotemporal data and queries. The paper proceeds to introducing the STR-tree, an access method tailor-

made to the requirements of trajectory data and spatiotemporal queries. The STR-tree can be easily

implemented on top of the R-tree, a method already adopted in commercial extensible database systems,

since it maintains several properties and construction algorithms of it.

The performance study presents results from experiments involving, index creation, spatial point and range

queries, as well as experiments related to trajectory and navigational queries. The STR-tree proves to be an

access method well suited for spatiotemporal data and queries, by at the same time having a good spatial

search performance.

�D� �E� �F�

Figure 20: Found connected segments for different number of levels and datasets, (a) t20_5, (b) t20_10, and

(c) t20_50

0

100

200

300

400

500

600

1 5 10 15 20

visited leaf nodes

co
nn

ec
te

d
se

gm
en

ts

STR

R

0

100

200

300

400

500

600

1 5 10 15 20

visited leaf nodes

co
nn

ec
te

d
se

gm
en

ts

STR

R

0

50

100

150

200

250

300

350

1 5 10 15 20

visited leaf nodes

co
nn

ec
te

d
se

gm
en

ts

STR

R

22

This work points to several future research directions. One concern with the STR-tree is that its spatial search

performance degrades with data stemming from a larger number of moving point objects. Research should

go into modifying the STR-tree to overcome this limitation. In the STR-tree we use MBBs as

approximations. A suggestion would be to use other geometric bodies that are a more suitable approximation

for moving objects’ trajectories. The present work only presents preliminary algorithms to process

navigational and trajectory queries. Derived from the requirements from real spatiotemporal applications,

e.g., fleet management, these algorithms can be refined and defined in more detail. Also, it would be

interesting to see, whether those two types of queries are the only ones particular for the present application

context.

�� 5HIHUHQFHV
Abel, D.J., and Smith, J.L.: A data structure and algorithm based on a linear key for a rectangle retrieval

problem. &RPSXWHU�9LVLRQ��*UDSKLFV�DQG�,PDJH�3URFHVVLQJ, 24, pp. 1-13, 1983.

Allen, J.F.: Maintaining knowledge about temporal intervals. &RPPXQLFDWLRQV�RI�WKH�$&0, 26(11), pp. 832-

843, 1983.

Bartels, R., Beatty, J., and Barsky, B��� $Q� ,QWURGXFWLRQ� WR� 6SOLQHV� IRU� 8VH� LQ� &RPSXWHU� *UDSKLFV� 	
*HRPHWULF�0RGHOLQJ. Morgan Kaufmann Publishers, Inc., 1987.

Census, Bureau of the: Tiger/Line Census Files: Technical Documentation. U.S. Department of Commerce,

1991.

Egenhofer, M. and Franzosa, R.: Point-set topological spatial relations��,QWHUQDWLRQDO�-RXUQDO�RI�*HRJUDSKLF
,QIRUPDWLRQ�6\VWHPV, 5(2), pp. 161-174, 1991.

Erwig, M. and Schneider, M.: Developments in spatio-temporal query languages, Workshop on Spatio-

Temporal Data Models and Languages, Florence, Italy, 1999

Erwig, M., Gueting, R.H., Schneider, M., and Vazirgiannis, M.: Spatio-Temporal Data Types: An Approach

to Modeling and Querying Moving Objects in Databases, *HR,QIRUPDWLFD, 3(3), 1999. To appear.

Faloutsos, C.: Gray codes for partial match and range queries. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ,

14, pp. 1381-1393, 1988.

Gaede, V. and Guenther, O.: Multidimensional access methods. $&0�&RPSXWLQJ�6XUYH\V, pp. 170-231, 1998

Guenther, O.: The design of the cell-tree: an object-oriented index structure for geometric databases. In

3URFHHGLQJV�RI�WKH�,(((�� � � �&RQIHUHQFH�RQ�'DWD�(QJLQHHULQJ, pp. 598-605, 1989.

Gueting, R.H.: An introduction to spatial database systems�� 9/'%� -RXUQDO� ±� 6SHFLDO� ,VVXH� RQ� 6SDWLDO
'DWDEDVH�6\VWHPV, 3(4), pp. 357-399, 1994.

Guttman, A.: R-trees: a dynamic index structure for spatial searching. ,Q�3URFHHGLQJV�RI�WKH�$&0�6,*02'
&RQIHUHQFH�RQ�WKH�0DQDJHPHQW�RI�'DWD, pp. 47-57, 1984.

Henrich, A., Six, H.W., and Widmayer,P.: The LSD-tree: spatial access to multidimensional point and non-

point objects. In 3URFHHGLQJV�RI�WKH��� � � �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�9HU\�/DUJH�'DWDEDVHV, pp. 45-

53, 1989.

23

Jagadish, H.V.: On indexing line segments. ,Q� 3URFHHGLQJV� RI� WKH� �� � � � ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� 9HU\
/DUJH�'DWDEDVHV, pp. 614-625,1990.

Kollios, G., Gunopulos, D., and Tsotras, V.: On indexing mobile objects. In 3URFHHGLQJV�RI� WKH��� � � �$&0
6\PSRVLXP�RQ�3ULQFLSOHV�RI�'DWDEDVH�6\VWHPV��pp� 261-272, 1999.

Nascimento, M., Silva, J., and Theodoridis, Y.: Evaluation of access structures for discretely moving points.

In 3URFHHGLQJV�RI�WKH�,QWHUQDWLRQDO�:RUNVKRS�RQ�6SDWLR�7HPSRUDO�'DWDEDVH�0DQDJHPHQW, 1999.

Nievergelt, J., Hinterberger, H., and Sevcik, K.: The Grid File: an adaptable, aymmetric multikey file

structure. Transactions on Database Systems, 9(1), pp. 38-71, 1984.

Nievergelt, J. and Hinrichs, K.: Storage and access structures for geometric databases. In 3URFHHGLQJV�RI�WKH
,QWHUQDWLRQDO�&RQIHUHQFH�RQ�)RXQGDWLRQV�RI�'DWD�2UJDQLVDWLRQ, pp. 441-455, 1985.

Orenstein, J.: Spatial query processing in an object-oriented database system. ,Q�3URFHHGLQJV�RI� WKH�$&0�
6,*02'�&RQIHUHQFH�RQ�WKH�0DQDJHPHQW�RI�'DWD, pp. 326-336, 1986.

Orenstein, J.: A comparison of spatial query processing techniques for native and parameter spaces. In

3URFHHGLQJV�RI�WKH�$&0�6,*02'�&RQIHUHQFH�RQ�0DQDJHPHQW�RI�'DWD, pp. 343-352, 1990.

Pagel, P., Six, H., Toben, H., and Widmayer, P.: Towards an analysis of range query performance. In

3URFHHGLQJV�RI�WKH��� � � �$&0�6\PSRVLXP�RQ�3ULQFLSOHV�RI�'DWDEDVH�6\VWHPV, pp. 214-221, 1993.

Pfoser, D. and Jensen, C.S.: Capturing the Uncertainty of Moving-Object Representations. ,Q�3URFHHGLQJV�RI
WKH�� � � �,QWHUQDWLRQDO�6\PSRVLXP�RQ�6SDWLDO�'DWDEDVHV, pp. 111-132, 1999.

Samet, H.: The Quadtree and related hierarchical data structures. $&0�&RPSXWLQJ�6XUYH\V 16(2): pp. 187-

260, 1984.

Sellis, T., Roussopoulos, N., and Faloutsos, C.: The R+-tree: a dynamic index for multi-dimensional objects.

In 3URFHHGLQJV�RI�WKH��� � � �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�9HU\�/DUJH�'DWDEDVHV, pp. 507-518, 1987.

Sistla, A., Wolfson, O., Chamberlain, S., and Dao, S.: Modeling and querying moving objects. In

3URFHHGLQJV�RI�WKH��� � � �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�'DWD�(QJLQHHULQJ, pp. 422-432, 1997.

Stefanakis, E., Theodoridis, Y., Sellis, T., and Lee, Y.C.: Point Representation of Spatial Objects and Query

Window Extension: A New Technique for Spatial Access Methods. ,QWHUQDWLRQDO� -RXUQDO� RI
*HRJUDSKLFDO�,QIRUPDWLRQ�6FLHQFH, 11(6), pp. 529-554, 1998.

Tayeb, J., Ulusoy, O., and Wolfson, O.: A Quadtree Based Dynamic Attribute Indexing Method��&RPSXWHU
-RXUQDO, 41(3), pp. 185-200, 1998.

Theodoridis, Y., Sellis, T., Papadopoulos, A., and Manolopoulos, Y.: Specifications for efficient indexing in

spatiotemporal databases", In 3URFHHGLQJV� RI� WKH� ��WK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� 6FLHQWLILF� DQG
6WDWLVWLFDO�'DWDEDVH�0DQDJHPHQW, pp. 123-132, 1998.

Theodoridis, Y., Silva, R., and Nascimento, M.: On the generation of spatiotemporal datasets. In 3URFHHGLQJV
RI�WKH�� � � �,QWHUQDWLRQDO�6\PSRVLXP�RQ�6SDWLDO�'DWDEDVHV, pp.147-164, 1999.

Theodoridis, Y., Stefanakis, E., Sellis, T.: Efficient cost models for spatial queries using R-trees. In� ,(((
7UDQVDFWLRQV�RQ�.QRZOHGJH�DQG�'DWD�(QJLQHHULQJ, to appear, 2000.

