
Enhancing an Extensible Query Optimizer with Support
for Multiple Equivalence Types

Giedrius Slivinskas and Christian S. Jensen

Department of Computer Science, Aalborg University, Denmark
http://www.cs.auc.dk/˜{giedrius|csj}

Abstract. Database management systems are continuously being extended with
support for new types of data and advanced querying capabilities. In large part
because of this, query optimization has remained a very active area of research
throughout the past two decades.At the same time, current commercial optimizers
are hard to modify, to incorporate desired changes in, e.g., query algebras or
transformation rules. This has led to a number of research contributions aiming to
create extensible query optimizers, such as Starburst, Volcano, and OPT++.
This paper reports on a study that has enhanced Volcano to support a relational
algebra with added temporal operators, such as temporal join and aggregation.
These enhancements include the introduction of algorithms and cost formulas
for the new operators, six types of query equivalences, and accompanying query
transformation rules. The paper describes extensions to Volcano’s structure and
algorithms and summarizes implementation experiences.

1 Introduction

Query optimization has remained subject to active research for more than twenty years.
Much research has aimed at enhancing existing optimization technology to enable it
to support the requirements, such as for new types of data and queries, of the many
and new types of application areas, to which database technology has been introduced
over the years. However, current commercial optimizers remain hard to extend and
modify when new operators, algorithms, or transformations have to be added, or when
cost estimation techniques or search strategies have to be changed [4]. As a result,
the last decade has witnessed substantial efforts aiming to develop extensible query
optimizers that would make such changes easier. Representative examples of extensible
query optimizers include Starburst [8], Volcano [7], and OPT++ [11].

This paper reports on a specific study that has enhanced theVolcano extensible query
optimizer to support a relational algebra with temporal operators such as temporal join
and aggregation [15]. In addition to new operators, cost formulas, selectivity-estimation
formulas, and transformation rules, the algebra offers systematic support for order preser-
vation and duplicate removal and retention for all queries, as well as for coalescing for
temporal queries (in coalescing, several tuples with adjacent time periods and otherwise
identical attribute values are merged into one). To support order, relations are defined as
lists, and six kinds of relation equivalences are defined – two relations can be equivalent
as lists, multisets, and sets, and two temporal relations can be snapshot-equivalent as lists,

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 55–69, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

LNCS 2151, pp55-69, 2001.
(URL: http://www.springerlink.com/link.asp?id=mkbpfpx8mw8pfhmk)
Copyright © Springer-Verlag

http://www.cs.auc.dk/~{giedrius|csj}

56 G. Slivinskas and C.S. Jensen

multisets, and sets. We report on the design decisions and implementation experiences,
and we evaluate Volcano’s extensibility.

An important goal of the algebra is to offer a foundation for a layered temporal
DBMS that may evaluate temporal queries faster than do current DBMSs. The latter
do not have efficient algorithms for expensive temporal operations such as temporal
aggregation, while such operations can be evaluated efficiently at the user-application
level by algorithms that use cursors to access the underlying data [16].

New algorithms can be added to a DBMS via, e.g., user-defined routines in In-
formix [2,9] or PL/SQL procedures in Oracle [13], but these methods currently do not
allow to define functions that take tables as arguments and return tables [10]; nor do they
allow to specify transformation rules, cost formulas, and selectivity-estimation formulas
for the new functions. Because of these limitations, a middleware component with query
processing capabilities was introduced, which divides the query processing between it-
self and the underlying DBMS [16]. Intermediate relations can be moved between the
middleware and the DBMS by the help of transfer operators.

To adequately divide the processing, the middleware has to take optimization
decisions – for this purpose, we employ the Volcano extensible optimizer. Use of a
separate middleware optimizer allows us to take advantage of transformation rules and
cost and selectivity-estimation formulas specific to the temporal operators.

This paper summarizes design issues and experiences from the implementation of
the optimizer. While the addition of new temporal operators, their cost and selectivity-
estimation formulas, and transformation rules could be done using the extensibility
framework provided by Volcano, adding support for multiple types of equivalences be-
tween relations required changes inVolcano structures, and in its search-space generation
and plan-search algorithms.

To our knowledge, no existing extensible query optimizers systematically support
sets, multisets, and lists. Sorting is treated differently than the common operators, such
as selection or join, and it usually is considered in the query optimization only after
the search space of possible query plans has been generated. However, particularly
due to recent introduction and increasing use ofTOP NandBOTTOM Npredicates in
queries [3], sorting could be exploited better in query optimization if considered during
the search-space generation.

The paper is structured as follows. In Sect. 2, we present Volcano’s architecture.
Section 3 describes the enhancements to Volcano that were necessary to support the
algebra introduced above. The algebraic framework is described first, with a focus on
the parts that posed challenges to Volcano, and the modifications are described next.
Section 4 summarizes the implementation experiences and evaluates the extensibility of
Volcano. Section 5 covers related work, and Sect. 6 concludes the paper.

2 Description of Volcano

The Volcano Optimizer Generator is a software program for generating extensible query
optimizers. The input to the program is a query algebra: operators, their implementation
algorithms (physical operators), transformation rules, and implementation rules. Trans-
formation rules specify equivalent logical expressions, and implementation rules specify

Enhancing an Extensible Query Optimizer with Support 57

which algorithms implement which operators. The output is an optimizer, which takes
a query in the given algebra as input and returns a physical expression (an expression of
algorithms) representing the chosen query evaluation plan. The optimizer implementor’s
tasks include the specification of the input and the coding of the support functions – such
as the selectivity estimation – for operators and rules.

2.1 Two Stages of Query Optimization

TheVolcano optimizer optimizes queries in two stages. First, the optimizer generates the
entire search space consisting of logical expressions generated using the initial query plan
(to which the query is mapped to) and the set of transformation rules. The search space is
represented by a number of equivalence classes. An equivalence class may contain one
or more logically equivalent expressions, also called elements; each of these includes
an operator, its parameter (for example, predicates for the selection), and pointers to its
inputs (which are also equivalence classes).

Consider a simple example query, which per-
� �

� � � � � �

� 	 �
 �

� � �
 �
 � � � � � � � �

(a)

1

2

3

POSITION

 SALARY

(b)

Fig. 1. A Query Plan and its Search
Space

forms a join on theEmpID attribute ofPOSITION
andSALARY relations. Its one possible initial plan
is shown in Fig. 1(a) and its search space is shown
in Fig. 1(b).The elements of classes 1 and 2 repre-
sent logical expressions returning partial results
of the query, i.e., the operators retrieving, respec-
tively, thePOSITION andSALARY relations. The
elements of class 3 represent logical expressions
returning the result of the complete query; either
the first or the second element may be used. Es-
sentially, the given search space represents only
two plans which differ in the order of the join
arguments.

During the second stage of Volcano’s opti-
mization process, the search for the best plan is
performed. Here, the implementation rules are
used to replace operators by algorithms, and the
costs of diverse subplans are estimated. For the
given query, the number of plans to be considered
is greater than two, because the relations may be
retrieved by using either full scan or index scan,
and the join may be implemented by, e.g., nested-
loop, sort-merge, or index join. One possible evaluation plan is to scan both relations
and perform a nested-loop join.

The following two sections briefly describe the search-space generation and the
plan-search algorithms; for more detail, we refer to [7].

58 G. Slivinskas and C.S. Jensen

2.2 Stage One: Search-Space Generation

The search-space generation is performed by theGenerate function. Initially, one ele-
ment is created for each operator in the original query expression, and thenGenerate
is invoked on the top element.

TheGenerate function repeatedly applies transformation rules to the given element,
choosing among the applicable rules that have not so far been applied to the element.
The application of a transformation rule may trigger the creation of new elements and
classes; for each newly generated element, theGenerate function is invoked.

For the query in Fig. 1(a), the search space is generated as follows. Initially, three
elements representing the three query-tree operators are created (the first elements of
equivalence classes 1–3 in Fig. 1(b)). Then, theGenerate function is invoked for the
first element of class 3, which, in turn, invokesGenerate for the first elements of classes
1 and 2. The latter twoGenerate calls do not do anything because no rules apply to the
elements of class 1 and 2. For the first element of class 3, however, the join commutativity
rule is applied, and a second element pointing to switched join arguments is added to
class 3. Then, theGenerate function is invoked on the new element of class 3, but no
new elements are generated: the join commutativity rule is applied again, but its resulting
right-hand element already exists in the search space.

2.3 Stage Two: Plan Search

When searching for a plan, the Volcano optimizer employs dynamic programming in a
top-down manner, and it uses theFindBestPlan function recursively.

First, the optimizer invokes theFindBestPlan function for the first element of the
top equivalence class – e.g., class 3 in Fig. 1(b) – and a cost limit of infinity (the cost limit
can be lower in subsequent calls to the function). If all elements of the class containing the
argument element have already been optimized, no further optimization for the element
is necessary: if the plan has been found and its cost is lower than the cost limit, it is
returned, if not – NULL is returned. Otherwise, optimization has to be performed.

During the optimization, for each algorithm implementing the top operator (in our
case, join),FindBestPlan is recursively invoked on the inputs to the algorithm. If
optimization of the inputs is successful, the plan with the algorithm yielding the cheapest
expected cost is chosen as the best plan. Then,FindBestPlan is recursively invoked for
each equivalent logical expression (in our case, for the second element in equivalence
class 3) to see if a better plan can be found. In case a better plan is found, it is saved in
memory as the best one.

3 Enhancement of Volcano

The implementation of the algebra and its accompanying transformation rules intro-
duces several concepts that did not exist previously in Volcano; these new concepts are
described in Sect. 3.1. Sections 3.2 and 3.3 concern the actual implementation.

Enhancing an Extensible Query Optimizer with Support 59

3.1 Algebra and Multi-equivalence Transformation Rules

First, we overview the architecture for which the algebra has been designed. Next, we
describe the actual algebra, the accompanying transformation rules, and their applica-
bility, focusing on the new concepts. Finally, we outline the challenges that these new
concepts pose to Volcano.

Architecture.The temporally extended relational algebra [15] has been designed for an
architecture consisting of a middleware component and an underlying DBMS. Expensive
temporal operations such as temporal aggregation do not have efficient algorithms in
the DBMS, but can be evaluated efficiently by the middleware, which uses a cursor to
access DBMS relations [16]. Consequently, query processing is divided between the
middleware and the DBMS; the main processing medium is still the DBMS, but the
middleware is used when this can yield better performance.

Algebra.The algebra differs from the conventional relational algebra in several aspects.
First, it includes temporal operators such as temporal join and temporal aggregation.
Next, it contains two transfer operators that allow to partition the query processing be-
tween the middleware and the DBMS. Finally, the algebra provides a consistent handling
of duplicates and order at logical level, by treating duplicate elimination and sorting as
other logical operators and by introducing six types of relation equivalences.

Two relations are equivalent (1) as lists if they are identical lists (≡L); (2) as mul-
tisets if they are identical multisets taking into account duplicates, but not order (≡M);
and (3) as sets if they are identical sets, ignoring duplicates and order (≡S). Two tempo-
ral relations are snapshot-list (≡S

L), snapshot-multiset(≡S
M), or snaphot-set equivalent

(≡S
S), if their snapshots (projections at a given point in time) are equivalent as lists,

multisets, or sets.
Figure 2 shows two temporal relations (relations having two attributes indicating a

time period),POSITION andSALARY. We assume a closed-open representation for time
periods and assume the time values forT1 andT2 denote months during some year. For
example, Tom was occupying positionPos1 from February to August (not including
the latter).

POSITION SALARY Result
PosID EmpID Name T1 T2 EmpID Amount T1 T2 EmpID Name PosID Amount T1 T2
Pos1 1 Tom 2 8 1 100K 2 6 1 Tom Pos1 100K 2 6
Pos2 2 Jane 3 8 1 120K 6 9 1 Tom Pos1 120K 6 8

2 110K 3 8 2 Jane Pos2 110K 3 8

Fig. 2.RelationsPOSITION andSALARY, and the Result of Temporal Join

A temporal join is a regular join, but with a selection on the time attributes, ensuring
that the joined tuples have overlapping time periods; Figure 2 shows the result of temporal
join on theEmpID attribute of thePOSITION andSALARY relations.

60 G. Slivinskas and C.S. Jensen

Transformation Rules.Six types of equivalences lead to six types of transformation rules,
since a transformation rule may satisfy several of the six equivalences. Let us consider
two rules for temporal join,��T . For a given rule, we always specify the strongest
equivalence type that holds; the ordering of equivalence types is given in Fig. 3. The
join commutativity ruler1��T r2 →M r2��T r1 says that the relations resulting from
the left-hand and right-hand sides are equivalent as multisets (and, according to the
type ordering, as sets, as well as their snapshots are equivalent as sets and multisets).
Meanwhile, the sort push-down rulesortA(r1��T r2) →L sortA(r1)��T r2, whereA
belongs to the attribute schema ofr1 and the left-hand side operations are located in
the middleware, says that the relations are equivalent as lists and that the other five
equivalence types also hold.1 The latter rule exploits the fact that all temporal join
algorithms in the middleware retain the sorting of their left arguments.

Applicability of Transformation Rules.Transformation rules that do not guarantee≡L

equivalence cannot always be applied, as illustrated by the following example. Consider
a query that performs the above-mentioned temporal join and sorts the result byName.
One possible initial plan for this query is shown in Fig. 4(a). The bottom operators
represent relationsPOSITION andSALARY transferred to the middleware; to achieve this,
at least two operations are necessary (a table scan in the DBMS and the actual transfer),
but to simplify the example, we view them as one operation and do not consider any
transformation rules related to these operations. Temporal join and sorting are performed
in the middleware.

Let us consider ruler1��T r2 →M r2��T r1. This rule can

S

M

L

SL

SM

SS

Fig. 3. Ordering of
Equivalence Types

be applied to switch the arguments of the join. However, if we
apply the sort push-down rule first and move the sorting below the
temporal join, before the temporal join’s left argument (leading to
the plan shown in Fig. 4(b)), the application of join commutativity
rule would lead to an incorrectly ordered query result. Thus, to be
able to tell when an→M rule is applicable, the optimizer needs to
know the importance of order at each node in the query tree, i.e.,
whether the result of the operation at the node has to preserve some
order or not. In the algebra, this importance is determined by the
OrderRequiredproperty. To determine the applicability of rules
of other types, two additional properties,DuplicatesRelevantand
PeriodPreserving, are used; the first is True if the operation at the node cannot arbitrarily
add or remove duplicates, and the second is True if the operation at the node cannot
replace its result with a snapshot-equivalent one. For each rule of a given type, Table 1
shows the applicability condition for operator nodes on the left-hand side of the rule.

Having an initial query plan, the properties for operators are set in a top-down
manner and then adjusted every time a new transformation rule is applied. For the top
operator, the properties are set in accordance with the specific user-level query language
and query statement, e.g., an SQL query requires the result to be sorted if theORDER
BY clause is specified at the outer-most level. Consequently, for the top element, the
OrderRequired property is set to True only if theORDER BYclause is specified at
the outer-most level. TheDuplicatesRelevant andPeriodPreserving properties are
always set to True, because we always care about duplicates and time periods. For the

1 To be precise, the relations are≡L,A equivalent, i.e., their projections onA are ≡L equivalent.
We will use ≡L equivalence for simplicity.

Enhancing an Extensible Query Optimizer with Support 61

Fig. 4.Query Plans

other operators, the properties are set according to the property values of their parents,
e.g., if some operator is the input to thesort operator, itsOrderRequired property will be
set to False, because its resulting relation may be replaced (via some transformation rule)
by a multiset-equivalent relation, and the correct order of the result will still be ensured
by the followingsort operator. For more details about setting the property values, we
refer to [15].

Support in Volcano.Volcano provides a framework of adding new operators and trans-
formation rules, which allows a rather straightforward addition of temporal operators
and transfer operators, their cost formulas, selectivity-estimation formulas, and schema
propagation formulas. The difficult part is to incorporate different types of transforma-
tion rules. While different rule types can be added by just introducing an extratype
attribute to each rule, to control their applicability is more difficult. The property mech-
anism cannot directly be used because of Volcano’s search-space structure. Having a
Volcano search space, values of the three properties cannot be determined for an ele-
ment, because it is impossible to know the property values of the elements above since
the same equivalence-class element may be used as input by different elements of differ-
ent equivalence classes, as shown later in Fig. 5 where the first element of equivalence
class 2 is used both by two elements of equivalence class 3 and by two elements of class
4. Therefore, the determination of the properties can only occur during the actual search,
which is performed top down.

Table 1.Applicability of a Rule According to its Type

Rule type Applicability condition, ∀op ∈ lhs
→L True
→M ¬OrderRequired(op)
→S ¬DuplicatesRelevant(op) ∧ ¬OrderRequired(op)
→S

L ¬PeriodPreserving(op)
→S

M ¬OrderRequired(op) ∧ ¬PeriodPreserving(op)
→S

S ¬DuplicatesRelevant(op) ∧ ¬OrderRequired(op) ∧ ¬PeriodPreserving(op)

62 G. Slivinskas and C.S. Jensen

3.2 Adjustment of the Search-Space Generation

Since it is impossible to determine properties during the search-space generation, we
generate a complete search space by applying transformation rules ofall types, and
then filter away invalid elements during the actual search. The identification of invalid
elements is enabled by recording, for each element, a type that represents the combi-
nations of the three property values for which this element may be used. We use six
possible type values – L, M, S, SL, SM, SS – which correspond to the six equivalence
types. Consequently, the relationship between each element type and the combination
of properties corresponds to Table 1. For example, if all properties are True, only L type
elements are valid. Intuitively, the element type tells how the relation generated by this
element will be equivalent to the first element of the equivalence class.

Figure 5 shows the search space for the query in Fig. 4(a), generated using the
join commutativity rule and the sort push-down rule (the first one guarantees≡M

equivalence, while the second one guarantees≡L equivalence). Initially, four elements
representing the four query-tree operators are created (the first elements of equivalence
classes 1–4). Then, the join commutativity rule is applied to the first element of class 3,
and a second element representing switched join arguments is added to the class. The
sort push-down rule is applied to the first element of class 4, and two new elements are
created, one of which is added to class 4 and one of which becomes the only element of
class 5. Finally, the join commutativity rule is applied to the second element of class 4,
yielding the third element in the class.

1

sort

T

T T

T

2

4

5

3

sort

M

M

M M

L L M

L

POSITION

 SALARY

Fig. 5.Search Space

Enhancing an Extensible Query Optimizer with Support 63

The first elements of classes 1–3 have equivalence type M only, because the base
relations are retrieved from the DBMS, and we do not know in which order the DBMS
will deliver them. It may happen that a subquery whose top element is the first element
of class 3, when run twice, would return relations that are only multiset equivalent.

The third element of class 4 is only≡M equivalent to the other two elements of that
class. Since the query requires a sorted result (theOrderRequiredproperty value for the
top operator is True), only the two first elements of class 4 will be used during plan
search. Below, we discuss how the element types are determined.

During the search-space generation, new elements are added after applying trans-
formation rules. For a transformation rule, we give below a procedure for how to set the
types of elements resulting from the right-hand side of the rule.

1. The top-element type (the element representing the top operator in the right-hand
side of the rule) is set to the type which is thegreatest common descendantof the
transformation-rule type and the types of the elements participating in the left-hand
side of the transformation rule.

2. The top-element type is set to a stronger type than specified in 1 only if the right-
hand side contains an operation – such as sorting or duplicate elimination – that
would enforce a “stronger” equivalence between the new top element and the old
top element.

3. The types of other new elements resulting from the right-hand side of the rule are
set to any value, but they have to be equal to or stronger than the top-element type.

For example, the greatest common descendant of types M and SM is SS. Let us
consider the search space in Fig. 5: the join commutativity rule applied to the second
element of class 4 results in the third element of class 4, and its type is set to M, which is
the greatest common descendant of L (the type of the second element) and M (the type
of the rule).

Now let us consider another query, which performs a selection on relationr trans-
ferred to the middleware and then sorts it; see its search space in Fig. 6(a). After trans-
formation rulesortA(σP (r)) →L σP (sortA(r)) is applied to the first element of class
3, the new top element – which becomes the second element of class 3 – is oftype
L (Fig. 6(b)). Even if the sorting is not at the top level, the result is correctly ordered
because the selection retains the order of its argument.

In the given examples, the types of the new non-top elements are set to L. Generally,
the types of non-top elements are not important for the correctness, as long as they are not
descendants of the new top element type (see the equivalence-type ordering in Fig. 3).
Therefore, they should be set aiming to have as small search space as possible, i.e., if
an element has to be inserted, first we can look in the existing search space if the same
element (with any type) exists there, and if it does, we do not need to insert it anew. If no
elements exist, a new element should have L type, because most rules are of→L type
and it is likely that, if this element is to be attempted to be inserted again as a top-level
element, its type will be L.

64 G. Slivinskas and C.S. Jensen

1 1

2

3

r

σ

M

L

sort

2

4

3

r

σ

σ

M

L L

L

sort

sort

M M

(a) (b)

Fig. 6.Search Space Before (a) and After (b) ApplyingsortA(σP (r)) →L σP (sortA(r))

3.3 Modification of the Plan Search

For the actual search, the code that controls the validity of elements depending on their
type has to be added to Volcano.

The most significant change is the addition of properties to the parameter list of the
FindBestPlan function. The function uses its input properties to check the validity of
its input element, as mentioned in Sect. 3.2, as well as to set the parameter properties
for calling itself recursively on the inputs to its input element.

Since equivalence-class elements might be of any of the six different types, each
equivalence class may have up to six physical plans, because plans for different-type
elements might differ. For example, it is likely that a type M plan will be simpler and
less costly than a type L plan. In theFindBestPlan function, when looking if a plan
already exists for the input element, we have look for a plan of a type that is stronger
than or equal to the input-element type.

4 Experiences

In this section, we consider the extensibility of Volcano in relation to the needs of our
framework. We evaluate its support for multiple types of equivalence, discuss other
extensions, and evaluate the ease of extensibility.

4.1 Support for Multiple Types of Equivalences

When considering multiple types of equivalences, sorting, duplicate elimination, and
coalescing are important operations, because they may change the equivalence type

Enhancing an Extensible Query Optimizer with Support 65

between two relations. For example, if two≡M equivalent relations are sorted onA,
their sorted versions will be≡L,A equivalent.

Coalescing and duplicate elimination were not implemented in Volcano, and sorting
is supported by the so-calledphysical propertiesof an equivalence class. The possible
use of sorting algorithms (termedenforcers) is considered during the second phase
(plan search) of query optimization. Physical properties are passed as arguments to the
FindBestPlan function, and they allow the optimizer to consider different positions of
sort enforcers. The use of physical properties increases the code complexity and size –
for each algorithm implementing an operator, the optimizer implementor has to write
functions deriving physical properties of the algorithm’s inputs, checking whether the
algorithm satisfies required physical properties, and finding physical properties that are
required from the algorithms’s inputs.

In our approach, we treat sorting, duplicate elimination, and coalescing as all the
other operators and exploit them in the search-space generation, not using physical
properties. While it may be possible to pursue a direction where sorting, duplicate elim-
ination, and coalescing are all treated as enforcers and employ physical properties, we
feel that this treatment would add unneccesary complexity to the framework because,
fundamentally, sorting, coalescing, and duplicate elimination are just like other opera-
tors, having their transformation rules and statistics-derivation formulas. Treating them
as algorithms reduces the number of transformation rules, but the complexity in the plan-
search algorithm is greatly increased. In addition, it would be problematic to incorporate
the statistics-estimation formulas for duplicate elimination and coalescing.

4.2 Other Useful Extensions

Our implementation has indicated the need for new or better support in a number of
other areas.

The two-stage query optimization of Volcano forced us to apply all types of trans-
formation rules during the first stage. If one stage with a top-down plan search and
generation had been used, it would have been easier to control the applicability of the
different types of rules and, possibly, would have improved performance.

The search strategy ofVolcano is fixed, and no mechanisms for extending or changing
it are provided. Proposed improvements of Volcano that were not part of the available
code include a mechanism for heuristic guidance, where rules can be ordered according
to their “promise” [7]. Such ordering implies that the rules having the best probability to
yield better plans would be applied as soon as possible, reducing the overall plan-search
time.

We had to add support for equivalence-class elements that point to their own equiv-
alence classes, because this facility was not available in the code supplied. The pointing
to the same class often occurs using different equivalence types. For example, sorted
relationr is multiset equivalent tor, yielding to a class with two elements (one forr
sorted and one forr) where the first (sorting) points to the same class. In addition, we
had to implement the linking of classes; the linking is needed when we apply a rule to
an element of a certain class and find that the resulting element already exists in some
other class, meaning that both classes represent the same logical expression.

66 G. Slivinskas and C.S. Jensen

The cardinality of a relation resulting from some equivalence class is estimated
when the class is created, according to the selectivity estimation method of the operator
represented in the first element. When a new element is added to the class, the cardinality
is not reestimated. However, the new element may represent an operator for which we
may have a better method for estimating the cardinality. For example, it is easier to
estimate the size of a join, than the size of a Cartesian product followed by a selection
and a projection. Therefore, we had to ensure that the initial plan would contain operators
with good cardinality estimation methods.

4.3 Ease of Extensibility

The main challenge for an extensible query optimizer is to balance the efficiency and ex-
tensibility, and our study indicates thatVolcano’s main emphasis is put on the first aspect.
Volcano is coded in C and does not follow the object-oriented paradigm, which leads to
many interconnected structures, which in turn posed difficulties in figuring out where
the structures were defined, initialized, and used. The transformation-rule application
code is being generated automatically and does not follow any style guidelines, making
it difficult to modify (which was needed when incorporating the necessary modifications
in the search-space generation). A lot of arrays and structures have predefined sizes and
were not being allocated dynamically, occupying more memory than necessary and pro-
viding low scalability. On the other hand, the running times of Volcano (for queries not
involving many joins) were quite low, as shown in [16].

The actual implementation tasks, their difficulty, and approximate number of lines of
resulting code are summarized in Table 2. We divide the entire implementation effort into
three subtasks. The first one, adding support for multiple equivalence types, is the most
difficult, and it has been described in the previous sections. Yet the amount of resulting
code was rather small. The other task was to add new operators, and while it resulted
in a substantial amount of code, it was not difficult, after learning Volcano’s provided
framework for adding new operators and transformation rules. The same applies to the
last task of adding new algorithms; there, however, the amount of code was smaller,
because we did not use physical properties.

Support functions form the biggest part of the code added by the optimizer im-
plementor and their size is proportional to the number of operators and algorithms
implemented. In our case, we implemented relation retrieval, selection, projection, join,
sort-preserving join, temporal join, Cartesian product, duplicate elimination, aggrega-
tion, temporal aggregation, and two transfer operators. Similar behavior of many of
these operators (particularly, in the propagation of catalog information) resulted in a lot
of code repetition in corresponding support functions.

5 Related Work

Our paper takes its outset in the algebraic framework presented in [15]. The framework
has been validated by implementing it using theVolcano optimizer and the XXL library of
query evaluation algorithms; the architecture, cost and selectivity-estimation formulas,
and performance studies have been reported in [16]. The latter paper did not cover the
enhancements to Volcano, which are the foci of this paper.

Enhancing an Extensible Query Optimizer with Support 67

Table 2.Tasks, Their Complexity, and Amount of Code

Task Complexity Lines of Code

Adding equivalence-type support
Modifying structures medium < 200
Modifying search-space generation high < 200
Modifying plan search high < 200

Adding new operators
Coding support functions medium ∼ 2500
Coding management of the three propertiesmedium ∼ 400
Coding transformation rules medium ∼ 2300

Adding new algorithms
Coding support functions low ∼ 1300
Coding implementation rules medium < 200

While to our knowledge, nobody has enhanced existing optimizers with support for
sets, multisets, and lists, reference [1] reports on experiences from building the query
optimizer for Texas Instruments’ Open OODB system using Volcano. That paper finds
the optimization framework useful, but mentions that much time was spent on writing
support and cost functions and that the interface for these tasks is not user-friendly. We
agree with these statements, and we draw additional conclusions in Sect, 4.

A number of other extensible query optimizers exist. Volcano evolved from the Exo-
dus optimizer [6], and later was enhanced by the Cascades optimization framework [5],
which provides a clean interface and implementation that makes full use of C++ classes,
as well as more closely integrates transformation rules and implementation rules, which
are distinct sets in Volcano. Since Cascades was intended to be used for Microsoft’s
SQL Server, its code is not available. Neither is the code for the Starburst query opti-
mizer [8] used in IBM’s DB2, nor is the code of the EROC toolkit for building query
optimizers [12].

The OPT++ [11] extensible optimizer also uses an object-oriented design with C++
classes to simplify the extension tasks. OPT++ offers a number of search strategies,
including “bottom-up” system R-style [14] and the Volcano search strategy; and it can
emulate both Starburst and Volcano.

6 Conclusions

A number of extensible query optimizers are available that aim to facilitate changes in
query algebras and additions of new functionality. Our study reports on the enhancement
of one prominent such extensible query optimizer, Volcano, to support an extended
relational algebra, which – in addition to new temporal operators – contains six types
of equivalences between relations that lead to six corresponding types of transformation
rules.We describe howVolcano’s search-space generation and plan search were modified
in order to support the algebra, and we evaluate the extensibility of Volcano.

The study indicates that support for sets, multisets, and lists is difficult to add to a pre-
existing extensible query optimizer – such support should be considered already during

68 G. Slivinskas and C.S. Jensen

the design of an extensible query optimizer. Volcano’s two-staged optimization strategy
forces the application of all transformation rules, disregarding their type, during the
first stage; if the optimization had occurred in a single stage, we speculate that it would
have been easier to control the applicability of rule types and that better performance
would have resulted. We also found that, for the modifications we considered, Volcano’s
interface was not always user-friendly and that the amount of code needed to implement
support functions was quite substantial. On the other hand, we found Volcano to be a
very useful tool that allowed us to validate our algebra in the middleware architecture
more quickly than if we would have had to develop our own optimizer.

This study indicates that extensible query optimizers are useful when testing research
ideas and building prototypes. We also believe that extensible optimizers, if developed
in industrial strength versions, will prove very useful when building middleware sys-
tems that focus on specific functionality suitable for applying conventional relational
query optimization techniques. The application of extensible technology to middleware
systems is a promising research direction. Due to the increasing use of user-defined rou-
tines in conventional DBMSs, optimizer extensibility is also important when creating
new DBMSs or modifying existing ones. Finally, the study reported upon here indicates
that more research is needed in query optimization and processing that offer integrated
support for sets, multisets, and lists.

Acknowledgements.We are grateful to Richard Snodgrass, who took part in the research
that lead to the query optimization framework, the Volcano-based implementation of
which is reported in this paper.

The research reported here was supported in part by the Wireless Information Man-
agement network, funded by the Nordic Academy for Advanced Study through grant
000389, by the Danish Technical Research Council through grant 9700780, and by a
grant from the Nykredit Corporation.

References

1. J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences Building the Open OODB Query
Optimizer. InProceedings of ACM SIGMOD, pp. 287–296 (1993).

2. R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Developing a DataBlade for a New
Index InProceedings of IEEE ICDE, pp. 314–323 (1999).

3. M. J. Carey and D. Kossmann. Processing Top N and Bottom N Queries.Data Engineering
Bulletin, 20(3):12–19 (1997).

4. S. Chaudhuri. An Overview of Query Optimization in Relational Systems. InProceedings of
ACM PODS, pp. 34–43 (1998).

5. G. Graefe. The Cascades Framework for Query Optimization.Data Engineering Bulletin,
18(3):19–29 (1995).

6. G. Graefe and D. J. DeWitt. The Exodus Optimizer Generator. InProceedings of ACM
SIGMOD, pp. 160–172 (1987).

7. G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient
Search. InProceedings of IEEE ICDE, pp. 209–218 (1993).

8. L. M. Haas et al. Starburst Mid-Flight:As the Dust Clears.IEEE TKDE, 2(1):143–160 (1990).
9. Informix Software. DataBlade Overview. URL:<www.informix.com/products/

options/udo/datablade/ >, current as of May 29, 2001.

Enhancing an Extensible Query Optimizer with Support 69

10. M. Jaedicke and B. Mitschang. User-Defined Table Operators: Enhancing Extensibility for
ORDBMS. InProceedings of VLDB, pp. 494-505 (1999).

11. N. Kabra and D. J. DeWitt. OPT++: An Object-Oriented Implementation for Extensible
Database Query Optimization.VLDB Journal, 8(1):55–78 (1999).

12. W. J. McKenna, L. Burger, C. Hoang, and M. Truong. EROC: A Toolkit for Building NEATO
Query Optimizers. InProceedings of VLDB, pp. 111–121 (1996).

13. Oracle Technology Network. Overview of PL/SQL. URL:<otn.oracle.com/tech/
pl sql/ >, current as of May 29, 2001.

14. P. G. Selinger et al. Access Path Selection in a Relational Database Management System. In
Proceedings of ACM SIGMOD, pp. 23–34 (1979).

15. G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates and Ordering.IEEE TKDE, 13(1):21–49 (2001).

16. G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Adaptable Query Optimization and Evalu-
ation in Temporal Middleware. InProceedings of ACM SIGMOD, pp. 127–138 (2001).

	Introduction
	Description of Volcano
	Two Stages of Query Optimization
	Stage One: Search-Space Generation
	Stage Two: Plan Search

	Enhancement of Volcano
	Algebra and Multi-equivalence Transformation Rules
	Adjustment of the Search-Space Generation
	Modification of the Plan Search

	Experiences
	Support for Multiple Types of Equivalences
	Other Useful Extensions
	Ease of Extensibility

	Related Work
	Conclusions

