
Proc. Int’l. Conf. on Dublin Core and Metadata Applications 2001

17

METAXPath

Curtis E. Dyreson Michael H. Böhlen Christian S. Jensen
School of E. E. and C. S. Department of Computer Science

Washington State University, USA Aalborg University, Denmark
cdyreson@eecs.wsu.edu boehlen@cs.auc.dk csj@cs.auc.dk

Abstract

This paper presents theMETAXPath data model
and query language.METAXPath extends XPath with
support for XML metadata. XPath is a specification
language for locations in an XML document. It serves
as the basis for XML query languages like XSLT and
the XML Query Algebra.

TheMETAXPath data model is a nested XPath tree.
Each level of metadata induces a new level of nest-
ing. The data model separates metadata and data into
different dataspaces, supports meta-metadata, and en-
ables sharing of metadata common to a group of nodes
without duplication. TheMETAXPath query language
has a level shift operator to shift a query from a data
level to a metadata level.METAXPath maximally
reuses XPath hence the changes needed to support
metadata are few.METAXPath is fully compatible with
XPath.
Keywords: Metadata, Query language, XML, XPath

1 Introduction

The World-Wide Web (“web”) is the world’s most
frequently used, text-based information resource. The
web currently has several million servers providing ac-
cess to several billion documents. Many of these doc-
uments conform to the HyperText Markup Language
(HTML).

Metadata can be encoded in HTML using aMETA
element. Metadata is literally “data about data.” The
metadata typically includes the the name of the author,
the date of publication, and a description of the con-
tent of the document, especially with respect to a stan-
dard classification taxonomy. For example, the sub-
ject of an HTML document about a new strain of in-
fluenza could be lucidly described using the vocabu-
lary of the US National Library of Medicine Medical
Subject Headings (MeSH) [8] by prependingMETAel-
ements with the appropriate Dublin Core [5] qualifiers
for the subject.

In the near future, the Extensible Markup Language
(XML) [12] is expected to replace HTML as the mark-

up language of choice for web documents [2, 3]. XML
is also expected to become an important language for
web data exchange. XML is better suited to describing
the structure and semantics of data because it is exten-
sible. HTML has a pre-defined set of elements that,
for the most part, describe the layout of a document.
In XML, new elements can be invented to represent
the semantics and structure of data.

Metadata can also be encoded in XML. Metadata
in XML can have a complex structure and semantics,
for instance the metadata might describe the type and
schema of data to be exchanged. Proposals exist for
relating XML data and metadata, cf. the Resource De-
scription Framework (RDF) [6].

This paper presents a query language that combines
XML data and metadata. There are many proposed
query languages for XML [1, 7, 9, 10, 11, 13]. None
of these proposals provide support for combining data
with metadata. A data model and query language for
metadata must address several concerns. First, meta-
data and data reside in different dataspaces. A single
query should be able to combine constraints on data
and metadata or query either independently. How-
ever a query on data alone should notaccidentlyquery
metadata nor vice-versa. Second, metadata stands in
relation to data as meta-metadata to metadata. Intrin-
sically a fact is neither data nor metadata, rather a fact
is cataloged as data or metadata because of a relation-
ship to other data. Third, some metadata has special
semantics. Manipulations of data must faithfully ob-
serve these semantics. Fourth and finally, metadata not
only describes but also proscribes data. For example
security metadata is intended to restrict access to data.

The authors have previously described and imple-
mented an SQL-like query language called AUCQL
for a semistructured database that addresses all four
issues raised above [4]. In this paper we extend
XPath [10] with concepts borrowed from AUCQL.
XPath is a specification language for locations in an
XML document. It serves as the basis for XML query
languages like XSLT [11] and the XML Query Alge-
bra [13]. XML and semistructured data models are
closely related [9], however there are extensive dif-
ferences in system architectures between a database

©2001 National Institute of Informatics

Administrator
Proceedings of the 2001 International Conference on Dublin Core and Metadata Applications,
Tokyo, Japan, pp. 17-23, October 22-26, 2001.
(URL: http://www.nii.ac.jp/dc2001/proceedings/abst-03.html)
Copyright © 2001 National Institute of Informatics

DC-2001, October 24-26, 2001, NII, Tokyo, Japan

18

serv� er and a web server; hence in this paper we ad-
dress only the first two issues raised above.

In Section 2 an example is given to motivate the
utility of this research. Next the data model for
METAXPath is given. The data model is a simple ex-
tension of the XPath data model in which metadata
is represented by nesting document trees. Next, the
query language for the extended data model is pre-
sented. Finally, the paper concludes with plans for
future research. The presentation throughout the pa-
per is informal. A reader interested in formal details
should refer to the AUCQL paper [4].

2 Motivating Example

To exemplify our data model, consider the XML
document for a person given below.

<?xml version="1.0">
<person ssn="234">

<name>Ichiro</name>
</person>

Figure 1 shows the (logical) tree structure of the XPath
data model for the XML fragment (including whites-
pace). Each node in the tree corresponds to a com-
ponent of the document. A node is a list of proper-
ties (some properties have been omitted, e.g., text or-
der). Each property is a datum about the node. The list
varies depending on theTypeof node. Only element
nodes and the root node have children. The children
of an element comprise the element’s content. Note
that in XPath the data model root is separate from the
document root.

Assume that the following metadata (and meta-
metadata) is available for the document.

� The URL at which the document resides is
www.wsu.edu/p.htm .

� Theperson element is known to be in the En-
glish language. The following XML document
describes the element.

<?xml version="1.0">
<language>English</language>

� The metadata aboutperson being in English
was authored by Suzuki as described in the fol-
lowing XML document.

<?xml version="1.0">
<author name="Suzuki"/>

The metadata given above is physically separate
from the data, but to query the data and metadata to-
gether using XPath the metadata must be (logically)

added to the tree structure. An inadequate strat-
egy would be to add parent or child “meta ” ele-
ments. This would be inadequate because the em-
bedded metadata modifies the structure of the origi-
nal document. An XSLT query to count the number of
elements evaluated on the modified structure would re-
turn an incorrect result since it would count the meta-
data elements. The user could possibly rewrite the
query to omitmeta elements but users should not be
forced to tinker with queries to contend with embed-
ded metadata. Queries using the metadata should also
be supported. For example it should be possible to re-
trieve elements that have metadata which is authored
by Suzuki.

In the next section the XPath data model is extended
to support metadata. In Section 4 we show how to ex-
tend the XPath query language for the new data model.

3 Data Model

Unfortunately the XPath recommendation [10]
does not (currently) provide a formal data model; be-
low we give an informal model that omits details ex-
traneous to the aims of this paper.

A well-formed XML document is a collection of
nestedelements. An element begins with a start tag
and ends with a paired end tag. Between the tags, an
element might containcontent, that is, text or other el-
ements. The XPath data model is commonly assumed
to be an ordered tree. The tree represents the nesting
of elements within the document, with elements cor-
responding to nodes, and element content comprising
the children for each node. Unlike a tree, the children
for a node areorderedbased on their physical position
within the document.

The node types in the tree are element, process-
ing instruction, comment, root, and text. Each node
contains a list of properties. For example an ele-
ment node has the following properties:Value(the el-
ement’s name),Type(element),Sibling order(ordinal
of text order among siblings), andAttributes(a set of
name-value pairs, the attributes are unordered). Other
properties, e.g., validation status, may also be present.
In future, it may be possible to dynamically extend the
information set (the XML Information Set proposal is
available from the W3C but is undergoing extensive
development).

3.1 TheMETAXPath data model

The METAXPath data model extends the XPath
data model by adding an optionalMetaproperty. The
value of Meta is a METAXPath tree that represents
the parsed metadata for that node. Note that metadata
trees can be nested, that is, nodes in the metadata tree
may themselves haveMetaproperties, which represent
meta-metadata.

Proc. Int’l. Conf. on Dublin Core and Metadata Applications 2001

19

Figure 1. The XPath data model for the example fragment

Figure 2 shows the METAXPath tree for the exam-
ple metadata given in Section 2. The URL metadata
is in a tree that is hanging off of the data model root.
The metadata tree’s background is shaded gray in the
figure. The language for theperson element is a tree
associated with the element. The language metadata
tree is shaded with horizontal stripes. And the meta-
metadata that Suzuki authored the language metadata
is represented as the rightmost tree in the figure. The
meta-metadata tree is shaded with diagonal stripes.

3.2 Sharing metadata in subtrees

To this point metadata has been associated with in-
dividual nodes. Often however metadata is common
to a group of nodes. For example the author of a doc-
ument is usually the author of each node in the docu-
ment rather than just the document root. In this case
the metadata should be shared among all the nodes in
a subtree. In METAXPath two steps are needed to ef-
fect sharing. First, aMetaproperty must be added to
each node to indicate the common metadata. Second, a
metadata tree must inherit the metadata of all of its an-
cestors. This is accomplished by adding the children
of the metadata trees for every ancestor to the meta-
data tree. Figure 3 shows the example METAXPath
tree with metadata shared for every subtree. Each node
has aMetaproperty that points to its metadata. Also
the metadata for theperson element must inherit the
metadata of its ancestor(s). Hence thesource el-

ement is a child of the root of the metadata tree for
person .

3.3 Excluding shared metadata

In some situations it is essential to exclude metadata
inherited from ancestors. For example assume that the
source of the text Ichiro is i.txt rather than
p.htm . In this case a new metadata tree must be cre-
ated for the excluded node(s). Typically this involves
creating a new root and adding children as needed.
Figure 4 shows the example METAXPath tree with the
URL metadata excluded for theIchiro text node.

Sharing and excluding metadata increases the size
of the METAXPath tree. Fortunately the sharing can
be effected by pointers rather than copying nodes. Ex-
cluding data however will necessarily involve some
copying. In the worst case each data node will have
a unique metadata tree. We anticipate that sharing will
be frequent and that exclusion for individual nodes
will be rare.

4 Queries

In this section we extend the XPath query language to
operate on METAXPath trees. Before the extensions
are discussed we briefly summarize XPath.

DC-2001, October 24-26, 2001, NII, Tokyo, Japan

20

Figure 2. A METAXPath data model

4.1 XPath

An XPath query is a sequence of steps. Each step
consists of four parts: acontext, an axis, a node
test, and a list of predicates. The context is the
environment, including the context node, in which
the step begins evaluation. Theaxis specifies a set
of nodes, relative to the context node, that might
be in the result of the step. Possible axes include
self , parent , child , descendent , ances-
tor , descendent-or-self , etc. Thenode testis
a predicate that is applied to each node in the axis. Pos-
sible node tests includeany andelement() . The
node test is syntactically separated from the axis with
the string ‘:: ’. Those nodes that pass the node test are
then tested by the predicate(s). A step may have sev-
eral predicates, each denoted by brackets. To qualify
for a result, a node must pass every predicate. A pred-
icate may itself include one or more XPath queries. A
simple syntax for a step is given below.

axis:: node test[�������
	���
������] ����� [�������
	���

�����]

The result of a step is anordered list of nodes,
called, paradoxically, anode-set. The ordering is
based on the order in which the nodes appear in the
document. The direction,document orderor reverse
document orderrelative to the context node, is de-
termined by the axis (e.g.,child is document order

while ancestor is reverse). The result of a query
is the result of the final step in the query. Nodes in
the result of non-final steps are used (in order) as the
context node for the next step. Syntactically, the steps
are separated by the ‘/ ’ character (or ‘// ’ or ‘ | ’). A
simple syntax for a query is given below.

/ ��������� / ����� / ���������

An example query to retrieve the children of the
course element with acode attribute value of
CS451 is given below.

/descendent-or-self::course
[attribute::code="CS451"]/child::*

The first step explores thedescendent-or-self
axis from the data model root. It applies an element
test to keep onlycourse elements. The predicate fil-
ters those nodes that lack ancode attribute ofCS451.
The second step follows thechild axis and retrieves
any node (the wildcard is*).

XPath has an abbreviated syntax that shortens most
queries. A shorter, semantically-equivalent query us-
ing the abbreviated syntax is given below.

//course[@code="CS451"]/*

Readers interested in further details should consult
the XPath recommendation [10].

Proc. Int’l. Conf. on Dublin Core and Metadata Applications 2001

21

Figure 3. A METAXPath data model with shared metadata

4.2 METAXPath

To extend XPath we make only a minor addition
to the syntax and semantics. Observe that each nested
tree in the METAXPath tree is a complete, well-formed
XPath tree. This permits the unchanged use of XPath
within each metadata level in the tree. To XPath we
add an operator to perform a “level shift.” We will use
a ‘ˆ ’ to denote a level shift. The level shift is always
“upwards” from the data to the metadata. It can appear
anywhere that a ‘/ ’ appears.

An example is given below. Assume that we want to
locate nodes that are available from the URLp.htm .
The following METAXPath query includes a level shift
in the predicate.

/descendent-or-self::*
[ˆchild::source[@URL="p.htm"]]

The query first explores the descendent axis below the
data model root in the data tree. For each descendent
it evaluates the predicate. In the predicate, the level
shift moves the query to the metadata tree. The rest
of the query determines if there is asource element
child of the data model root (in the metadata tree) with
the appropriateURLattribute. Note that the result of
this query is a set of data nodes. The same query using
abbreviated syntax is given below.

//[ˆsource[@URL="p.htm"]]

4.3 Retrieving metadata

The query given above retrieves data nodes based
on a metadata predicate. To retrieve metadata nodes
the level shift operator can be used outside of a predi-
cate. The following query retrievessource metadata
nodes.

//ˆsource

4.4 Querying meta-metadata

Level shifts are nested to query meta-metadata. The
following query retrieves all nodes that have some
metadata authored by Suzuki.

//[ˆˆauthor[@name="Suzuki"]]

The query explores all data nodes. The first level
shift explores to the root of the metadata tree for
each data node. The second level shift then checks
meta-metadata nodes for those that were authored by
Suzuki. The following query retrieves all metadata
nodes that have some metadata authored by Suzuki.

//ˆ[ˆauthor[@name="Suzuki"]]

4.5 XPath compatibility

One very important point is that METAXPath is
fully backwards-compatible with XPath. An XPath

DC-2001, October 24-26, 2001, NII, Tokyo, Japan

22

Figure 4. A METAXPath data model with excluded metadata

query on a METAXPath data model will simply ignore
the metadata, and in fact cannot access the metadata
under any circumstances. Since the METAXPath data
model is completely backwards-compatible with the
XPath data model all existing XPath queries on XML
documents will continue to work when the document
is queried using a METAXPath model.

5 Conclusion and Future Work

This paper briefly presents METAXPath, a data
model and query language for XML data and meta-
data. The METAXPath data model is a nested XPath
tree. Each level of metadata induces a new level of
nesting. Metadata common to a group of nodes can
be shared without duplication. The METAXPath query
language has a level shift operator to shift a query from
a data level to a metadata level. Since METAXPath
maximally reuses XPath the changes needed to sup-
port metadata are few and METAXPath is fully com-
patible with XPath.

There remains much to do. XPath is only a part
of query languages like XSLT. We need to investi-
gate applying METAXPath techniques to a more com-
plete query language. In particular we need to artic-
ulate operators for restructuring, grouping, and aggre-
gating nested, metadata trees. We plan to implement
METAXPath and empirically test the efficiency of our

design. (For AUCQL we analytically showed that the
space and time overhead on queries was linear in the
size of the metadata.) Finally, XPath lacks a formal
semantics, but we need to develop a formal semantics
for METAXPath and reason about the completeness of
the level shift operator.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel Query Language for Semistruc-
tured Data.International Journal of Digital Libraries,
1(1):68–88, 1997.

[2] T. Berners-Lee. Keynote Address. InSeventh Inter-
national World Wide Web Conference (WWW7), Bris-
bane, Australia, April 1998.

[3] D. Connolly, R. Khare, and A. Rifkin. The Evolution
of Web Documents: The Ascent of XML.XML spe-
cial issue of the World Wide Web Journal, 2(4):119–
128, Autumn 1997.

[4] C. Dyreson, M. Böhlen, and C. S. Jensen. Captur-
ing and Querying Multiple Aspects of Semistructured
Data. In Proceedings of the International Confer-
ence on Very Large Databases (VLDB ’98), pages
290–301, Edinburgh, Scotland, September 1999.
http://www.eecs.wsu.edu/ cdyreson/AUCQL/.

[5] D. Hillmann. Using Dublin Core.
http://dublincore.org/documents/2001/04/12/usageguide/,
April 2001.

Proc. Int’l. Conf. on Dublin Core and Metadata Applications 2001

23

[6] O. Lassila and R. Swick. Resource Description Frame-
work (RDF) Model and Syntax Specification. Techni-
cal report, W3C Technical Report, January 1999.

[7] B. Ludäscher, R. Himmeröder, G. Lausen, W. May,
and C. Schlepphorst. Managing Semistructured Datat
with FLORID: A Deductive Object-Oriented Perspec-
tive. to appear in Information Systems, 1998.

[8] NIH. Medical Subject Headings - Home Page.
http://www.nlm.nih.gov/mesh/meshhome.html, June
2001.

[9] D. Suciu. Semistructured Data and XML. Into appear
in Proceedings of the International Conference on the
Foundations of Data Organization (FODO ’98), 1998.

[10] W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, Nov. 1999.

[11] W3C. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt, Nov. 1999.

[12] W3C. Extensible Markup Language (XML) 1.0 (Sec-
ond Edition). http://www.w3.org/TR/REC-xml, Oct.
2000.

[13] W3C. The XML Query Algebra.
http://www.w3.org/TR/query-algebra, Feb. 2001.

