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Abstract 
The domain of spatiotemporal applications is a treasure trove 
of new types of data and queries. However, work in this area 
is guided by related research from the spatial and temporal 
domains, so far, with little attention towards the true nature 
of spatiotemporal phenomena. In this work, the focus is on a 
spatiotemporal sub-domain, namely the trajectories of 
moving point objects. We present new types of 
spatiotemporal queries, as well as algorithms to process 
those. Further, we introduce two access methods this kind of 
data, namely the Spatio-Temporal R-tree (STR-tree) and the 
Trajectory-Bundle tree (TB-tree). The former is an R-tree 
based access method that considers the trajectory identity in 
the index as well, while the latter is a hybrid structure, which 
preserves trajectories as well as allows for R-tree typical 
range search in the data. We present performance studies that 
compare the two indices with the R-tree (appropriately 
modified, for a fair comparison) under a varying set of 
spatiotemporal queries, and we provide guidelines for a 
successful choice among them. 

1 Introduction  
Space and time are two properties inherent to any object in 
the real world. If modeled in a database (Spaccapietra et 
al. 1998, Tryfona and Jensen, 1999), efficient ways to 
query these kinds of data have to be provided. Research 
efforts in the fields of spatial and temporal databases to 
index the respective data are numerous, and as we shall 
see later on in this work, serve as the basis for a more far-
reaching effort into spatiotemporal data. It is sometimes 

not enough to take the “best” of both worlds to obtain a 
satisfying solution to a given spatiotemporal problem. In 
our context the problem is the indexing and querying of 
spatiotemporal information. More specifically, in this 
work we focus on data stemming from the movement of 
spatial point objects. We consider point objects, since in 
many applications, the size and shape of an object is of no 
importance—only its position matters. Examples include 
navigational systems, but also the thriving developments 
in mobile computing (Barbará 1999).  
 The data obtained from moving point objects is 
similar to a “string,” arbitrary oriented in 3D space, where 
two dimensions correspond to space and one dimension 
corresponds to time. By sampling the movement of a point 
object, we obtain a polyline, instead of a “string,” 
representing the trajectory of the moving point object. In 
pure geometrical terms, this object movement is termed a 
trajectory (cf. Figure 1). In the sequel, we will use 
“movement” and “trajectory” interchangeably. 
 When designing an access method, we not only have 
to be aware of the nature of the data, but must also know 
the types of queries, the method is to be used for. Typical 
queries in spatial and temporal databases are range 
(window/interval) queries. Queries for spatiotemporal data 
are often more demanding due to the extra semantics 
involved. An object’s trajectory can be treated as spatial 
(3D) data itself, and thus may besupported by a spatial 
access method.  
 In the literature, the following taxonomy exists: (a) 
work on indexing the present positions of objects and 
asking future queries (Kollios et al. 1999, Saltenis et al. 
2000) and (b) work on indexing the past positions of 
objects and asking historical queries. Within the latter 
category, into which the present work also belongs, most 
approaches deal with spatial data changing discretely over 
time and do not take continuous changes into account. 
Examples include R-trees for multimedia data 
(Theodoridis et al. 1996), overlapping Quadtrees 
(Tzouramanis et al. 1998) and R-tree variations for spatial 
data (Nascimento et al. 1999).  
 A problem not addressed by using any of the above 
access methods is the preservation of trajectories. Related 
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work treats data merely as a set of line segments, 
regardless of whether some belong to the same trajectory. 
Line segments are grouped together merely according to 
spatial properties such as proximity. This is not optimal, 
since certain types of queries require access to parts of the 
whole trajectory. Further, the presented spatiotemporal 
data has another particularity; it is considered to be 
append-only with respect to time, i.e., data grows mainly 
in the temporal dimension (Theodoridis et al. 1998).  
 To capture the particularities of spatiotemporal data 
and queries, we propose two access methods. The first, the 
Spatio-Temporal R-tree (hereafter called STR-tree), 
organizes line segments not only according to spatial 
properties, but also by attempting to group the segments 
according to the trajectories they belong to. We term this 
property trajectory preservation. The second, the 
Trajectory-Bundle tree (hereafter called TB-tree), aims 
only for trajectory preservation and leaves other spatial 
properties aside.  
 The outline of the paper is as follows. Section 2 
describes the nature of the data as well as the type of 
queries encountered in applications with moving point 
objects. Section 3 presents the algorithms comprising the 
proposed access methods. Section 4 presents query-
processing algorithms. Section 5 gives performance 
studies that compare both methods with the “classic” R-
tree, appropriately modified to take gain of the knowledge 
that the entries to be indexed are line segments. Finally, 
Section 6 gives conclusions and directions for future 
research1. 

2 Moving Objects: Data and Queries 
In this section, we discuss spatiotemporal data by giving a 
motivating example. We further introduce sampling as a 
method to measure positions over time. Also, we introduce 
a set of queries that are of importance in the given 
application context. 
 

                                                           
1 Although in the sequel we consider objects moving on a 2D plane, 
extending to 3D space (e.g. movement of planes) is straightforward. 

2.1 Trajectories 
The optimization of transportation, especially in highly 
populated areas, is a very challenging task that may be 
supported by an information system. A core application in 
this context is fleet management. Vehicles equipped with 
GPS devices transmit their positions to a central computer 
using either radio communication links or mobile phones. 
At the central site, the data is processed and utilized. In 
order to record the movement of an object, we would have 
to know the position at all times, i.e., on a continuous 
basis. However, GPS and telecommunications tech-
nologies only allow us to sample an object's position, i.e., 
to obtain the position at discrete instances of time, such as 
every few seconds. 
 A first approach to represent the movements of 
objects would be to simply store the position samples. 
This would mean that we could not answer queries about 
the objects' movements at times in-between those of the 
sampled positions. Rather, to obtain the entire movement, 
we have to interpolate. The simplest approach is to use 
linear interpolation, as opposed to other methods such as 
polynomial splines (Bartels et al. 1987). The sampled 
positions then become the endpoints of line segments of 
polylines, and the movement of an object is represented by 
an entire polyline in 3D space. The solid line in Figure 1 
represents the movement of a point object. Space and time 
coordinates are combined to form a single coordinate 
system. The dashed line shows the projection of the 
movement on the 2D plane (Pfoser and Jensen 1999). 
Figure 2 illustrates the spatiotemporal workspace (the 
cube in solid lines) and several trajectories (the solid 
polylines). Time moves in the upward direction, and the 
top of the cube is the time of the most recent position 
sample. The wavy-dotted lines at the top symbolize the 
growth of the cube with time. 

 

 

Figure 2: Trajectories of moving point objects in 
spatiotemporal workspace 

Semantically, the temporal dimension is different from the 
two spatial dimensions. In classical spatial databases, only 
positional information is available. In our case, however, 
we have also derived information, e.g., speed, 
acceleration, traveled distance, etc. Consequently, 
information is derived from the combination of spatial and 
temporal data. Further, we do not only store a number of 

 
Figure 1: The movement of a spatial object and the 

corresponding trajectory 
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spatial objects in the index, i.e., line segments, but rather 
have entries that are parts of larger objects, the 
trajectories. As we will see in the next section, these 
differences create interesting new and inherently spatio-
temporal types of queries. 

2.2 Queries 
A typical search on sets of objects’ trajectories includes a 
selection with respect to a given range, a search inherited 
from spatial and temporal databases. Queries of the form 
“find all objects within a given area (or at a given point) 
some time during a given time interval (or at a given time 
instant)” or “find the k-closest objects with respect to a 
given point at a given time instant” (Theodoridis et al. 
1998) remain very important. A query type important in 
temporal databases is the time-slice query, i.e., in the 
spatiotemporal context, to determine the positions of (all) 
moving objects at a given time point in the past 
(Theodoridis et al. 1996). Using the 3D representation 
presented in Section 2.1, the time-slice query constitutes a 
special case of a range query with a query window of zero 
extent in the temporal dimension.  
 In addition, novel queries become important due to 
the specific nature of spatiotemporal data. The so-called 
trajectory-based queries are classified in “topological” 
queries, which involve the whole information of the 
movement of an object, and “navigational” queries, which 
involve derived information, such as speed and heading.  
 As such, we distinguish between two types of 
spatiotemporal queries: 
• coordinate-based queries, such as point, range, and 

nearest-neighbor queries in the resulting 3D space, 
and  

• trajectory-based queries, involving the topology of 
trajectories (topological queries) and derived infor-
mation, such as speed and heading of objects (naviga-
tional queries). 

 Both types of queries will be involved in our 
performance study in Section 5 while in the sequel we 
discuss the latter ones in more detail. 

2.2.1 Topological Queries 
Topological queries involve the whole or a part of the 
trajectory of an object. They are deemed very important, 
but also rather expensive. Unfortunately, a definition of a 
well established set of predicates, such as the 9-
intersection model (Egenhofer and Franzosa 1991) for 
spatial data and the 13 relations between intervals (Allen 
1983) for temporal data is not yet available for 
spatiotemporal data. In one of the first approaches, Erwig 
and Schneider (1999) discuss extending SQL with the 
spatiotemporal versions of the basic spatial predicates, 
disjoint, meet, overlap, equal, covers, contains, covered-
by, and inside, defined by the 9-intersection model as well 
as composite predicates based on the basic ones, namely 
enter (and its reverse, leave), cross, and bypass.  

Whether an object enters, crosses, or bypasses a given 
area can be determined only by examining more than one 
segment of its trajectory. For instance, an object entered 
into an area with respect to a given time horizon, if the 
start point of its least recent segment (respectively, the 
endpoint of its most recent segment) was outside 
(respectively, inside) the given area. “Recent” here refers 
to time, e.g., a point is less recent, if its time stamp is older 
in time. Similar definitions hold for the leave, cross, and 
bypass predicates, which are also illustrated in Figure 3(a). 

2.2.2 Dynamic Information and Navigational Queries 
Dynamic information is not explicitly stored, but has to be 
derived from the trajectory information. The average or 
top speed of an object is determined by the fraction of 
traveled distance over time. The heading of an object is 
computed by determining a vector between two specified 
positions. Also, the area an object covers is computed by 
considering the convex hull of its trajectory. From these 
definitions, it is evident that each property is unique, but 
depends on the time interval considered. For example, the 
heading of an object in the last ten minutes may have been 
strictly East, but considering the last hour, it may have 
been Northeast. The same is true for speed; at the moment, 
the speed of an object might be 100 mph, but during the 
last hour, it might average out to 30 mph.  
 Queries involving speed or heading are expected to 
be very important in real-life applications. Let us discuss 
the following examples: “At what speed does this plane 
move? What is its top speed?” (Güting et al. 2000). The 
former considers the now instance as the time horizon, 
whereas the second one is an aggregation over a longer 
time period. But again, to compute the result, we have to 
examine a set of line segments that belong to the same 
trajectory, as opposed to lie within a spatiotemporal range. 
 Table 1 summarizes the spatiotemporal query types. 
We adopt a signature-like notation as presented in (Güting 
et al. 2000). The “operation” column lists the operations 
used for several query types and the “signature” column 
presents the involved types, e.g., a coordinate-based query 
uses the inside operation to determine the segments within 
the specified range. The notation {segments} simply refers 
to a set, it does not capture that this set constitutes one or 
more trajectories. 

(a) (b) 

Figure 3: (a) Topological and (b) combined queries 
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Query Type Operation Signature 

Coordinate-based 
Queries 

overlap, inside, 
etc. 

range × {segments} 
� {segments} 

Topological 
Queries 

enter, leave, 
cross, bypass 

range × {segments} 
� {segments} 

Trajectory
-based 
Queries 

Naviga-
tional 
Queries 

traveled distance, 
covered area 
(top or average), 
speed, heading, 
parked 

{segments} � int 
{segments} � real
{segments} � bool

Table 1: Types of spatiotemporal queries 

2.2.3 Combined Queries 
An important issue in dealing with spatiotemporal queries 
is to extract information related to (partial) trajectories, 
i.e., we have to (a) select the trajectories and (b) select the 
parts of each trajectory we want to return. Selection of 
trajectories can occur (i) by querying the trajectory 
identifier, (ii) by selecting a segment of the trajectory 
using a spatiotemporal range, (iii) by using a topological 
query, and/or (iv) by using derived information. In the 
previous examples, we left the identity of the taxi 
unspecified; it can either be selected by an identifier, e.g., 
“taxi no. 120,” or by spatiotemporal selection, e.g., “a taxi 
at the corner of 5th Avenue and Central Park South 
between 7 a.m. and 7:15 a.m. today.” 
 In the following we show a more complicated 
example of combined search: “What were the trajectories 
of objects after they left Tucson between 7 a.m. and 8 a.m. 
today, in the next hour?” This query uses the range, 
“Tucson between 7 a.m. and 8 a.m. today” to identify the 
trajectories while, “in the next hour” gives a (temporal) 
range to delimit the parts of the trajectories that we want 
to retrieve. Figure 3(b) illustrates this principle. The dotted 
cube represents the spatiotemporal range used when 
selecting the trajectories, and the polyline stands for a 
selected trajectory of a moving object. The bold part of the 
polyline represents the part of the trajectory that is 
returned (e.g., in the next hour).  
 Along these lines, one can construct various query 
combinations that are plausible in the spatiotemporal 
application context.  

3 The Access Methods 
Having described the types of data and queries, the 
following section defines the two access methods 
proposed for those types of data and queries. Before that, 
we will give a short overview of the R-tree (Guttman 
1984). The R-tree is a height-balanced tree with the index 
records in its leaf nodes containing pointers to actual data 
objects. Leaf node entries are of the form (id, MBB), 
where id is an identifier that points to the actual object and 
MBB (Minimum Bounding Box) is an n-dimensional 
interval. Non-leaf node entries are of the form (ptr, MBB), 
where ptr is the pointer to a child node and MBB is the 

covering n-dimensional interval. A node in the tree 
corresponds to a disk page. Every node contains between 
m and M entries. 
 The insertion of a new entry into the R-tree is done 
by traversing a single path from the root to the leaf level. 
The path is chosen with respect to the least enlargement 
criterion (ChooseLeaf algorithm by Guttman (1984)) and 
covering MBBs are adjusted accordingly. In case an 
insertion causes splitting of a node, its entries are 
reassigned to the old node and a newly created one 
(according to one of the three alternative algorithms, 
Exhaustive, QuadraticSplit or LinearSplit, proposed by 
Guttman (1984)). To delete an entry from the R-tree, a 
reverse insertion procedure applies, i.e., covering MBBs 
are adjusted accordingly. In case the deletion causes an 
underflow in a node, i.e., node occupancy falls below m, 
the node is deleted and its entries are re-inserted. When 
searching an R-tree, we check whether a given node entry 
overlaps the search window (assuming a range query). If 
so, we visit the child node and thus recursively traverse 
the tree. Since overlapping MBBs are permitted, at each 
level of the index there may be several entries that overlap 
the search window.  
 In the context of spatiotemporal data this technique 
proves to be inefficient. Figure 4(a) shows that in 
approximating the line segments with MBBs, we introduce 
large amounts of “dead space.” It is evident that the 
corresponding MBB covers a large portion of the space, 
whereas the actual space occupied by the trajectory is 
small. This leads to high overlap and consequently to a 
small discrimination capability of the index structure.  

x

y

t

(x , y , t )1 1 1

(x , y , t )2 2 2

(x , y , t )3 3 3

(x , y , t )4 4 4

 

 

1 
4 3 

2 
 

(a) (b) 
Figure 4: (a) approximating trajectories using MBBs, and 

(b) mapping of line segments in a MBB 

Another aspect not captured in R-trees is the knowledge 
about the specific trajectory a line segment belongs to. To 
smoothen these inefficiencies (and provide an as fair as 
possible performance comparison later in Section 5), we 
modify the R-tree as follows: As can be seen in Figure 
4(b), a line segment can only be contained in four different 
ways in an MBB. This extra information is stored at the 
leaf level by simply modifying the entry format to (id, 
MBB, orientation), where the orientation’s domain is 
{1,2,3,4}. Assuming we number the trajectories from 0 to 
n, a leaf node entry is then of the form (id, trajectory#, 
MBB, orientation). 
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Although these suggestions are simple to implement and 
improve the efficiency of the R-tree to index line segments 
as parts of trajectories of moving points, we argue that this 
is not enough and query processing is still problematic. 
Therefore, we propose two novel approaches in indexing 
trajectories, the STR-tree and the TB-tree. 

3.1 The STR-tree  
The STR-tree is an extension of the (appropriately 
modified, as discussed previously) R-tree to support 
efficient query processing of trajectories of moving points. 
The two access methods differ in their insertion/split 
strategy. 

3.1.1 Insertion Algorithm 
The insertion process is considerably different from the 
procedure known from the R-tree. As already mentioned, 
the insertion strategy of the R-tree is based on the (purely 
spatial) least enlargement criterion. On the other hand, 
insertion in the STR-tree not only considers spatial 
closeness, but also partial trajectory preservation, i.e., we 
try to keep line segments belonging to the same trajectory 
together. As a consequence, when inserting a new line 
segment, the goal should be to insert it as close as possible 
to its predecessor in the trajectory. Thus, insertion in the 

STR-tree involves a new algorithm, FindNode, which 
returns the node that contains the predecessor. As for the 
insertion, if there is room in this node, the new segment is 
inserted there. Otherwise, we have to apply a node split 
strategy. In Figure 5, we show a sample index in which the 
node returned by FindNode is marked with an arrow.  
 The ideal characteristics for an index suitable for 
object trajectories would be to decompose the overall 
space according to time, the dominant dimension in which 
“growth” occurs, while simultaneously preserving 
trajectories. In the following, we describe the Insert 
algorithm shown in Figure 6, which includes an additional 
parameter, called the preservation parameter, p, that 
indicates the number of levels we “reserve” for the 
preservation of trajectories. When a leaf node returned by 
FindNode is full, the algorithm checks whether the p-1 
parent nodes are full (in Figure 5, for p = 2, we only have 
to check the node drawn in bold at non-leaf level 1). In 
case one of them is not full, the leaf node is split. In case 
all of the p-1 parent nodes are full, Insert invokes 
ChooseLeaf on the subtree including all the nodes further 
to the right of the current insertion path (the gray shaded 
tree in Figure 5). In the sequel, the so-called ChooseLeaf 
and QuadraticSplit algorithms will be used without further 
details, since they are identical to Guttman’s original 
algorithms.  
 The extended version of this paper (Pfoser et al. 
2000) experimentally established that the best choice of a 
preservation parameter is p = 2. A smaller p decreases the 
trajectory preservation and increases the spatial 
discrimination capabilities of the index. The converse is 
true for a larger p. 

3.1.2 Split Algorithm 
Since the goal is to preserve trajectories in the index, 
splitting a leaf node requires an analysis of what kinds of 
segments are contained in a node. Any two segments in a 
leaf node may belong to the same trajectory or not, and, 
suppose they belong to the same trajectory, may have 
common endpoints or not. Thus a node can contain four 
different types of segments:  
• disconnected segments, i.e., segments not connected 

to any other segment in the node,  
• forward- (respectively, backward-) connected 

segments, i.e., the top (respectively, bottom) endpoint, 
in other words, the more (respectively, less) recent 
endpoint, of such a segment  is connected to the 
bottom (respectively, top) endpoint of another 
segment belonging to the same trajectory,  

• bi-connected segments, i.e., both (top and bottom) 
endpoints of such a segment are connected to the 
(bottom and top, respectively) endpoint of two other 
segments belonging to the same trajectory.  

 With this, we can distinguish the three split scenarios 
of Figure 7. In case (a), where all segments are 
disconnected, the QuadraticSplit algorithm is invoked to 
determine the split. In case (b), where not all but at least 

Figure 5: Insertion into the STR-tree 
 
Algorithm Insert(N,E) 
INS1 Invoke FindNode(N,E) 
INS2 IF node N’ found, 

IF N’ has space,  
insert E 

ELSE 
IF the p-1 parent nodes are full, 

invoke ChooseLeaf(N’’,E) on a tree, pointed to by 
N’’, which excludes the current branch. 

ELSE invoke Split(N’). 
ELSE ChooseLeaf(N,E). 

 
Algorithm FindNode(N,E) 
FN1 IF N is NOT a leaf, 

FOR EACH entry E’ of N whose MBB intersects with the 
MBB of E, 

invoke FindNode(N’,E), where N’ is the childnode of 
N pointed to by E’. 

ELSE 
IF N contains an entry that is connected to E, 
 RETURN N. 

Figure 6: STR-tree insert algorithm 
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one segment is disconnected, the disconnected segments 
are placed into the newly created node. Finally, in case (c) 
where no disconnected segments exist, the most recent 
(i.e., with respect to time) backward-connected segment is 
placed in the newly created node.  
 Figure 8 summarizes the split algorithm. The general 
idea is to put newer and thus more recent segments into 
new nodes. Consequently, new segments are much likelier 
inserted into these nodes, i.e., these nodes have a higher 
“insertion potential” than the ones containing older nodes. 
This potential allows us also to relax the constraint of 
minimum node capacity m, known from the R-tree, when 
splitting a node. Finally, splitting non-leaf nodes is simple, 
in that we only create a new node for a new entry. Using 
this insertion and split strategy, we obtain an index that 
preserves trajectories and considers time as the dominant 
dimension when decomposing the occupied space. 

3.2 The TB-Tree 
The TB-tree is fundamentally different from the 
previously presented access methods. The STR-tree 
introduces a new insertion/split strategy to achieve 
trajectory orientation, while not compromising the space 
discrimination capabilities of the index too much. Apart 
from this, the STR-tree is an R-tree based access method. 
The TB-tree takes a more radical step. An underlying 
assumption when using the R-tree is that all inserted 
geometries are independent. In our context this translates 

to all line segments being independent. However, line 
segments are parts of trajectories and this knowledge is 
only implicitly maintained in the R-tree and the STR-tree 
structures. With the TB-tree, we aim for an access method 
that strictly preserves trajectories such that a leaf node 
only contains segments belonging to the same trajectory, 
thus the index is best understood as a trajectory bundle. 
This approach is only possible when making some 
concessions to the most important R-tree property, node 
overlap or spatial discrimination. As a drawback, line 
segments independent from trajectories that lie spatially 
close will be stored in different nodes. As the overlap 
increases, the space discrimination decreases, and, thus, 
the classical range query cost increases. However, by 
giving up on space discrimination, we gain on trajectory 
preservation. As we shall see later, this property is 
important for answering “pure spatiotemporal” queries2. 

3.2.1 Insertion Algorithm 
The goal is to “cut” the whole trajectory of a moving 
object into pieces, where each piece contains M line 
segments, with M being the fanout, i.e., a leaf node 
contains M segments of the trajectory. Figure 9 illustrates 
the insertion procedure. Important stages throughout the 
procedure are marked with black, circled numbers 1-6.  
 The insertion algorithm is formally shown in Figure 
10. To insert a new entry, we simply have to find the leaf 
node that contains its predecessor in the trajectory. We 
start by traversing the tree from the root and step into 
every child node that overlaps with the MBB of the new 
line segment. We choose the leaf node containing a 
                                                           
2 Both the (modified) R-tree and the STR-tree store entries of the format 
(id, trajectory#, MBB, orientation) at the leaf level. Since the TB-tree 
does not allow segments from different trajectories to be stored in the 
same leaf node, the trajectory# is assigned to the node rather than to each 
entry. Thus, the format of a leaf node entry is (id, MBB, orientation) 
while trajectory# can be stored once in the header of the leaf node 

 
 (a) (b) (c) 

 Figure 7: Different split scenarios 
 
Algorithm Split(N) 
S1 IF node is a non-leaf node,  

invoke SplitNon-leafNode(N). 
ELSE invoke SplitLeafNode(N). 

 
Algorithm SplitNon-leafNode(N) 
SNN1 Put the new entry into a new node and keep the old one 

as it is 
 
Algorithm SplitLeafNode(N) 
SLN1 IF entries in node are all disconnected segments,  

invoke QuadraticSplit(N). 
ELSE IF node contains disconnected, and other types of 
segments,  

put all disconnected segments in a new node. 
ELSE IF node contains single and disconnected 
segments,  

put the newest single connected segment in new node

Figure 8: STR-tree split algorithm 

Figure 9: Insertion into the TB-tree 
 
Algorithm Insert(N,E) 
INS1 Invoke FindNode(N,E) 
INS2 IF node N’ is found, 
  IF N’ has space,  
   insert new segment. 
  ELSE 
   create new leaf node for new segment 
 ELSE 
  create new leaf node for new segment  

Figure 10: TB-tree insert algorithm 
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segment connected to the new entry (stage 1 in Figure 9). 
The finding of a segment is summarized in the FindNode 
algorithm, which is identical to that of the STR-tree. In 
case the leaf node is full, a split strategy is needed. 
Splitting a leaf node would violate our principle of total 
trajectory preservation. Thus, we instead create a new leaf 
node. In our example, we step up the tree until we find a 
non-full parent node (stages 2 through 4). We choose the 
right-most path (stage 5) to insert the new node. If there is 
room in the parent node (stage 6), we insert the new leaf 
node as shown in Figure 9. In case it is full, we split it by 
creating a new node at (non-leaf) level 1 that has the new 
leaf node as its only descendant. If necessary, the split is 
propagated upwards. Illustratively, the TB-tree is growing 
from left to right, i.e., the left-most leaf node was the first 
and the right-most was the last, we inserted. 

3.2.2 Trajectory Preservation 
At this point one might argue that this strategy leads to an 
index with a high degree of overlap. This would certainly 
be the case if it were arbitrary 3D data that was indexed. 
However, in our case, we only “neglect” two out of three 
dimensions, the spatial dimensions, with respect to space 
discrimination. The temporal dimension offers a given 
space discrimination, in that data is inserted in an append-
only fashion (Theodoridis et al. 1998).  
 As such, the structure of the TB-tree is actually a set 
of leaf nodes, each containing a partial trajectory, 
organized in a tree hierarchy. In other words, a trajectory 
is distributed over a set of disconnected leaf nodes. As we 
shall see later on when discussing about query processing, 
it is necessary to be able to retrieve segments based on 
their trajectory identifier. A simple solution we have 
implemented is to connect leaf nodes by a superimposed 
data structure. We choose a doubly linked list that 
connects leaf nodes including parts of the same trajectory 
in a way that preserves trajectory evolution. Figure 11 
gives a part of a TB-tree structure and a trajectory 
illustrating this approach. For clarity, the trajectory is 
drawn as a band rather than a line. The trajectory 
symbolized by the gray band is fragmented across six 
nodes, c1, c3, etc. In the TB-tree these leaf nodes are 
connected through a linked list.  
 By visiting an arbitrary leaf node, these links allow us 
to retrieve the (partial) trajectory at minimal cost: 
Considering a fanout f at a leaf node, the size of the partial 
trajectory contained in the leaf node is f. Among the 
segments stored and assuming that f ≥ 3, it is by definition 
that f-2 segments are bi-connected, one is forward-
connected and one is backward-connected. To find the 
remaining segments of the same trajectory, one has just to 
follow the pointers of the linked list to the next and 
previous leaf nodes.  

4 Query Processing 
Section 2 described various types of queries as they occur 
in spatiotemporal applications. In this section, we present 

the algorithms for processing those queries using the three 
access methods. The queries and algorithms can be 
classified as coordinate-based, trajectory-based, or 
combined (cf. Section 2).  
 The processing of coordinate-based queries is a 
straightforward extension of the classical range query 
processing using the R-tree; the idea is to descend the tree 
with respect to coordinate constraints until the entries are 
found in the leaf nodes. Trajectory-based queries comprise 
topological and navigational queries. Due to space 
limitations, we omit the presentation of topological query 
processing (and the corresponding discussion in the 
performance section); for details, please refer to Pfoser et 
al. (2000). 
 Algorithms for combined queries are different in that 
not only a spatial, but also a combined search, is 
performed, i.e., we not only retrieve all entries contained 
in a given sub-space (range query), but retrieve entries 
belonging to the same trajectory. 
 We will devise separate algorithms, on one hand, for 
the R-tree and the STR-tree and, on the other hand, for the 
TB-tree. The algorithm for the TB-tree is different because 
this method provides the data structure of a linked list to 
retrieve partial trajectories. 

4.1 Combined Search in the R-Tree and the STR-Tree 
The first step in processing combined queries is to retrieve 
an initial set of segments based on a spatiotemporal range. 
We apply the range-search algorithm used in the R-tree. 
The idea is to descend the tree with respect to intersection 
properties until the entries are found in the leaf nodes. In 
Figure 12, we search the tree using the cube c1 and retrieve 
two segments of trajectory t2 (labeled 1 and 2), and four 
segments of trajectory t1 (labeled 3 to 6). The six segments 
are shown in darker gray contained in cube c1. This 
completes the first stage of the combined search.  
 In the second stage, we extract partial trajectories. We 
now take each of the found segments and try to find its 
connecting segment, first, in the same leaf node, and, 
second, in other leaf nodes. Consider segment 1 of 
trajectory t2. We find two segments, one connected to the 
top endpoint (forward connected) and one connected to the 
bottom endpoint (backward connected). 

 
Figure 11: The TB-tree structure 
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Figure 12: Stages in combined search 

We may find those segments in the same leaf node, or we 
may have to search in other leaf nodes. Searching in other 
leaf nodes is conducted as a range search, with the 
endpoint of the segment in question as a predicate. 
Arriving at the leaf level, the algorithm checks whether a 
segment is connected to the segment in question in the 
specified way. Using this recursive approach, we retrieve 
more and more segments of the trajectory. The algorithm 
continues until a newly found segment is outside cube c2. 
The last segments returned for segment 1 are segments 7 
and 8.  
 Figure 13 outlines the combined search algorithm. 
One problem remains, namely that of not retrieving the 
same trajectory twice. The initial range search retrieves 
two segments, 1 and 2, of trajectory t2. By using both 
segments as a starting point, we will retrieve the same 
trajectory twice. To avoid this, we store the trajectory# 
once it is retrieved and check before querying a new 
trajectory whether it was retrieved already. In our 
example, if we use segment 1 first to retrieve a partial 
trajectory t1 and store this information, we omit retrieving 
it again for segment 2. 

4.2 Combined Search in the TB -Tree 
The combined search algorithm of the TB-tree is similar to 
the one presented above. The difference lies in how the 
partial trajectories are retrieved. The R-tree and the STR-
tree structures provide little help in retrieving trajectories, 
i.e., connected segments, but offer only a modified range 
search algorithm. The linked lists of the TB-tree allow us 
to retrieve connected segments without searching. 
 The first stage in combined searching is the same as 
before. Here, for the seed segments—in our example 
segments 1 and 2 for t2 and segments 3 to 6 for t1—we 
have to retrieve a partial trajectory contained in the outer 
range c2. Again, we have two possibilities: a connected 
segment can be in the same leaf node or in another node. 
If it is in the same, finding it is trivial. If it is in another 

node, we have to follow the next (previous) pointer to the 
next (previous) leaf node (cf. Section 3.2.2). 
 Although the approach to retrieve partial trajectories 
is different, we have to take care not to retrieve the same 
trajectory more than once (cf. Section 4.2). Once a partial 
trajectory is retrieved, we store its id, and, before 
retrieving another trajectory, we check whether it was 
retrieved already.  
Figure 14 contains the updates to the combined search 
algorithm as presented in Figure 13. 

5 Performance Comparison 
In this section, we aim at comparing the three access 
methods and establishing conditions, which are optimal 
for each one. This allows us to delimit the situations in 
which each access method is useful. Thus, we compare the 
access methods under varying sets of data and queries. 
The performance studies were conducted using C 
implementations of the three access methods. For the 
parameters in the experiments, we have chosen the page 
size for the leaf and non-leaf nodes to be 1024 bytes. With 
this page size, the R-tree and the STR-tree fanout is 28 and 
36 for leaf and non-leaf nodes, respectively. Since the leaf 
node structure of the TB-tree is different, the fanout is 31 
and 36 for leaf and non-leaf nodes, respectively.  

5.1 Datasets 
Unlike spatial data, where there exist several popular real 
datasets for experimentation purposes (e.g., the TIGER-
Line files of geographic features, such as roads, rivers, 
lakes, boundaries covering the entire United States), well-
known and widely accepted spatiotemporal datasets for 
experimental purposes are missing. Due to the lack of real 
data, our performance study consists of experiments on 
synthetic datasets. We utilize the GSTD generator of 
spatiotemporal datasets (Theodoridis et al. 1999) to create 
trajectories of moving objects under various distributions. 
GSTD allows the user to generate a set of line segments 
stemming from a specified number of moving objects. 
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Probability functions are used to describe the movement of 
the objects as a combination of several parameters. More 
precisely, the user can specify the initial positional 
distribution of the objects in the unit workspace [0, 1)2 as 
well as the stepping in time and space for each movement 
using either uniform, Gaussian, or skewed probability 
functions.  
 The parameters of the generator are given the 
following values: The initial distribution of points is 
Gaussian, i.e., all points are distributed around the center 
of the workspace. The movement of points is always ruled 
by a random distribution of the form random(-x,x), thus 
achieving an unbiased spread of the points in the 
workspace. The number of different possible snapshots 
(i.e., the temporal resolution) is held constant at 100K. 
Finally, the number of moving objects (i.e., trajectories) 
varies between 10 and 1000, resulting in datasets  
consisting of between 15K and 1500K entries (i.e., line 
segments). 

5.2 Space Utilization and Index Size  
An aspect often neglected when comparing access 
methods is the size of the created index structures. Table 2 

lists the sizes of the three different indices and the 
corresponding space utilization.  
 The average space utilization for the R-tree is 
between 55% and 60%, whereas it approaches 100% in 
case of the STR-tree and the TB-tree. The reason is that 
the R-tree construction strategy does not take the unilateral 
growth of the data in the temporal dimension into account. 
 The R-tree is roughly twice as big as the other two 
indices. For example, for datasets of 1000 objects (i.e., 
consisting of 1500K line segments), the R-tree size is 
about 95 MB, while the other two indices size about 57 
MB. This difference is mainly due to the R-tree’s smaller 
space utilization. The TB-tree is smaller than the STR-
tree. The two indices have similar space utilization, but the 
TB-tree’s fanout is larger. For a ten times larger dataset, 
the index size increases by the same factor for the STR-
tree and the TB-tree. The increase is only approximate in 
the case of the R-tree, since its space utilization can 
fluctuate. 
 

 R-tree STR-tree TB-tree 

Index size ~ 95 KB per 
object 

~ 57 KB per 
object 

~ 51 KB per 
object 

Space 
utilization 55%-60% ~100% ~100% 

Table 2: Index sizes and space utilization 

5.3 Range Queries 
Range queries are important for spatial data as well as 
spatiotemporal data. In this section, we compare the three 
access methods for processing range queries. As already 
mentioned, we use datasets stemming from 10 to 1000 
moving objects. We use three sets of query windows with 
a range of 1%, 10%, and 20% of the total range with 
respect to each dimension, i.e., 0.0001%, 0.1%, and 0.8% 
of the total space. Each query set includes 1000 query 
windows. 
 Figure 15 shows the number of total node accesses 
for various range queries and datasets. Do note that both 
axes are of logarithmic scale, the x-axis is to the base of 2, 
and the y-axis is to the base of 10. We observe the 
following trends. For a small number of moving objects, 
the STR-tree and the TB-tree show superior range query 
performance over the R-tree. The break-even point at 
which this trend is reversed depends on the query size. In 
case of a 1% range per dimension, the break-even point 
with respect to the R-tree for the STR-tree is at 30 moving 
objects, and for the TB-tree at 60 moving objects (cf. 
Figure 15(a)). For a larger, 10% range size per dimension, 
the break-even point for the STR-tree is at 25 moving 
objects and for the TB-tree at 200 moving objects (cf. 
Figure 15(b)). In case of an even larger range, e.g., 20% 
per dimension, the break-even points increase to 50 and 
over 1000 moving objects for the STR-tree and the TB-
tree, respectively (cf. Figure 15(c)). Both, the TB-tree and 
the STR-tree, are trajectory oriented. For a smaller number 

Algorithm CombinedSearch(N,range1,range2) 
CS1 IF N is NOT a leaf, 

FOR EACH entry E’ of N whose MBB intersects with 
range1, 

invoke CombinedSearch(N’,E), where N’ is the 
childnode of N pointed to by E’. 

ELSE 
for all entries E that satisfy range1 AND whose trajectory 
was not yet retrieved,  

invoke DetermineTrajectory(N,E) 
 
Algorithm DetermineTrajectory(N,E,range2) 
DT1 Loop through N and find segment E’ that is fwd connected to 

E 
DT2 WHILE found AND E’ is within range2 

Add E’ to set of solutions, 
Loop through N and find segment E’ that is connected to 
the new E 

DT3 IF not found (but within range) 
invoke FindConnSegment(root,E,forward) 
repeat from DT1 

DT4 the same as above for bwd connected 
 
Algorithm FindConnSegment(N,E,direction) 
FCS1 IF N is NOT a leaf, 

FOR EACH entry E’ of N whose MBB intersects with the 
MBB of E, 

invoke FindConnSegment(N’,E,direction), where N’ 
is the childnode of N pointed to by E’. 

ELSE 
IF N contains an entry that is direction connected to E, 

RETURN N. 
Figure 13: R-tree and STR-tree: CombinedSearch 

algorithm for trajectory-based queries 
 
Algorithm FindConnSegment(E,N,direction) 
FCS1 Set N to be the node pointed to be the direction pointer 

Figure 14: TB-tree: CombinedSearch algorithm update 
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of trajectories the total dataset  (line segments) is more 
oriented along time than it is with respect to space. We 
term this property the temporal discrimination, as the 
dataset grows only with respect to the temporal dimension. 
Thus, for such a dataset, the spatial discrimination 
capabilities of the index are of no importance. However, if 
the number of trajectories increases, more segments exist 
at a given point in time. Thus, the spatial discrimination 
becomes important. Otherwise, the overlap between the 
nodes increases.  
 The R-tree does not “know” about the natural 
discrimination of the data. Its sole purpose is to group 
objects according to spatial characteristics, i.e., spatial 
proximity. For a small number of trajectories, this 
ambition turns out to be a “boomerang.” In this case, the 
spatial discrimination is of minor importance. The TB-tree 
puts connected segments in the same node and does not 
consider spatial discrimination. It thus exploits the 
temporal discrimination of the data. As the results show, 
this approach is better up to a certain number of segments. 
The STR-tree adopts an approach in-between the two 
extremes. However, although this index performs better 
than the R-tree for a small number of trajectories, it is 
always worse than the TB-tree. The STR-tree, too, is 
heavily dedicated to trajectory preservation. This explains 
its performance with respect to the R-tree. However, 
because of its R-tree properties, it is worse than the TB-
tree for a small number of trajectories. 

5.4 Time Slice Queries 
In several applications it is useful to determine the 
positions of (all) moving objects at a given time point in 
the past (Theodoridis et al. 1996). This query type 
constitutes a special case of a range query with a query 
window of zero extent at the temporal dimension. The size 
of the query window in the spatial dimensions can be 
arbitrary. In the performance studies we choose 1%, 10%, 
and 100% of the respective range in each spatial 
dimension. This corresponds to three sets, each 
comprising of 1000 individual queries. 
 The results shown in Figure 16 are similar to what 
could be seen in the previous section. For each set of 
queries (Figure 16(a)-(c)), there exists a break-even point 
in terms of number of moving point objects when the 
number of node accesses for the R-tree is smaller than for 
the STR-tree and the TB-tree, respectively. The break-
even point moves from 60 moving objects (1% range) to 
500 moving objects (100% range). This trend can also be 
observed in the case of range queries. However, there the 
TB-tree always outperforms the STR-tree. In Figure 16(a)-
(c), we observe that the gap between the two indices 
decreases with an increasing range until the STR-tree 
outperforms the TB-tree (Figure 16(c)). 
 The nature of a time slice query is to retrieve all 
positions of moving objects at a given instance in time. In 
other words, this query favors particularly an index that 
organizes its content based on its spatial aspects (R-tree 

and STR-tree) rather than relying on the temporal 
discrimination capabilities of the data (TB-tree). For 
smaller ranges (Figure 16(a)), this phenomenon is not as 
apparent as for larger ranges. 

5.5 Combined Queries 
What follows is a performance study related to the 
algorithms for combined searching as presented in Section 
2.2.3. We use datasets stemming from a varying number 
of moving objects. As for the queries, the size of the inner 
and the outer range is 1% (0.0001%) and 10% (0.1%), and 
1% (0.0001%) and 20% (0.8%) in each dimension (of total 
space). Each set of queries consists of 1000 individual 
queries. 
 The results in Figure 17 show that the TB-tree is in 
all cases superior to the STR-tree and the R-tree, up to one 
order of magnitude with the gap increasing in proportion 
to the number of objects. Apart from the (partial) 
trajectory preservation in each node, it is also the 
additional data structure (a linked list) for retrieving 
neighbor nodes that contribute to this result. Thus, the 
numbers of node accesses in case of the TB-tree are only 
slightly larger than the numbers from the range query 
experiments in Figure 15(a). Comparing the STR-tree with 
the R-tree, they only differ in the index structure itself, but 
have the same combined search algorithms. Just as we 
have observed a break-even point between those two 
methods for range queries, it also exists here. For the first 
experiment, shown in Figure 17(a), the break-even point is 
at about 300 moving objects. For the second experiment, 
involving a larger secondary range, the break-even point is 
at 500 moving objects.  

5.6 Summary 
The TB-tree supports trajectory-based queries much more 
efficiently than the R-tree does. At the same time, it is 
worth to be mentioned that its performance on typical 
range queries is competitive to the R-tree. As shown in the 
experiments, for combined queries, the TB-tree’s perfor-
mance is closely connected to the “number of moving 
objects” of the dataset. The relative gap between the R-
tree and the TB-tree increases with an increasing number 
of moving objects. As for the STR-tree, although designed 
to combine the benefits of the TB-tree and the R-tree, it 
usually performs worse than the TB-tree, with the only 
exception being time slice queries.  

6 Conclusions and Future Work 
Work in spatiotemporal query processing has dealt with 
range queries. However, spatiotemporal data, in the 
context of trajectories of n-dimensional moving objects, is 
somewhat different from (n+1)-dimensional spatial data 
due to the peculiarity of the temporal dimension 
(Theodoridis et al. 1998). This paper presents a set of pure 
spatiotemporal queries, the so called trajectory-based 
(topological and navigational) queries, as well as 
combined (coordinate- and trajectory- based) queries. 
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Efficient processing of those queries requires indices and 
access methods for spatiotemporal data; a simple modi-
fication to the R-tree as well as two new access methods, 
namely the STR-tree and the TB-tree, are proposed for 
indexing the trajectories of moving point objects.  
 First, trajectory data and a set of queries are defined 
to derive requirements. Trajectory data is obtained by 
discretely sampling the movement of point objects in time. 
Linear interpolation is considered in-between the samples. 
The set of queries is then presented. Subsequently, the 
paper discusses the R-tree to determine the shortcomings 
of this method with respect to spatiotemporal data and 

queries, and introduces modifications to overcome these 
limitations. Then the STR-tree and the TB-tree, both 
tailored to the requirements of trajectory data and 
spatiotemporal queries, are proposed. They can also easily 
be implemented on top of the R-tree, which is already 
adopted in commercial extensible database systems. 
 The performance study presents results from 
experiments involving spatial range queries, as well as 
experiments related to navigational and combined queries. 
The TB-tree proves to be an access method well suited for 
trajectory-based queries, and also has a good spatial search 
performance. The STR-tree performance stays behind the 
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Figure 15: Range queries: varying range, (a) 1%, (b) 10% and (c) 20% in each dimension 
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Figure 16: Time slice queries: varying spatial range, (a) 1%, (b) 10% and (c) 100% in each dimension 
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Figure 17: Combined queries: (a) 1% inner- 10% outer range and (b) 1% inner- 20% outer range, in each dimension 
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TB-tree. Although designed to combine the “best of both 
worlds,” it seems that the STR-tree is rather a weak 
compromise. The “pure” concepts of the R-tree and the 
TB-tree seem to be far superior in their respective 
domains. 
 Although recent literature includes related work on 
indexing trajectories of moving objects by maintaining the 
complete history of object movement (Theodoridis et al. 
1996, Tzouramanis et al. 1998, Nascimento et al. 1999), 
the work presented in this paper is the first to 
• propose an access method (namely, the TB-tree) 

clearly addressing the requirements and peculiarities 
of this context by considering trajectory preservation,  

• propose and implement specific modifications to the 
“classic” R-tree in order to overcome (some of) its 
inefficiencies with respect to trajectories, and  

• present novel algorithms for “pure” spatiotemporal 
searching apart from the typical range querying. 

 This work points to several future research directions. 
The present work only presents first algorithms to process 
navigational and topological queries. Derived from the 
requirements from real spatiotemporal applications, e.g., 
fleet management, these algorithms can be refined in more 
detail. Furthermore, not only novel queries, such as the 
previous ones, but also known though expensive spatial 
queries deserve more attention in the spatiotemporal 
domain; examples include neighbor searching 
(Roussopoulos et al. 1995) and joins (Mamoulis and 
Papadias 1999). Finally, investigating geometric shapes 
other than MBBs as approximations for moving objects’ 
trajectories deserves further research; for instance, 
extending related work on indexing line segments (Bertino 
et al. 1998). 
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