
Query Plans for Conventional and Temporal Queries
Involving Duplicates and Ordering

Giedrius Slivinskas Christian S. Jensen Richard T. Snodgrass
Department of Computer Science Department of Computer Science

Aalborg University University of Arizona
fgiedrius, csjg@cs.auc.dk rts@cs.arizona.edu

Abstract

Most real-world database applications contain a substan-
tial portion of time-referenced, or temporal, data. Re-
cent advances in temporal query languages show that such
database applications could benefit substantially from built-
in temporal support in the DBMS. To achieve this, temporal
query representation, optimization, and processing mech-
anisms must be provided. This paper presents a general,
algebraic foundation for query optimization that integrates
conventional and temporal query optimization and is suit-
able for providing temporal support both via a stand-alone
temporal DBMS and via a layer on top of a conventional
DBMS. By capturing duplicate removal and retention and
order preservation for all queries, as well as coalescing for
temporal queries, this foundation formalizes and generalizes
existing approaches.

1. Introduction

Most real-world database applications manage time-
referenced data. For example, this aspect applies to fi-
nancial, medical, and travel applications; and being time-
variant is one of Inmon’s defining properties of a data ware-
house [11]. Recent advances in temporal query languages
[8, 13] show that such applications may benefit substantially
from a DBMS with built-in temporal support. The poten-
tial benefits are several: application code is simplified and
more easily maintainable, thereby increasing programmer
productivity [21], and more data processing can be left to
the DBMS, potentially leading to better performance.

In contrast, the built-in temporal support offered by cur-
rent database products is limited to predefined, time-related
data types, e.g., the Informix TimeSeries DataBlade and the
Oracle8 TimeSeries cartridge, and extensibility facilities that
enable the user to define new, e.g., temporal, data types.
However, temporal support is needed that goes beyond data
types and extends the query language itself.

Developing a DBMS with built-in temporal support from
scratch is a daunting task that may only be accomplished by
major DBMS vendors that already have a DBMS to modify
and have large resources available. This has led to the con-
sideration of a layered, orstratum, approach where a layer,
implementing temporal support, is interposed between the
applications and a conventional DBMS [3, 22]. The layer
maps temporal SQL statements to regular SQL statements
and passes them to the DBMS, which is not altered. With
this approach, it is feasible to support a temporal SQL that
strictly extends SQL, thus not affecting legacy applications.

This paper offers a foundation for conventional and tem-
poral query optimization that is applicable to both the in-
tegrated and the layered architecture, thus making it rele-
vant for a DBMS vendor that plans to incorporate temporal
features into their product, as well as to third-party devel-
opers that want to implement a temporal layer on top of a
conventional DBMS. The foundation offers comprehensive,
precise, and integrated coverage of order preservation and
duplicate removal and retention for all queries, as well as of
coalescing for temporal queries. (In coalescing, tuples with
adjacent time periods and otherwise identical attribute val-
ues are consolidated.)

The foundation is enabled by a temporally extended al-
gebra, which enhances existing relational algebras based on
multisets by integrating the handling of order and adding
temporal support. In addition to conventional relations,
the algebra employs temporal relations timestamped with
time periods, which are useful for implementation be-
cause of their granularity independence and fixed-width
format. Previously proposed user-level temporal relations
may be mapped to this format [14], and the user-level data
model and query language may be point-based or interval-
based [4]. More generally, the algebra is independent of the
specific user-level temporal relational query language and
data model employed, and it provides support for the two
main classes of temporal statements found in the literature:
(1) statements that use built-in temporal semantics and are
evaluated conceptually at each point of time and (2) state-

©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

ments that explicitly manipulate values of (new) temporal
abstract data types with convenient operations and predi-
cates defined on them. The temporal aspect considered here
is valid time [12], which captures when data was, is, or will
be true in the modeled reality; the approach can be extended
to also handle transaction time, either alone or in combina-
tion with valid time.

In the algebra, relations are defined as lists, and six kinds
of relation equivalences are defined. Specifically, two rela-
tions can be equivalent as lists, multisets, and sets, and they
can be snapshot-equivalent as lists, multisets, and sets. For
example, the last type of equivalence occurs when all cor-
responding pairs of snapshot relations that may be derived
from a pair of temporal relations are the same when consid-
ered as sets.

These types of equivalences come into play because
queries specify different types of results, depending on
whether ordering, duplicate removal, or coalescing are spec-
ified in the query statement. For example, an SQL query
not includingORDER BYandDISTINCT at the outermost
level specifies a result of type multiset, thus opening the pos-
sibility of applying transformations that do not preserve list
equivalence. The different types of equivalences make it
possible to systematically exploit transformation rules and to
optimize a query according to the type of the expected result.
The paper provides transformation rules that preserve these
types of equivalences and describes when a rule of some type
is applicable to a query. Finally, an algorithm is provided
that generates equivalent query evaluation plans.

Some work has been reported on non-temporal relational
algebras for multisets [1, 7, 9], with the most recent of these
works [9], by Garcia-Molina et al., being also the most ex-
tensive. This book offers comprehensive coverage of query
transformations that preserve set as well as multiset equiva-
lences. Formalizing relations as multisets, sorting is permit-
ted only at the outermost level. But although SQL only al-
lows sorting at the outermost level, pushing down sorting in
a query plan can improve performance. By formalizing rela-
tions as lists and offering integrated support for query trans-
formations that preserve list equivalences, we allow sorting
to be performed early during query evaluation. In addition,
we state precisely when list, multiset, and set based equiva-
lences, including their temporal counterparts, are applicable.
Recent work on query optimization by Leung et al. [16] em-
phasizes the importance of considering duplicates in DB2’s
query rewrite rules. However, duplicates are addressed as
special cases when defining rewrite rules, and no formal
foundation for reasoning about these is offered.

More than a dozen temporal relational algebras have been
proposed over the last two decades [18, 19], but all the al-
gebras known to the authors are set-based and hence do
not adequately address issues related to duplicates, order,
and coalescing. Existing work on temporal query optimiza-

tion [10, 17] primarily considers the processing of joins and
semijoins. It does not delve into general query optimization
and does not address duplicates, order, and coalescing.

The paper is structured as follows. Section 2 motivates
the need for the proposed foundation for query optimization,
defines the underlying database structures, and presents the
extended relational algebra operations. The different types
of algebraic equivalences are described in Section 3, and
the concrete transformation rules that preserve the differ-
ent equivalence types are provided in Section 4. Sections 5
and 6 describe how to determine when different transforma-
tion rules are applicable and provide a query plan enumera-
tion algorithm. Section 7 concludes and offers research di-
rections.

2. An extended algebra

We initially motivate for the proposed query optimization
framework. The remainder of this section first describes re-
quirements to the extended algebra, then defines its database
structures and the operations on them.

2.1. Example

The example assumes a layered architecture, where the
stratum performs some of the query optimization and pro-
cessing, in addition to translating temporal query language
statements to SQL. Specifically, complex temporal opera-
tions such as temporal aggregation, temporal duplicate elim-
ination, and coalescing are often not processed efficiently
in conventional DBMSs and might advantageously be sup-
ported by the stratum.

In the temporal relationsEMPLOYEEandPROJECTin
Figure 1, we assume a closed-open representation for time
periods and assume the time values to denote months dur-
ing some year. For example, John is in Sales from January
to August (not including the latter), and he is in Advertising
from June to November. Consider the query “Which em-
ployees worked in a department, but not on any project, and
when?” In particular, the user requires the result relation to
be sorted, coalesced, and without duplicates in its snapshots.
The snapshot of a temporal relation at timet is the conven-
tional relation containing those tuples (without the time pe-
riods) from the temporal relation that have time periods con-
tainingt.

To exemplify the concepts of coalescing and temporal du-
plicates (duplicates in snapshots), let us examine theEM-
PLOYEErelation after being projected onEmpName, T1, and
T2 (see the top-left relation in Figure 3 in Section 2.5). This
projected relation is not coalesced; the first and third tuples
(and the second and third tuples) for Anna have adjacent
time periods and can be merged. Also, it contains tempo-
ral duplicates; its snapshot at, e.g., time 6 contains duplicate
tuples for John.

EMPLOYEE
EmpName Dept T1 T2

John Sales 1 8
John Advertising 6 11
Anna Sales 2 6
Anna Advertising 2 6
Anna Sales 6 12

PROJECT Result
EmpName Prj T1 T2 EmpName T1 T2

John P1 2 3 Anna 2 3
John P2 5 6 Anna 4 5
John P1 7 8 Anna 6 7
John P3 9 10 Anna 8 9
Anna P2 3 4 Anna 10 12
Anna P2 5 6 John 1 2
Anna P3 7 8 John 3 5
Anna P3 9 10 John 6 7

John 8 9
John 10 11

Figure 1. Example relations

The desired result of the previous query is given at the
bottom-right in Figure 1. We proceed to use this query to
illustrate the importance of properly considering duplicates,
order, and coalescing during query optimization.

To compute the result, the stratum initially uses a straight-
forward mapping of the user-level query to an initial alge-
bra expression, shown in Figure 2(a). The query is entirely
computed in the DBMS; the last operation applied is a trans-
fer operationTS that transfers its argument from the DBMS
to the stratum. Allowing also a reverse transfer operation,
TD, permits query plans to flexibly partition computation
between the stratum and the DBMS.

The next operations, sorting (sort), coalescing (coalT),
and temporal duplicate elimination (rdupT), are performed
to obtain the user-required format. TherdupT operation
ensures that no snapshots have duplicates, andcoalT en-
sures that value-equivalent tuples (tuples with the same non-
temporal attribute values) with adjacent time periods are
merged.

The temporal difference (nT) is the central operation in
this query. It returns the employees that are present inEM-
PLOYEE, but not inPROJECT, along with the time periods
when this occurred. It turns out that to obtain the correct
result, the left argument is not allowed to contain duplicates
in snapshots; this is ensured by therdupT operation prior to
the difference.

Transformation rules that preserve different types of
equivalences are applicable to different parts of the query.
This is illustrated by the shaded regions in Figure 2(a). First,
transformations below thesort need not preserve order. The
operations belowsort are not sensitive to order, and thesort
ensures that whatever result is produced by the operations
below, it is correctly ordered at the end. Second, temporal

difference is sensitive to duplicates in its left argument, so
the lower-leftrdupT may affect the result of the difference.
However, the presence or absence of duplicates is not rele-
vant for the operations below thisrdupT , as well as for the
operations that are on the right branch of the temporal dif-
ference. Also, it does not matter if the relation produced
by the temporal difference contains duplicates or not, due
to the subsequentrdupT operation. As a result, transforma-
tion rules applied to the darkly shaded region need not pre-
serve duplicates. Third, transformations applied below the
coalescing operation need not preserve the time periods; co-
alescing returns a unique relation for all snapshot-equivalent
argument relations whose snapshots do not contain dupli-
cates. The toprdupT ensures that the argument to the co-
alescing operation does not contain duplicates in snapshots.
Sections 5 and 6 elaborate on these concepts and describe
when different types of transformation rules are applicable.

By systematically exploiting transformation rules pre-
serving different types of equivalences, we are able to
achieve an “optimized” query tree such as the one shown
in Figure 2(b). In this tree, the transfer operation has been
pushed down, indicating that the stratum performs tempo-
ral duplicate elimination, coalescing, and difference. The
sort operation was pushed down because the DBMS sorts
faster than the stratum. The parts of a query relegated to the
DBMS (here, those belowTS operations) are not optimized
by the stratum; instead these are expressed in the language
supported by the DBMS, e.g., SQL, and are then passed to
the DBMS, which will perform its own optimization. In the
stratum, coalescing is performed before difference because
the left argument to the temporal difference is expected to be
smaller than the result of the temporal difference.

We use this example throughout the paper and explain in
more detail the concepts represented by the shaded regions
and the generation of equivalent query trees.

2.2. Requirements

Several requirements should be kept in mind when de-
signing the algebra. It is a fundamental requirement that the
algebra be formally defined. Equally fundamental, the alge-
bra must be suitable for implementation, which has several
implications. The algebra must incorporate ordering, du-
plicate removal and retention, and coalescing. This implies
that the relations, over which the operations will be defined,
should be lists, thereby incorporating both duplicates and or-
der. In addition, it is attractive to use conventional, fixed-size
tuples, which implies the use of time periods (as opposed to
temporal elements, which are finite unions of time periods).
To be independent of the granularity of time, definitions of
operations should be expressed in terms of the start and end
times of periods only.

The algebra must extend the conventional relational alge-
bra and must accommodate both classes of temporal state-

Periods need not be preserved Duplicates are not relevantOrder needs not be preserved

EMPLOYEE

π EmpName,T1,T2 EMPLOYEE

π EmpName,T1,T2

π EmpName,T1,T2

PROJECT

\ EmpName ASC

\

sort

rdup

rdup π EmpName,T1,T2

PROJECT

coal

rdup

T

T

T

T

T

T

T S

T S

ST

(a) (b)

coal T

sortEmpName ASC

Figure 2. Algebraic expressions for the query

ments mentioned in the introduction, namely statements
with built-in temporal semantics and statements that explic-
itly manipulate values of time data types. To conveniently
accommodate the first class of statements, we introduce
temporal operations that are counterparts of existing rela-
tional algebra operations, in the sense that they are snapshot-
reducible to these. A temporal operationop1 is snapshot-
reducible to operationop2 if for any point in timet and for
any temporal relationr, the snapshot att of the result of
applyingop1 to r is equal to the result of applyingop2 to
the snapshot ofr at timet. For example, temporal duplicate
elimination is snapshot reducible to duplicate elimination.

We also require that the operations be minimal and or-
thogonal. Each operation should perform one single func-
tion and should minimally affect its argument(s) in doing so.
This way, replication of functionality is avoided, and it is
easier to combine operations in queries. For example, coa-
lescing should not have any effect on duplicates; a separate
duplicate elimination operation should be available for this
purpose. As another implication, the operations should re-
tain as much as possible the time periods and the order of the
tuples in the argument relation(s). For example, coalescing
should retain the ordering of its argument. Combinations of
operations, termed idioms, may be included for efficiency,
but should be identified as idioms.

2.3. Database structures

We define relation schemas, tuples, and relation schema
instances in turn. The definitions are the standard ones, but
adapted to address duplicates and order.

Definition 2.1 A relation schemais a three-tupleS =
(
;�; dom), where
 is a finite set of attributes,� is a
finite set of domains, anddom :
 ! � is a function that
associates a domain with each attribute. 2

For example, relation schemaEMPLOYEEfrom Fig-
ure 1 is formally a three-tuple(
;�; dom), where
 =
fEmpName; Dept; T1; T2g, � = fstring;Tg, anddom =
f(EmpName; string); (Dept; string); (T1;T); (T2;T)g. We
denote the time domain byT and use the definition of this
domain proposed by, e.g., Bettini et al. [2].

Definition 2.2 A tuple over schemaS = (
;�; dom) is a
functiont :
 ! [�2��, such that for every attributeA of

, t(A) 2 dom(A). A relation schema instance overS is a
finite sequence of tuples overS. 2

Note that the definition of a relation schema instance (re-
lation, for short) corresponds to the definition of a list. A
relation can contain duplicate tuples, and the ordering of the
tuples is significant. RelationEMPLOYEEfrom Figure 1 is a
list of tuplesht1; t2; t3; t4; t5i. Tuplet1 can be expressed as
f(EmpName; John); (Dept; Sales); (T1; 1); (T2; 8)g.

We distinguish between snapshot, or conventional, and
temporal relations. We reserve two specific attribute names,
T1 andT2, for denoting the time period start and end, re-
spectively, of a temporal relation. The schema of a snapshot
relation does not contain these two attributes. Alternatively,
we could have chosen to have a single type of relation, but
then each temporal operation would have to take the names
of the temporal attributes as extra arguments. Using our ap-
proach, the operations implicitly know the time attributes.

Operation Sorting Cardinality Duplicates Coalescing
Order (result) n(result)

�P (r) = Order(r) � n(r) Retains Retains
�f1;:::;fn(r) = Pre�x (Order (r);ProjPairs) = n(r) Generates Destroys
r1 t r2 unordered = n(r1) + n(r2) Generates Destroys
r1 � r2 = Order (r1) = n(r1) � n(r2) Retains —
r1 n r2 = Order (r1) � (n(r1)� n(r2)) and� n(r1) Retains —
�G1;:::;Gn;F1;:::;Fm(r) = Pre�x (Order (r);GroupPairs) � n(r) Eliminates —
rdup(r) = Order(r) � n(r) Eliminates —

r1 �
T r2 = Order(r1) n TimePairs � n(r1) � n(r2) Retains Destroys

r1 n
T r2 = Order(r1) n TimePairs � 2 � n(r1) Retains Destroys

�TG1;:::;Gn;F1;:::;Fm
(r) = Pre�x (Order (r);GroupPairs) � 2 � n(r)� 1 Eliminates Destroys

rdupT (r) = Order (r) n TimePairs � 2 � n(r)� 1 Eliminates Destroys
r1 [r2 unordered � n(r1) and� (n(r1) + n(r2)) Retains —

r1 [
T r2 unordered � n(r1) and� (n(r1) + 2 � n(r2)) Retains Destroys

sortA(r) = A = n(r) Retains Retains

coalT (r) = Order (r) n TimePairs � n(r) Retains Enforces

Table 1. Overview of operations

2.4. Fundamental algebra operations

We describe briefly all the fundamental algebra opera-
tions. We then consider temporal duplicate elimination in
detail. Other operations are defined elsewhere [20].

Table 1 lists all operations. Selection (�), projection (�),
union ALL (t), Cartesian product (�), difference (n), ag-
gregation (�), and duplicate elimination (rdup) derive from
the conventional relational algebra. For the latter four opera-
tions, we add temporal counterparts, denoted by superscript
T . The temporal operations conceptually evaluate the result
at each point of time. This is exemplified by the difference
between regular and temporal duplicate elimination, to be
discussed in Section 2.5.

Next, union ([) originates from the union operation for
multisets given in [1]. This operation includes a tuple in
the result as many times as the tuple occurs in the argument
relation that has the most occurrences of that tuple. The
temporal counterpart of union is denoted by[T . We also
add coalescing, which merges value-equivalent tuples with
adjacent time periods, and sorting. Our definition of coa-
lescing is different from that given by B¨ohlen et al. [5], due
to the requirement of minimality (see Section 2.2) and our
relations being list based. The coalescing of B¨ohlen et al.
merges value-equivalent tuples with adjacent oroverlapping
time periods; in our algebra, this effect can be achieved by
performing temporal duplicate elimination and coalescing.

The algebra includes fundamental operations as well as
the temporal operations needed to accommodate query state-
ments with built-in temporal semantics (see Section 2.2). We
omit derived operations (idioms), except regular and tempo-
ral union, which can be expressed via union ALL and regu-
lar (temporal) difference. The addition of idioms, e.g., join

(Cartesian product followed by selection and projection),
would not introduce any new issues in the framework. How-
ever, idioms should be included in an implementation of the
algebra.

Our algebra and the algebra presented in [9] are funda-
mentally different in that the latter works on multisets, while
ours works on lists. However, our selection, projection,
Cartesian product, difference, union ALL, aggregation, and
duplicate elimination operations are not list-sensitive, i.e., if
their argument relations are identical as multisets (but differ-
ent as lists), their result relations are also identical as mul-
tisets. When we treat relations as multisets, our algebra is
at least as expressive as the algebra presented in [9] because
each operation of the latter may be expressed by one of the
seven operations mentioned above.

Table 1 also describes, for each operation, the order and
cardinality of the result relation and how the operation han-
dles regular duplicates and coalescing. FunctionOrder(r)
returns a list of attributes paired with a sorting type (ascend-
ing or descending) for relationr (e.g.,hA ASC; B DESCi). For
an unordered relation, the function returns an empty list.
ListsProjPairs , TimePairs , andGroupPairs include, re-
spectively, the projection attributes, the temporal attributes,
and the grouping attributes paired withASC or DESC. Func-
tion Pre�x returns the largest common prefix of its two ar-
guments. For example, if a relation is sorted onA; B; and
C, and we project it onA andC, the result is sorted onA.
Although omitted from the table, the time attributes may in
special cases be present in the order of a relation resulting
from coalescing. Also note that in the special case where the
sorting listA is a prefix ofOrder(r), the order ofsortA(r)
isOrder(r).

We denote the cardinality of relationr by n(r). An oper-

ation may (1) eliminate regular duplicates so that the result
relation would only have distinct tuples, (2) retain regular
duplicates, i.e., the result relation would have distinct tuples
only if the argument relation(s) contains only distinct tuples,
or (3) generate regular duplicates that do not derive from
duplicates existing in the argument relation(s). In a simi-
lar manner, an operation may (1) enforce coalescing, so that
its result relation is coalesced, (2) retain coalescing, i.e., its
result relation is coalescedonly if its argument relation is
coalesced, or (3) destroy coalescing. Note that coalescing
is undefined for snapshot relations (which are returned by
operations that have temporal counterparts).

The next section defines temporal duplicate elimination.
Overall, an attempt has been made to define operations con-
ducive to efficient implementation. For example, union ALL
simply concatenates its arguments.

2.5. Temporal duplicate elimination

Let T T be the set of all tuples with temporal support, and
letRT be the set of all relations with such tuples. Operation
rdupT : RT ! RT removes duplicates from all snapshots
of the argument relation. The argument and result relations
have the same schema. Note that this operation also removes
regular duplicates because they qualify as duplicates in snap-
shots.

Figure 3 shows theEMPLOYEErelation projected on
L = hEmpName; T1; T2i and also the results of regular and
temporal duplicate elimination applied to this relation. Re-
lation R2 does not contain regular duplicates (there is only
one tuple for Anna with times 2 and 6), and relationR3 does
not contain duplicates in snapshots (note the timestamps of
the second tuple). Time attributes inR2 are prefixed by “1”
because the result of regular duplicate elimination is a snap-
shot relation and thus cannot include attributes namedT1 or
T2.

We use�-calculus for the definitions. The definitions do
not imply the actual implementation algorithms, butdocon-
strain the implementation algorithms to produce the same
results, taking order and duplicates into account. We define
temporal duplicate elimination below.

rdupT , �r:(r =? _ tail(r) =?)! r;
(OverT (head(r); tail(r)) = undef)!

head(r) @ rdupT (tail(r));
rdupT (head(r) @ ChangeT (OverT (head(r); tail(r));

tail(r); rn))
wherern = hOverT (head(r); tail(r))i nT hhead(r)i

The arguments to the operation are given before the dot, and
the definition is given after the dot. The first line says that if
the argument relationr is empty (?) or its part without the
first tuple (tail(r)) is empty, the operation returnsr. Other-
wise, the second line is processed, which says that we apply
functionOverT to the first tuple (head (r)) and the rest of

the relation. FunctionOverT : [T T � RT] ! T T scans
the argument relation and finds the first tuple whose time
period overlaps with the argument tuple and which is value-
equivalent with it. (For example, the first two tuples ofR1

overlap and are value-equivalent.) If there is no such tu-
ple, we return the first tuple concatenated (@) with the re-
sult of rdupT applied to the rest of the relation. Otherwise
(the fourth and fifth lines), the operation returns the result
of rdupT applied to the modified argument relation, where
the overlapping tuple is changed to the result of subtract-
ing the first tuple of the relation from the overlapping tuple.
The result can contain zero, one, or two tuples, depending
on how the time periods of the tuples are related. Function
ChangeT : [T T �RT �RT] ! RT finds the argument tu-
ple in the first argument relation, then replaces the tuple with
the second argument relation (since the temporal difference
may return two tuples, we use “relation” as result type). For
example, the time period of the second tuple ofR3 is ob-
tained by subtracting the time period of the first tuple ofR1

from that of the second tuple ofR1.

R1 = �L(EMPLOYEE) R2 = rdup(R1)
EmpName T1 T2 EmpName 1.T1 1.T2
John 1 8 John 1 8
John 6 11 John 6 11
Anna 2 6 Anna 2 6
Anna 2 6 Anna 6 12
Anna 6 12

R3 = rdupT (R1)
EmpName T1 T2

John 1 8
John 8 11
Anna 2 6
Anna 6 12

Figure 3. Regular and temporal duplicate elim-
ination

3. Relation equivalences

The query optimizer does not always need to operate on
relations as lists. For example, ifORDER BYis not speci-
fied in a query, it is enough to consider the underlying re-
lations as multisets. To enable such different treatment of
relations, we distinguish between six types of equivalences
between relations: list equivalence (�L), multiset equiv-
alence (�M), set equivalence (�S), snapshot list equiv-
alence (�S

L
), snapshot multiset equivalence (�S

M
), and

snapshot set equivalence (�S

S
). Two relations are equiva-

lent as lists if they are identical lists; as multisets if they are
identical multisets taking into account duplicates, but not
order; and as sets if they are identical sets, ignoring dupli-
cates and order. Snapshot list equivalence holds between
two temporal relations when snapshots of those relations at

each point of time are equivalent as lists. Similar conditions
imply snapshot multiset equivalence (at each point in time,
the relations should be equivalent as multisets) and snapshot
set equivalence (at each point in time, the relations should be
equivalent as sets). Formal definitions may be found in the
associated technical report [20].

We can exemplify the different types of equivalences us-
ing the relations in Figure 3. RelationsR1 andR2 are not
equivalent as lists or as multisets because the tuple for Anna
with times 2 and 6 occurs twice inR1, but once inR2. How-
ever, the�S equivalence holds because the two relations
contain the same tuples. Snapshot equivalences between
the two relations are undefined because relationR2 is non-
temporal.

RelationsR1 andR3 have different tuples, e.g., the tuple
for John with times 6 and 11 is present inR1, but not in
R3; thus, they are not equivalent as lists, multisets, or sets.
Their snapshots are also not equivalent as lists or as multisets
because the snapshot ofR1 at times between 2 and 6 contains
two tuples for Anna, while snapshots of relationR3 never
contain more than one tuple for Anna. The only equivalence
that holds between the two relations is�S

S
, meaning that

their snapshots are equivalent as sets.
We have an ordering between the types of equivalences.

For example, the equivalenceR1�M sortT1 ASC(R1) implies
that both relations are equivalent as multisets and sets, and
that their snapshots are equivalent as multisets and sets. We
list all implications in the following theorem.

Theorem 3.1 Let r1 andr2 be relations. Then the following
implications hold. (Implications pointing downward apply
only to temporal relations.)

r1 �L r2) r1 �M r2) r1 �S r2

+ + +

r1 �
S

L
r2) r1 �

S

M
r2) r1 �

S

S
r2

Proof: [20] 2

The different types of equivalences can be exploited in
query optimization. Transformation rules (to be discussed
in Section 4) can be divided into six categories, one for
each type of equivalence. For example, we may have a rule
expr1 !L expr2, which says that after the replacement of
expressionexpr1 in the original query plan by expression
expr2, the result relation produced by the new plan will be
list equivalent to the result relation produced by the orig-
inal plan. Another ruleexpr1 !S expr3 says that if we
replaceexpr1 by expr3, the new plan will yield to a result
relation that may only be set equivalent to the result rela-
tion produced by the original plan, because the application
of this rule does not preserve either duplicates or the order.
This may be acceptable though, if the result needs to be a

set. For example, queryrdupT (�L(EMPLOYEE)) (resulting
in relation R3) can return distinct tuples in any order. In
general, the type of the result specified by a query affects
which transformation rules can be exploited. Section 4 lists
transformation rules, and Sections 5 and 6 describe how to
determine when a transformation rule of some type is appli-
cable.

4. Transformation rules

In this section, we describe transformation rules involv-
ing conventional operations, duplicate elimination, coalesc-
ing, sorting, and transfer operations in turn, listing central
rules. The full rule set, which extends all existing rule sets
known to the authors, can be found in [20].

The transformation rules are given as equivalences that
express that two algebraic expressions are equivalent accord-
ing to one of the six equivalence types from Section 3; we al-
ways give the strongest equivalence type that holds. An alge-
braic equivalence represents both a left-to-right and a right-
to-left transformation rule, and it may have pre-conditions.
All transformation rules can be verified formally, as the oper-
ations and equivalence types have formal definitions. Unlike
rules expressed informally, which sometime later have been
found to be in error, e.g., in [15], the rules here are theorems
with formal proofs.

In transformation rules,r can be a base relation or an
operation tree. We denote the attribute domain of the schema
of r by
r. Functionattr returns the set of attributes used
in a selection predicate or projection functions.

4.1. Conventional transformation rules

Conventional relational algebra rules for multisets [9] dif-
fer in how they are extended to support lists and temporal
operations. Most rules are valid for lists and have coun-
terparts for the corresponding temporal operations; in some
cases, pre-conditions involving the temporal attributes apply.
Commutativity rules, e.g., for Cartesian product and union,
satisfy only the�M equivalence because the different order
of the arguments leads to differently ordered tuples in the
results. A few rules, involving regular and temporal union,
have equivalence types weaker than�M .

4.2. Duplicate elimination transformation rules

RulesD1–D4 in Figure 4 indicate when duplicate elimi-
nation is not necessary. Note that if we perform a temporal
duplicate elimination on a temporal relation, the result rela-
tion is only�S

S
equivalent to the argument relation (compare

relationsR1 andR3 from Figure 3).
Conventional duplicate elimination rules may be found

in [9], and they can easily be extended to lists. The only ad-
dition is two new rules for regular and temporal union (see

(D1) rdup(r)�L r r does not have duplicates (S1) sortA(r)�L r IsPre�xOf (A;Order (r))
(D2) rdupT (r)�L r r does not have duplicates in snapshots(S2) sortA(r)�M r
(D3) rdup(r)�S r (S3) sortA(sortB(r))�L sortA(r) IsPre�xOf (B;A)

(D4) rdupT (r)�SS r
(D5) rdup(r1 [r2)�L rdup(r1) [rdup(r2)
(D6) rdupT (r1[

T r2)�L rdupT (r1)[
T rdupT (r2)

(C1) coalT (r)�L r r is coalesced
(C2) coalT (r)�SM r
(C3) coalT (�P (r))�L �P (coal

T (r)) T1 =2 attr (P) ^ T2 =2 attr(P)
(C4) �f1;:::;fn(coal

T (r))�S �f1;:::;fn(r) T1 =2 attr (f1; : : : ; fn) ^ T2 =2 attr (f1; : : : ; fn)
(C5) coalT (coalT (r1) t coalT (r2))�L coalT (r1 t r2)
(C6) coalT (coalT (r1) [

T coalT (r2))�L coalT (r1 [
T r2)

(C7) coalT (�TG1;:::;Gn;F1;:::;Fm
(coalT (r)))�L coalT (�TG1;:::;Gn;F1;:::;Fm

(r))

(C8) coalT (�f1;:::;fn;T1;T2(coal
T (r)))�L coalT (�f1;:::;fn;T1;T2(r)) r does not have duplicates in snapshots

(C9) coalT (�A(r1 �
T r2))�L �A(coal

T (r1)�
T coalT (r2)), r1 andr2 do not have duplicates in snapshots

whereA =
r1�T r2 n f1:T1; 1:T2; 2:T1; 2:T2g
(C10)coalT (r1 nT r2)�M coalT (r1) n

T coalT (r2) r1 does not have duplicates in snapshots

Figure 4. Transformation rules

D5–D6). Contrary to the commonly considered union ALL
and regular SQL union (which removes duplicates from the
result relation of union ALL) operations, our regular and
temporal union operations do not generate new duplicates if
their argument relations do not contain any duplicates, which
means that we can push duplicate elimination below regular
or temporal union.

4.3. Coalescing transformation rules

RulesC1 andC2 show when we can eliminate coalesc-
ing; ruleC1can be used to derive other transformation rules
that eliminate superfluous coalescing. RuleC3says that coa-
lescing and selection commute only if the selection predicate
does not involve the temporal attributes. If we project a coa-
lesced relation on non-temporal attributes, coalescing is not
necessary if we consider the relations as sets (ruleC4). For a
number of operations, coalescing their arguments and results
is equivalent to coalescing their results only (rulesC5–C7).

Our list of coalescing transformations extends the list pro-
vided by Böhlen et al. [5]. Due to the differences in coa-
lescing definitions (see Section 2.4) and because [5] allows
duplicates in snapshots of temporal relations, but not regular
duplicates, the following three transformation rules (given
in [5]) have only type�S

M
and are derivable from ruleC2.

coalT (�f1;:::;fn;T1;T2(coal
T (r)))�SM coalT (�f1;:::;fn;T1;T2(r))

coalT (�A(r1 �
T r2))�

S
M �A(coal

T (r1)�
T coalT (r2)),

whereA =
r1�T r2 n f1:T1; 1:T2; 2:T1; 2:T2g
coalT (r1 n

T r2)�
S
M coalT (r1) n

T coalT (r2)

The transformation rules have�S

M
type because projection,

Cartesian product, and temporal difference destroy coalesc-
ing. The projection in the second rule is necessary because
the temporal Cartesian product retains the timestamps of its
argument relations [20].

The first two transformations can be modified to have
type �L if we require that the arguments do not have du-
plicates in snapshots (rulesC8–C9). Adding the same re-
quirement, the third rule can be modified to have type
�M (rule C10). Equivalence type�L cannot be achieved
because temporal difference is sensitive to the distribution
of value-equivalent tuples in the left argument; and this dis-
tribution may be different forr1 and coal(r1). Note that
since periods need not be preserved in the right argument to
temporal difference, the second coalescing on the right-hand
side of the rule is not necessary. However, in cases when co-
alescing significantly reduces the cardinality of its argument,
it might be useful to retain it.

4.4. Sorting transformation rules

Sorting can be eliminated if it is performed on a relation
that is already sorted as desired, if we can treat the relation
as a multiset, or if there is a subsequent sorting operation
(rulesS1–S3). PredicateIsPre�xOf takes two lists as argu-
ments and returns True if the first list is a prefix of the second
one. Transformation ruleS3requiresB to be a prefix ofA.
If A is a prefix ofB, we can eliminatesortA using ruleS1.

If we wish to sort the result of some operation, the sort-
ing can be performed on the argument relation(s) for that
operation if the operation does not destroy the ordering. All
operations, exceptt, [, and[T , fully or partially preserve
the ordering of the first argument relation.

4.5. Transfer transformation rules

Transfer transformation rules are used in the stratum ar-
chitecture. If we have an implementation of the same oper-
ation in both the stratum and the DBMS, we have a choice

of where to execute the operation. We can transfer a rela-
tion from the DBMS to the stratum using operationTS, and
the other way using operationTD (these operations were not
listed in Table 1 because they are specific to the layered ar-
chitecture).

If a rule transfers an operation from the stratum to
the DBMS or vice versa, the relations produced by the
left-hand side and the right-hand side of the rule are
only �M equivalent because we cannot be sure how the
DBMS implementation of the operation will sort its re-
sult, operationsort being the only exception. For this
reason, the previously given�L transformation rules are
only applicable in the stratum, and they have correspond-
ing �M transformation rules for the DBMS. For brevity, the
latter rules are omitted from Figure 4.

5. Applicability of transformation rules

Queries expressed in some user-level query language are
mapped to an initial algebraic expression, which is then
passed to the optimizer, where transformation rules are ap-
plied according to some given strategy. The resulting, new
algebraic expressions must, when evaluated, return the same
result as the original expression, which we assume correctly
computes the user’s query. In our case, the optimizer must
contend with six different types of transformation rules. For
each type of rule, we have to formalize when it can be ap-
plied.

5.1. Applicability definition

There are no restrictions on when rules with equivalence
type �L may be applied. Applying such rules has no ef-
fect on the result; a transformed expression evaluates to a
result identical to that obtained from evaluating the original
expression. This does not hold for any of the other types of
rules. However, they may still be applicable.

Assuming for specificity that the user-level language is
some temporal variant of SQL, a query may, or may not,
includeDISTINCT andORDER BYat the outermost level,
which affect the type of the result. The presence of theOR-
DER BYclause in a query specifies a result relation that is
a list; if theORDER BYclause is absent from the query, the
query specifies a multiset, and the order of the result tuples
is immaterial. In this latter case, we can apply transforma-
tions that merely preserve multiset equivalence. Further, if
DISTINCT is included at the outermost level of a query (but
ORDER BYis not), the query returns a relation that is a set.

Intuitively, we can apply transformation rules to a query
evaluation plan if the result relations produced by the new
plan and the original plan are equivalent as sets, multisets, or
lists, depending on whether or notDISTINCT andORDER
BY were specified at the outermost level of the user-level

query. We formalize the applicability of the transformation
rules below, thus linking the user-level language and the al-
gebraic optimization.

Definition 5.1 Assume a queryQ, its evaluation planP , a
transformation ruleT , a locationl in the plan whereT will
be applied, and the evaluation planP 0 obtained by applying
rule T to P at l. Then, ruleT is applicable atlocationl in
planP if and only if P �SQL P

0, where�SQL is (1) �S

if DISTINCT is specified at the outermost level of Q, but
ORDER BYis not specified at that level, (2)�M if DIS-
TINCT andORDER BYare not specified at the outermost
level of Q, or (3)�L;A if ORDER BY Ais specified at the
outermost level of Q. 2

The definition uses the equivalence type�L;A , whereA is
the list specified in theORDER BYclause. Two relations are
�L;A equivalent if their projections onA are�L equivalent.
Thus,�L equivalence implies�L;A equivalence.

The �SQL equivalence type cannot be one of the
snapshot-equivalence types because a query must faithfully
preserve the time periods from base relations and cannot
arbitrarily return any of the snapshot-equivalent result rela-
tions. However, there are cases where snapshot-equivalence
type rules can be applied while complying with Defini-
tion 5.1; we describe those cases below. Note also that
this definition is a posteriori, in that it compares the result-
ing query plan with the original one. What is needed is
an a priori procedure for determining when a transformation
rule is applicable.

First, we use an example operation tree for describing
which types of transformation rules can be applied to which
query regions. Then, Section 5.3 briefly presents the oper-
ation properties used to determine when the different types
of transformation rules are applicable. Finally, Section 6 de-
scribes how these properties are exploited during query plan
enumeration.

5.2. Example

Let us again consider the operation tree in Figure 2(a).
The result of evaluating the tree is a list. The shaded regions
determine which types of transformation rules are applica-
ble.

In the area where order needs not be preserved (the lightly
shaded region), we can apply�M transformation rules. The
subtree below thesort operation can treat relations as mul-
tisets because thesort operation ensures that the result is
ordered appropriately.

Rules of type�S can be applied to those query frag-
ments where duplicates are not relevant, which are indicated
by the darker shaded region. In this example, these frag-
ments are the subtree below the top temporal duplicate elimi-
nation operation, except the bottom temporal duplicate elim-

ination operation, which ensures that the left argument of the
temporal difference does not contain duplicates in snapshots
(see Section 2). (This illustrates that fragments need not al-
ways be whole subtrees; in fact, there exist operation trees
for which a particular shading is absent for an entire subtree.)

Rules of the snapshot-equivalence types can be applied
to those query fragments that need not preserve time peri-
ods. This is true for all operations below coalescing because
coalescing returns the same result relation for all snapshot
equivalent argument relations, if they do not contain dupli-
cates in snapshots (which, in this case, is ensured by tempo-
ral duplicate elimination below coalescing). Consequently,
below coalescing,�S

M
rules can be applied;�S

S
rules can

be applied where duplicates are not relevant.

5.3. Operation properties

The shaded regions in an operation tree are determined
using three Boolean properties of operations (see Table 2).
Each operation in a tree has a value for each of these prop-
erties.

Property Name Description

OrderRequired Trueif the result of the operation must
preserve some order

DuplicatesRelevant Trueif the operation cannot arbitrarily
add or remove regular duplicates

PeriodPreserving Trueif the operation cannot replace its
result with a snapshot-equivalent one

Table 2. Operation properties

For example, theOrderRequiredproperty does not hold
if the sort operation does not exist below in the tree. For all
operations in the right branch of a temporal difference, the
DuplicatesRelevantdoes not hold if the left argument to the
temporal difference does not contain duplicates in its snap-
shots. Formal definitions of the properties are given else-
where [20].

During query optimization, the properties are first set for
the initial query evaluation plan that is passed to the query
optimizer. When a transformation rule is applied, the prop-
erties must be adjusted in the transformed area. In most
cases, this local adjustment is satisfactory, i.e., properties do
not have to be recomputed for all operations in the resulting
query tree [20].

The use of the properties in operation trees enables us
to formalize when a transformation rule is applicable to a
query plan. The next section shows how the properties are
used during query plan enumeration.

6. Query plan enumeration

We give a straightforward enumeration algorithm whose
purpose is to generate correct query evaluation plans; we

consider neither performance nor the subsequent heuristic
or cost-based selection of a final query plan.

The inputs to the query plan enumeration algorithm are a
set of plansP , containing the initial plan, and a set of trans-
formation rulesT R. The output is all query evaluation plans
that are possible to obtain using the given set of transforma-
tion rules. The algorithm is given in Figure 5. For the al-
gorithm to terminate, the set of transformation rules cannot
include all rules given in Section 4. The rules that introduce
additional operations, such asr !S rdup(r), could be ap-
plied an infinite number of times. Hence, heuristics have to
be used to restrict the rule set, as will be described shortly.
The algorithm is deterministic, i.e., it generates the same set
of query plans independently of the order of transformation
rules and locations [20].

Note that operationsrdupT , coalT , nT , and[T are order-
sensitive, i.e., if they take arguments that are equivalent
as multisets, their results may not be equivalent as multi-
sets. We do not cover the resulting complications, but as-
sume that the initial query plan contains those operations
only when they preserve multiset equivalence. Such cases
include, for example,coalT combined withrdupT , coalT

when its argument does not have duplicates in snapshots,
andnT when its left argument does not have duplicates in
snapshots (for multiset-equivalent right arguments,nT al-
ways returns multiset-equivalent results). The query plan in
Figure 2(a) is a suitable input to the algorithm.

for each planP 2 P do
for eachT 2 T R do
for each locationl in P matching the left side ofT do
if local conditions are satisfiedand
((T is a �L rule)
_ (T is a �M rule^ 8op 2 l (:OrderRequired (op)))
_ (T is a �S rule^ 8op 2 l (:DuplicatesRelevant (op)

^:OrderRequired (op)))
_ (T is a �SL rule^ 8op 2 l (:PeriodPreserving (op)))
_ (T is a �SM rule^ 8op 2 l (:OrderRequired (op)

^:PeriodPreserving(op)))
_ (T is a �SS rule^ 8op 2 l (:DuplicatesRelevant (op)

^:OrderRequired (op) ^ :PeriodPreserving(op)))
then applyT to l, yieldingP 0;

adjust the properties ofP 0;
addP 0 toP;

return P

Figure 5. Query plan enumeration algorithm

In the algorithm, when testing the applicability of a trans-
formation rule at some location, the properties of the op-
erations at that location are employed; the operations we
consider are those operations in the location that correspond
to the operations explicitly mentioned on the left-hand side
of the transformation rule and those that correspond to the
root nodes of the subtrees mentioned on the left-hand side

π EmpName,T1,T2

PROJECT

T S

Tcoal Tcoal

EmpName ASCsort

EMPLOYEE

π EmpName,T1,T2

\

rdup

T

T

ST

[- - -]

[T T T]

[- - -]

[- - -]

[- - -]

[- - -]

[T - -]

[T T T]

(b)(a)

[- - -]

[T - -]

[T T -]

EMPLOYEE

π EmpName,T1,T2

π EmpName,T1,T2

PROJECT

EmpName ASC

\

sort

coal

rdup

T

T

T

T S

ST

[T T T]

[- - -]

[- - -]

[- - -]

[- T -]

[- T T]
[- - -]

[- - -]

[- - -]

[- T T]

Figure 6. Operation trees with properties and transformation-rule applicability regions

of the transformation rule. For example, when testing the
applicability of transformation rulecoalT (r1 nT r2) !M

coalT (r1) n
T coalT (r2), the properties of the operations

coalT andnT and the operations located at the roots ofr1
andr2 are used.

The algorithm provides an operational means of deter-
mining when a transformation rule is applicable. It has
a syntactic component (the left-hand side expression must
match in some location) and a semantic component (the pre-
conditions must hold and the properties must be set appropri-
ately). The algorithm generates query plans that are correct.

Theorem 6.1 The algorithm given in Figure 5 generates
correct query plans.

Proof: To prove the theorem, we need to prove that it applies
only those transformation rules that areapplicableaccording
to Definition 5.1. The proof is divided into six parts, one for
each type of transformation rule [20]. 2

This theorem achievescorrectness, but notcompleteness,
i.e., correct query plans are generated, and we exploit trans-
formation rules of “weak” equivalence types, e.g.,�S , but
we do not findall possible correct query plans that may be
generated using the different types of transformation rules.

To prevent the algorithm from generating an infinite num-
ber of plans, heuristics have to be used. For example, one
heuristic could be that rules that introduce additional opera-
tions, such asr !S rdup(r), should not be used. Another
heuristic can be that selections have to be performed as early
as possible. Thus, we would allow the transformation rule
�P (coal

T (r)) !L coalT (�P (r)), but would not use trans-
formation rulecoalT (�P (r)) !L �P (coal

T (r)).
To illustrate how the algorithm works, we use the exam-

ple query from Section 2. The initial query plan is given
in Figure 2(a). First, we push the transfer operation down.
Then, since the result of the temporal difference does not

contain duplicates in snapshots (because its left argument
does not contain duplicates in snapshots), we apply ruleD2
and remove the top temporal duplicate elimination.

Then we push the coalescing below the temporal dif-
ference by using ruleC10 (we can apply this rule be-
causeOrderRequired does not hold for each participat-
ing operation). The resulting plan is shown in Fig-
ure 6(a). For each operation, we list its properties in square
brackets in the orderhOrderRequired ;DuplicatesRelevant ;
PeriodPreserving i.

Next, we remove the unnecessary coalescing appearing
in the second argument to the temporal difference, using
rule C2; order and time periods need not be preserved in
the right branch of a temporal difference. Finally, we push
thesort operation down, and we change the location of the
sort operation from the stratum to the DBMS. Figure 6(b)
shows the final plan.

7. Conclusions and future work

Temporal query representation, optimization, and pro-
cessing mechanisms are needed to achieve built-in temporal
support in DBMSs. However, previously proposed conven-
tional and temporal algebras have to varying degrees over-
looked such aspects as duplicates, ordering, and coalescing.
In addition, past work considered the efficient processing of
only some operations, e.g., temporal joins, and did not delve
into general query optimization.

This paper offers a general foundation for optimizing
conventional and temporal queries, which is suitable for pro-
viding temporal support via a stand-alone temporal DBMS
or via a layer on top of a conventional DBMS. This founda-
tion offers comprehensive and precise handling of duplicates
and order for conventional and temporal queries, as well as
coalescing for temporal queries. The foundation is enabled

by a temporally extended algebra, which enhances existing
relational algebras based on multisets by accommodating or-
der, and also adds temporal support.

Six types of equivalences among algebraic query expres-
sions are distinguished, leading to six types of transforma-
tion rules that can be exploited during query optimization.
These sets of rules extend all such existing sets known to the
authors. Depending on whether order, duplicate removal, or
coalescing are required for the result of a query, the query
optimizer may apply different types of transformation rules.
A practical mechanism is provided for determining when a
transformation rule of some type is applicable to a query. Fi-
nally, an algorithm that generates equivalent query plans is
presented. This approach partitions the work required by the
database implementor to develop a provably correct query
optimizer into three stages; the database implementor has to
(1) specify operations formally in�-calculus; (2) design ap-
propriate transformation rules, determine which of the six
equivalences is appropriate, and prove that the transforma-
tion rules are correct; and (3) augment the setting and ad-
justing of the operation properties so that the enumeration
algorithm applies the transformation rules correctly.

Future work includes integrating the provided transfor-
mation rules with heuristics and cost estimation techniques,
which are necessary to achieve an efficient and effective op-
timizer. For the layered architecture, strategies for divid-
ing the processing between the layer and the DBMS must
be developed. Multiple implementations of operations, e.g.,
several join implementations that return differently ordered
relations, should be considered. In addition, once a spe-
cific query language is chosen, checks should be included
that, for a query plan, ensure that the tasks assigned to the
DBMS are expressible in SQL and that the operations as-
signed to the layer have corresponding implementation algo-
rithms. Also, the complications arising from order-sensitive
operations should be studied further.

Intended as a foundation for the efficient processing of
SQL-like queries, the algebra includes the standard opera-
tions called for by this type of queries. The operations were
specified in recursive-style definitions that used operations
such ashead , tail , and concatenation. The inclusion of these
and other list operations in the algebra may be explored. In
addition, the algebra may be extended to support modifica-
tions, NOW-relative values [6], and both valid and transac-
tion time [12].

Acknowledgments

This research was supported in part by the Danish Tech-
nical Research Council through grant 9700780, by the U.S.
National Science Foundation through grant IIS-9817798, by
the Chorochronos project, funded by the European Commis-
sion DG XII, contract no. FMRX-CT96-0056, and by a grant
from the Nykredit Corporation.

References

[1] J. Albert. Algebraic Properties of Bag Data Types. InPro-
ceedings of VLDB,Barcelona, Spain, pp. 211–219 (1991).

[2] C. Bettini et al. A Glossary of Time Granularity Concepts.
In [8], pp. 406–413 (1998).

[3] M. H. Böhlen. Temporal Database System Implementations.
ACM SIGMOD Record, 24(4): 53–60 (1995).

[4] M. H. Böhlen, R. Busatto, and C. S. Jensen. Point versus
Interval-Based Temporal Data Models. InProceedings of
IEEE ICDE,Orlando, Florida, pp. 192–200 (1998).

[5] M. H. Böhlen, R T. Snodgrass, and M. D. Soo. Coalescing in
Temporal Databases. InProceedings of VLDB,Bombay, India,
pp. 180–191 (1996).

[6] J. Clifford et al. On the Semantics of “Now” in Databases.
ACM TODS, 22(2): 171–214 (1997).

[7] U. Dayal, N. Goodman, and R. H. Katz. An Extended Re-
lational Algebra with Control over Duplicate Elimination. In
Proceedings of ACM PODS, pp. 117–123 (1982).

[8] O. Etzion, S. Jajodia, and S. Sripada (eds.)Temporal
Databases: Research and Practice. Springer-Verlag (1998).

[9] H. Garcia-Molina, J. D. Ullman, and J. Widom.Database
System Implementation. Prentice Hall (2000).

[10] H. Gunadhi and A. Segev. A Framework for Query Opti-
mization in Temporal Databases. InProceedings of SSDBM,
Charlotte, North Carolina, pp. 131–147 (1990).

[11] W. H. Inmon.Building the Data Warehouse. Second Edition.
John Wiley and Sons (1996).

[12] C. S. Jensen. A Consensus Glossary of Temporal Database
Concepts. In [8], pp. 367–405 (1998).

[13] C. S. Jensen and R. T. Snodgrass. Temporal Data Manage-
ment. IEEE TKDE, 11(1): 36–45 (1999).

[14] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Tem-
poral Data Models via a Conceptual Model.Information Sys-
tems, 19(7): 513–547 (1994).

[15] W. Kiessling. On Semantic Reefs and Efficient Processing
of Correlation Queries with Aggregates. InProceedings of
VLDB,Stockholm, Sweden, pp. 241–249 (1985).

[16] T. Y. C. Leung et al. Query Rewrite Optimization Rules in
IBM DB/2 Universal Database. InReadings in Database Sys-
tems,Third Edition, M. Stonebraker and J. Hellerstein (eds.),
Morgan Kaufmann, pp. 153-168 (1998).

[17] T. Y. C. Leung and R. R. Muntz. Stream Processing:
Temporal Query Processing and Optimization. InTempo-
ral Databases: Theory, Design, and Implementation, A. U.
Tansel et al. (eds.), Benjamin/Cummings, pp. 329–355 (1993).

[18] L. E. McKenzie, Jr. and R. T. Snodgrass. Evaluation of
Relational Algebras Incorporating the Time Dimension in
Databases.ACM Computing Surveys, 23(4): 501–543 (1991).

[19] G. Özsoyoǧlu and R. T. Snodgrass. Temporal and Real-Time
Databases: A Survey.IEEE TKDE, 7(4): 513–532 (1995).

[20] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Query Plans
for Conventional and Temporal Queries Involving Dupli-
cates and Ordering. TIMECENTER Technical Report (1999).
<www.cs.auc.dk/TimeCenter >

[21] R. T. Snodgrass.Developing Time-Oriented Database Appli-
cations in SQL. Morgan Kaufmann (1999).

[22] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum Ap-
proaches to Temporal DBMS Implementation. InProceedings
of IDEAS,Cardiff, Wales, pp. 4–13 (1998).

