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Abstract
With the continued advances in wireless communications, geo-positioning, and consumer electron-

ics, an infrastructure is emerging that enables location-based services that rely on the tracking of the
continuously changing positions of entire populations of service users, termed moving objects. This
scenario is characterized by large volumes of updates, for which reason location update technologies
become important. A setting is assumed in which a central database stores a representation of each
moving object’s current position. This position is to be maintained so that it deviates from the user’s
real position by at most a given threshold. To do so, each moving object stores locally the central repre-
sentation of its position. Then an object updates the database whenever the deviation between its actual
position (as obtained from a GPS device) and the database position exceeds the threshold. The main
issue considered is how to represent the location of a movingobject in a database so that tracking can
be done with as few updates as possible. The paper proposes touse the road network within which the
objects are assumed to move for predicting their future positions. The paper presents algorithms that
modify an initial road-network representation, so that it works better as a basis for predicting an object’s
position; it proposes to use known movement patterns of the object, in the form of routes; and it proposes
to use acceleration profiles together with the routes. Usingreal GPS-data and a corresponding real road
network, the paper offers empirical evaluations and comparisons that include three existing approaches
and all the proposed approaches.

Keywords: Database management, distributed databases, query processing, temporal databases

1 Introduction

In step with the emergence of an infrastructure for mobile, on-line location-based services (LBSs) for gen-
eral consumers, such services are attracting increasing attention in industry and academia.

An LBS is a service that provides location-based information to mobile users. The main idea is to
provide the service user with a service that is dependent on positional information associated with the user,
most importantly the user’s current location. The service may also be dependent on other factors, such as
personal preferences and interests of the user [3].

Examples of LBSs abound. An service might inform its users about traffic jams and weather situations
that are expected to be of relevance to each user. A friend monitor may inform each user about the current
whereabouts of friends. Other services may track the positions of emergency vehicles, police cars, security
personnel, hazardous materials, or public transport. A more advanced location-based “catch the monster”
game may allow a group of users to work together to surround and catch a virtual, but geo-positioned,
monster.

Services such as these rely to varying degrees on the tracking of the geographical positions of moving
objects. For example, traffic jams may be identified by monitoring the movements of service users; and
the users that should receive specific traffic-jam or weatherinformation are identified by tracking the users’
positions. Some services require only fairly inaccurate tracking, e.g., the weather service, while other
services require much more accurate tracking, e.g., location-based games.

We assume that users have wireless devices (e.g., mobile phones) that are online via some form of
wireless communication network. We also assume that the positions of the users are available. Specifically,
we rely on the Global Positioning System for positioning. Toaccomplish tracking with a certain accuracy,
each wireless device monitors its real position (its GPS position) and compares this with a local copy of the
position that the central database assumes. When needed in order to maintain the required accuracy in the
database, the wireless device issues an update to the server. The database may predict the future positions of
a device in different ways. In the general case, the databaseexplicitly informs the mobile device about how
it predicts the client’s position. The challenge is then howto represent, and predict, the future positions of
a mobile device in the database so that the number of updates is minimized. Reduction of updates reduces
communication and server-side update processing.
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A detailed coverage of related work is given in Section 6. In short, to the best of our knowledge the
techniques for update reduction proposed in this paper havenot been proposed or evaluated in past work. We
share the general setting with Wolfson et al. [16, 18], and our proposals take the segment-based technique
described byČivilis et al. [4], which is similar to a technique presentedby Wolfson and Yin [18], as the
starting point.

Section 2 describes the segment-based approach in some detail. In this approach, the future movement
of a mobile device, termed a moving object, is represented bya road segment drawn from the underlying
road network and a fixed speed. A road segment is a polyline, i.e., a sequence of connected line segments.
So, this representation assumes that a moving object moves on a known road segment with constant speed.

As explained above, a moving object is aware of the server-side representation of its movement. The
server uses the presentation for predicting the current position of the moving object. The client-side mov-
ing object uses the representation for ensuring that the server’s predicted position is within the predefined
accuracy.

This paper presents techniques that aim to improve the basicsegment-based approach. We are basing
our proposals on the segment-based approach because we find this to be the most promising outset for
more advanced tracking techniques. As an added benefit, by relating moving objects to the underlying road
network, we gain easy access to content that is connected to the road network. Such content may be useful
in many LBSs. The paper presents the following techniques that improve the segment-based approach:

• Modification of the road network. The number of updates turnsout to be closely related to the
segmentation of the road network. We present techniques formodification of a road network with the
purpose of finding appropriate segmentations of a road network.

• Use of anticipated routes for the moving objects. By using routes in place of segments allows us
to reduce the number of updates caused by changes of segments. Routes are represented as (long)
polylines.

• Introduction of acceleration profiles. The basic approach assumes that moving objects are moving at
constant speed in-between updates. In order to reduce the number of updates caused by the speed
variations of the moving objects, we introduce more accurate speed modeling.

In summary, the paper’s main contributions are (i) proposals for three types of techniques that aim to
reduce the communication and update costs associated with the tracking of moving objects with accuracy
guarantees and (ii) empirical evaluations of the best existing tracking techniques and the new techniques
based on real data.

The paper proceeds as follows. Section 2 summarizes previously proposed update policies and offers
motivation for further investigation of the segment-basedapproach. Section 3 covers improvements of
segment-based approach using road-network modifications.Sections 4 and 5 present the techniques for
update reduction using routes and acceleration profiles, respectively. Section 6 offers an overview of related
work. Section 7 summarizes, provides concluding remarks, and offers suggestions for future research.
Finally, an appendix reports on additional, detailed experiments with tracking techniques presented in the
paper.

2 Background

In this section, we first describe the general tracking scenario that we will use. Then follows a description
of the position data used for tracking. Then we describe the existing tracking approaches, including the
segment-based approach. Finally, we compare the approaches and motivate the paper’s direction.
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2.1 Tracking Scenario

We assume that moving objects are constrained by a road network and that they are capable of obtaining
their positions from an associated GPS receiver. Moving objects, also termed clients, send their location
information to a central database, also termed the server, via a wireless communication network. We as-
sume that disconnects between client and server are dealt with by other mechanism in the network than the
tracking policies we consider. When a disconnect occurs, these mechanisms notify the server, which may
then take appropriate action.

After each update from a moving object, the database informsthe moving object of the representation
it will use for the object’s position. The moving object is then always aware of where the server thinks it is
located. The moving object issues an update when the predicted position deviates by some threshold from
the real position obtained from the GPS receiver.

Figure 1 presents a UML activity diagram for the update scenario (activity diagrams model activities
that change object states). The client initially obtains its location information from the GPS receiver. It
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Figure 1: Tracking Scenario Diagram

then establishes a connection with the server and issues an update, sending its GPS information and unique
identifier to the server.

Having received this update, the server determines which tracking approach and threshold to use for
the client (these are predefined), and it stores the information received from the client in the database. If
the tracking approach is the segment-based one, the server also uses map matching to determine on which
road segment the client is moving. The server then sends its representation of the client’s current and future
position to the client.

Having received this information from the server, the client obtains its actual, current location infor-
mation from the GPS receiver. The client then calculates itspredicted position using the representation
received from the server, and it compares this to the GPS position. If the difference between these two
exceeds the given threshold, the client issues an update to the server. If not, a new comparison is made. This
procedure continues until it is terminated by the client. Although the server may also initiate and terminate
the tracking, we assume for simplicity that the client is in control. This aspect has no impact on the paper’s
contribution.
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2.2 Data Description

As mentioned, GPS is used for positioning of the moving objects. In experiments that will be reported
throughout the paper, we use GPS-log data collected during an intelligent speed adaptation project [9]. In
this project, GPS receivers and small custom made computerswere installed in a number of cars that were
driving in the Aalborg area, Denmark. This resulted in the collection of a GPS-log for each car that contains
position samples for approximately every second during theperiods when the car was being operated during
a period of approximately 8 weeks.

For our experiments, we also use a digital road network obtained from the same project. The road
network is composed of a set of segments, each of which corresponds to some part of the road network that
is in-between a pair of consecutive intersections or an intersection and a dead end. A segment is defined as
a sequence of coordinates, i.e., as a polyline. Further, theroad network is partitioned into streets, and each
segment belongs to precisely one street. Each segment identifies its street by referring to a street code. The
top part of Figure 5 offers a visual image of part of the digital road network.

2.3 Existing Tracking Approaches

We proceed to describe three existing tracking approaches [4]. With minor variations, the first and third of
these were previously proposed by Wolfson and Yin [18] (see Section 6 for additional discussion). These
techniques follow the scenario described in Section 2.1, but differ in how they predict the future positions
of a moving object.

Point-Based Tracking. Using this approach, the server represents a moving object’s future positions as
the most recently reported position. An update is issued by amoving object when its distance to the pre-
viously reported position deviates from its current GPS position by the specified threshold. An example of
point tracking is presented in Figure 2(a). Here, the circles indicate the threshold, and (solid) points indicate
(server-side) predicted positions that result from an update being issued by the object. The two bold lines
indicate connected segments of the road network, and the thin line represents the actual object movement.

(a) (b) (c)

a

b

Figure 2: Tracking Policies: (a) Point-Based, (b) Vector-Based, and (c) Segment-Based

Vector-Based Tracking. In vector tracking, the future positions of a moving object are given by a linear
function of time, i.e., by a start position and a velocity vector. Point tracking corresponds to the special case
where the velocity vector is the zero-vector.

A GPS receiver computes both speed and heading for the objectit is associated with—the velocity
vector used in this representation is computed from these two. Using the same notation as the previous
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figure, Figure 2(b) shows also the velocity vectors that are used for prediction. Solid points again indicate
predicted positions that result from updates, while the remaining positions are simply predicted.

Segment-Based Tracking. Here, the main idea is to utilize knowledge of the road network in which the
clients are moving. A digital representation of the road network is required to be available. The server uses
the GPS location information it receives from a client to locate the client within the road network. This is
done by means of map matching, which is a technique that positions an object on a road-network segment,
at some distanced from the start of that segment, based on location information from a GPS device.

In segment-based tracking, the future positions of a clientare given by movement at constant speed
along the identified segment, which is represented as a polyline. The speed used is the speed most recently
reported by the client. When or if the predicted position reaches the end of its segment, the predicted
position remains at the end from then on. In effect, the segment-based tracking switches to point-based
tracking.

Segment-based tracking is sensitive to the fidelity of the road network representation used. If for some
reason, a matching road segment cannot be found when a movingobject issues an update, the segment-
based approach switches temporarily to the vector-based approach, which is always applicable. On the next
update, the server will again try to find a matching road segment in the database.

Map matching may fail to identify a segment for several reasons. For example, the map available may
be inaccurate, or it may not cover the area in which the clientis located. The use of vector-based tracking
within the segment-based tracking renders segment-based tracking robust.

An example of segment-based tracking is shown in Figure 2(c). Notice that all predicted positions are
now located on the road segment, not on the trajectory obtained via the GPS receiver. The example next
further explains segment-based tracking.

Example 2.1. Consider a taxi moving in a road network. The taxi starts a trip at 2 p.m. It starts at position
(x0, y0), and it travels at 50 km/h. The threshold is 100 m, i.e., we need to know where the taxi is within
100 m. With point-based tracking, an update is issued when the taxi gets to be more than 100 m away
from the previously reported position. This situation is shown in Figure 2(a). Using the vector-based
approach, the taxi’s movement direction is taken into account. This yields a better approximation of the
taxi’s movement, thus reducing the number of updates—see Figure 2(b). If we have available a digital
representation of the road network in which the taxi is moving, segment-based tracking is possible (see
Figure 2(c)). Here, the updated point (a) occurs because thetaxi slows down so that its predicted position
moves ahead of the real position by more than 100 m. The updated point (b) occurs because the taxi reaches
the end of a segment so that its predicted position stops, while the taxi keeps moving. The updated point (b)
places the taxi on a new road segment.

2.4 Comparison of Update Policies

The tracking approaches described in Section 2.3 were evaluated byČivilis et al. [4] using the INFATI data
described in Section 2.2. Approximately 458,000 GPS positions collected from four cars were used, and
thresholds ranging from 40 to 1,000 m were investigated.

Experimental results are presented in Figure 3. The resultswere obtained by simulating the scenario de-
scribed in Section 2.1. Specifically, the movement of each car was simulated using the log of GPS positions
for the car. So a client program and a server program interact, and a simple experiment management system
is in charge of the bookkeeping needed in order to obtain the performance results. Instead of obtaining GPS
positions from a GPS device in real time, the client program utilizes the GPS log, which of course makes the
simulation much faster than the reality being simulated. The bookkeeping involves the counting of updates
sent from the client program to the server program and keeping track of time.
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All performance studies reported in this paper follow this pattern. The studies differ in the specific GPS
data and road networks used, and in the tracking policies used.
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Figure 3: Comparison of Update Policies

In Figure 3, accuracy threshold values in meters are on thex axis. The client obtains a GPS position
from the GPS device every second and performs a comparison between the GPS position and the predicted
position. They axis then gives the average number of seconds in-between consecutive updates sent from
the client to the server in order to maintain the required accuracy.

It is seen that the time in-between updates increases as the accuracy threshold increases, i.e., as the
required accuracy decreases. The point policy shows the worst performance. Notice that the largest im-
provement of the segment-based and vector policies over thepoint policy is for smaller thresholds, while
for larger thresholds the improvement is smaller. For thresholds below 200 m, the segment-based and vector
policies are more than two times better than the point policy.

We find that segment-based tracking was outperformed because the road segment in the underlying
road network were relatively short, having an average length of 174 m. It may be that a relatively straight
road is represented by several segments. In this case, vector-based tracking may need less updates. So,
although vector-based tracking is simpler and slightly better, we find it likely that it is possible to improve
the segment-based tracking to be the best.

In addition, segment-based tracking, by relating the location of a moving object to the underlying road
network, offers additional advantages:

• Buildings, parking places, traffic jams, points of interest, traffic signs and other road-related informa-
tion that is mapped to the road network can be associated withthe location of a moving object.

• Road network-based distances can be used in place of Euclidean distances.

• Acceleration profiles, driver behavior on crossroads, and other road-related data that increase the
knowledge about the future positions of moving objects can be exploited.
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Consequently, we have chosen to base our proposals for new and more efficient tracking techniques on
the segment-based tracking approach.

3 Modification of the Road Network

Recall that with segment-based tracking, the predicted position of an object moves at constant speed along
a segment until it reaches the end of the segment, at which time the predicted position remains at the end of
the segment. The experimental study reported in the previous section indicates that the numbers of updates
in segment-based tracking are closely correlated with the numbers of changes of segments. This motivates
modification of the underlying road network representationthat may lead to less segment changes.

We proceed to present several road network modifications. The main idea is to connect the road seg-
ments in such a way that moving objects would have to change segments as few times as possible as they
travel in the road network. We first present a general segmentconnection algorithm and road network mod-
ification approach. Then three subsequent algorithms are presented that reuse this algorithm. At the end,
the effects on tracking of the three algorithms are comparedexperimentally, and city and suburban driving
are compared.

3.1 General Segment Connection Algorithm

The general segment connection algorithmGSC captures the overall approach to road network modifica-
tion.

The idea is to iterate through all segments in the road network to be modified according to some specified
ordering. During each iteration, the algorithm thus ordersall available segments and then tries to extend
the topmost, or current, segment with other segments. To do this, the algorithm identifies all existing
segments that start or end at the start or end of the current segment and extends the current segment with
the most attractive such segment(s) according to some otherspecified ordering. A current segment that has
been extended is considered in the next iteration, but the segment(s) that were used for the extension are
disregarded. A current segment that has not been extended becomes part of the result and is not considered
any further.

The algorithm takes four parameters as input. The first is a road network, denoted byrn , which is a set
of segments. Each segment is a polyline that represents a small, linear part of the road network. Segments
can have connections with other segments only at their startand end points. Further, each segment (initially)
belongs to only one street and has one street code assigned toit. Additional detail about the concrete road
network used in empirical evaluations in this paper can be found elsewhere [9]. The second parameter
of GSC is a Boolean valued variablestc that controls the segment connection procedure by allowing
or disallowing the connection of polylines with different street codes. The third and fourth parameters,
rnPrioritization and candPrioritization , are sort order specifications that specify how to sort sets of
polylines. By supplying algorithmGSC with different parameters, different transformations of aroad
network result.

Algorithm GSC uses functionfirst(set of segments , stc,Prioritization). This function returns the
segment inset of segments that is first according toPrioritization , which is a sort order specification.
It consists of a list of segment properties, e.g., length, speed limit, number of neighboring segments, along
with an indication of whether sorting should be done in ascending or descending order.

A property of a segment can be calculated based on the other segments available in the argument set of
segments. An example is the number of segments with which a segment can be extended. When calculating
such properties, ifstc is set totrue, segments with street codes that are different from the street code of the
current segment are not considered; otherwise, all segments are considered.
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A property such as the angle between two spatially connectedsegments involves two segments. In this
case, functionfirst(set of segments , stc,Prioritization , pl) takes an additional parameter: segmentpl .
Then each segment fromset of segments will have a property “angle” that is equal to the angle between
the segment andpl .

Algorithm GSC is defined next and explained in the following.

Algorithm GSC(rn , stc, rnPrioritization , candPrioritization )
1. cn ← ∅
2. while rn 6= ∅ do
3. pl ← first(rn, stc, rnPrioritization)
4. rn ← rn \ {pl}
5. epls ← ∅
6. for eachpd ∈ {start(pl), end(pl)} do
7. cand ← {plc|plc ∈ rn∧(pd = start(plc) ∨ pd = end(plc))∧

(plc.streetcode = pl .streetcode ∨ ¬stc)}
8. if cand 6= ∅ then
9. pl ← pl extended withfirst(cand , stc, candPrioritization , pl)
10. epls ← epls ∪ {first(cand , stc, candPrioritization , pl)}
11. if epls 6= ∅ then rn ← (rn \ epls) ∪ {pl}
12. elsecn ← cn ∪ {pl}
13. return cn

A variablecn that will accumulate the result of the algorithm is first initialized. The algorithm then iterates
through the polylines of the argument road network in the argument road network in prioritization order.
During each iteration, the algorithm will use up to two polylines of the road network for extending polyline
pl . Variableepls holds these polylines.

Lines 7 to 10 are iterated through for the two delimiting points of polylinepl . These points are returned
by functionsstart(pl) andend(pl ). Line 7 computes the set of candidate extension polylines,cand , for
a delimiting point. Ifstc is true, extension polylines must have the same street code as the polyline being
extended.

If candidate extension polylines exist, the algorithm proceeds with lines 9 and 10; otherwise, it proceeds
with the next delimiting point or maintenance ofrn andcn. In line 9, the first of the candidate polylines
according to the argument candidate prioritization sort order is identified and used for extending polyline
pl . The polyline used for extendingpl is added to setelps in line 10. Next, if extension was successful, the
polylines used for extension are subtracted fromrn, and the extended polyline is added torn. Otherwise,
polyline pl is added to the result set.

The algorithm returns the modified road network. It should benoted that the algorithm does not modify
the street codes of segments. Ifstc is true, a segment is extended only with segments with identical street
code, which implies that the street codes on the resulting road network are correct. Ifstc is false, the street
codes on the resulting road network are not meaningful. Subsequent algorithms do not use street codes
when this is the case.

The worst case running time complexity of the algorithm isO(n3) wheren is the number of polylines
in the argument road network. The analysis is as follows. Themain while loop executes at mostn times.
Within this loop, line 7 may involve iteration over all polylines in the road network. However, the worst
case complexity is caused by the presence of thefirst function calls. In the worst case, it takesn iterations
to determine the value for an attribute specified in a sort ordering, and it takes anothern iterations to find the
first element given the sort ordering attribute values. It should be noted that the road-network modification
approaches based on this algorithms are executed only once and in an initial, off-line preprocessing step.
The running times of the modifications thus do not affect the run-time performance of the tracking.
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3.2 Street Code-Based Approach

The general idea is to give priority to connecting polylineswith the same street code. This way, longer
road segments are constructed that tend to correspond to parts of named streets. In cases where there are
several candidates with the same street code, priority is given to the shortest polyline. This strategy reduces
the probability that unconnected polylines will be short. The polyline connection algorithm for the street
code-based approach is defined as follows:

Algorithm NSC(rn)
1. rn ← GSC(rn, true , [streetcodeasc , lengthasc ], [sidesdesc, lengthdesc])
2. rn ← GSC(rn, false , [streetcodeasc , lengthasc ], [sidesdesc, lengthdesc])
3. return rn

Algorithm NSC makes two calls to algorithmGSC using differing parameters. The first call uses the
argument road networkrn and requires that polylines being connected have identicalstreet codes.

The sort order used for specifying the iteration over the road network sorts polylines primarily accord-
ing to ascending street codes and secondarily according to their ascending lengths. The algorithm thus
processes segments in street code order and gives priority to short segments. Notice that a sorting order of
streetcodedesc would also work instead ofstreetcodeasc . Both ensure that the polylines with the same street
code are processes together, which is want we want to achieve.

The sort order used when selecting the best candidate polyline for extending a polyline first orders the
candidate polylines in descending order according tosides , which has value 1 or 2 depending on how many
sides to which the polyline can be extended (as it is a candidate, the value is at least 1). The secondary or-
dering is according to descending length. As a result, candidate segments are preferred that can be extended
further, and among such candidates, the longest are preferred.

The second call toGSC is applied to the result of the first call. In contrast to the first call, street codes
are not taken into account when connecting polylines. The sort orderings used are the same as those used in
the first call toGSC.

3.3 Tail Disconnection Approach

The street code based approach does not distinguish betweenmain roads and side streets. The underlying
observation that motivates the tail disconnection approach is that moving object can be assumed to be
moving on main roads most of the time. In this approach, we thus first connect polylines disregarding side
streets, termed tails, and we only subsequently take the tails into account.

Definition 3.1. (Tails) Let rn ⊂ PL be a set of polylines. A polylinepl ∈ rn is a tail if at least one
delimiting point ofpl is not connected to any delimiting point of any other polyline onrn. Tails are also
termed first level tails. Theith level tails inrn are those polylines that are tails in the set obtained by
subtracting all tails at lower levels thani from rn. We defineTails(rn) of a road networkrn as the set of
pairs(pl , level) of a polylinepl in rn and a level numberlevel in N such thatpl is a tail at levellevel .

A few comments are in order. If a road network has a purely hierarchical structure, each polyline may
be a tail at some level. Polylines that belong to a circular structure in a road network, i.e., a structure where
each constituent polyline is connected at both ends, are nottails. A highest tail level is assigned to all non
tail polylines (e.g.,1 + max({level |(pl , level) ∈ Tails(rn)})).
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The polyline connection algorithm for this approach is defined as follows:

Algorithm TSC(rn)
1. rn ← GSC(rn, true , [streetcodeasc , tailleveldesc , lengthasc ], [tailleveldesc , sidesdesc, lengthdesc])
2. rn ← GSC(rn, false , [streetcodeasc , tailleveldesc , lengthasc ], [tailleveldesc , sidesdesc, lengthdesc])
3. return rn

Algorithm TSC has the same structure asNSC. In line 1, the first call toGSC requires that polylines
being connected have identical street codes.

The sort order used for specifying the iteration over the road network sorts polylines according to as-
cending street code, then according to descending tail level, and finally according to ascending lengths.
The sort order used when selecting a candidate polyline for extending a polyline first orders the candidate
polylines in descending order according to tail level, thenin descending order according tosides , and then
according to descending length.

These sort orders ensure that non-tail polylines are connected first. Tails will be used only when no non
tail-polylines are available. Using always tails with the highest levels first is also beneficial, as a polyline
with tail leveln can be extended with a polyline with tail leveln− 1.

The second call toGSC is applied to the result of the first call. Here, connections between polylines
with different street codes are allowed. The sort orderingsused are the same as those used in the first call to
GSC.

It should be noted that because algorithmGSC does not update tail levels, a segment being extended
retains its tail level. This is exactly as intended.

3.4 Direction-Based Approach

The last approach takes into account the directions of the candidate polylines at the connection point. The
idea is that moving objects are expected to be moving as directly as possible towards their destinations,
which means that they will tend to move as straight as possible and by making as few turns as possible.

This approach thus gives preference to polylines that continue in the same direction as much as possible
when extending a polyline. Put differently, preference is given to polylines with a direction at the connec-
tion point that has a small angle with respect to the direction of the polyline to be extended, again at the
connection point.

The polyline connection algorithm for the direction-basedapproach is defined as follows:

Algorithm DSC(rn)
1. rn ← GSC(rn, true ,[streetcodeasc , tailleveldesc , angleAvgasc , lengthasc ],

[tailleveldesc , sidesdesc, angleasc , lengthdesc])
2. rn ← GSC(rn, false ,[streetcodeasc , tailleveldesc , angleAvgasc , lengthasc ],

[tailleveldesc , sidesdesc, angleasc , lengthdesc])
3. return rn

The algorithm extends theTSC algorithm by introducing the new propertiesangle andangleAvg. Prop-
erty angle denotes the angle between a polyline being extended and a candidate for use in the extension.
Specifically, the line segment at the connection point of thepolyline to be extended is itself extended towards
the candidate polyline. This extension corresponds to a straight extension of the polyline’s line segment at
the connection point. Propertyangle is then the angle between the extended line segment and the line
segment of the candidate polyline at the connection point. See Figure 4. A small angle is thus preferable.

Next, propertyangleAvg of a polyline being extended denotes the average of the smallestangle values
possible for both ends of the polyline. If the polyline cannot be extended to one side, an angle of 180 degrees
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Figure 4: Angles Beween Polylines

is used for that side. Thus, for a polyline that can be extended with three polylines to one side with angles of
34, 22, and 90 degrees, respectively, and that has no extensions on the other side,angleAvg = (22+180)/2.
The other parameters are the same as in theTSC algorithm.

3.5 Comparison of Approaches

The goal of all the road modification approaches is to connectthe polylines of road segments into longer
polylines, so that moving objects travel on less polylines.In doing this, we assume that objects in a road
network move mostly along the main roads. We proceed to evaluate the results of the road network modifi-
cations in terms of how well the constructed polylines correspond to the main roads.

All policies succeeded in connecting short polylines into longer ones. Before modification, the road
network has 14,708 segments in total, and the average lengthof a segment is 174 m. Application of each of
the three modification approaches resulted in close to 5,800polylines and an average length of about 450 m.

Before presenting the results of general experiments with the different modified networks, we use the
examples in Figure 5 to offer the reader a feel for the approaches and their differences. The figure displays
part of the unmodified road network at the top, with two smaller parts, labeleda1 andb1, being identified
for further consideration.

The polylines created by the street-code based approach were the worst in connecting the main roads. (In
residential and other areas, it is common for a main road and its side streets to have the same street code.)
Partsa2 andb2 exemplify how the street-code based approach fails to capture the main road as a single
polyline, or segment, for these two parts of the network. In Part a2 the main road is vertical and straight;
in Partb2, is also fairly straight, but horizontal. The number next toa short polyline is the identifier (“id”
for short) of the “long” polyline to which it belongs. A bold line without an id represents an unconnected
polyline.

In Parta2, segment 6,303 makes a loop, and segment 5,961 starts on the side road, while the main road
has a single segment that was not extended by the modificationprocedure. In Partb2, segment 6,473 “ends”
because of a turn to a side road.

The tail disconnection approach fixes some of the problems. In Partb3 of the figure, a single segment
now represents the main road. This is in contrast to the situation in Partb2, where two segments share the
main road. Specifically, we see that segment 6,850 represents the entire main road on the map and that side
roads are “eliminated.” However, the tail disconnection approach does not improve the situation in Parta2,
where there are no tail polylines.

The direction-based approach is the best at assigning main roads to few polylines. This approach solves
problems like those shown in Partsa2 andb2. Since priority is given to straight extensions of polylines, a
single polyline, with id 5,753, represents the straight part of the road—see Parta3. With the direction-based
approach, and unlike the two other approaches, the main roadis represented by one polyline, and the side
roads are represented by two polylines.

In Figure 6, we present a comparison of the update performances for the segment-based policy using
the non-modified road network and the road networks resulting from application of the street code-based
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Figure 5: Road Network Modifications

approach (algorithm SSC), the tail disconnection approach(algorithm TSC), the direction-based approach
(algorithm DSC). The vector-based policy is also included.

In the comparison, 568,307 GPS records were used. The curvesin the upper chart show experimental
results using thresholds ranging from 40 to 1,000 m, and the lower chart provide a better view of the results
for thresholds in the range of 40 to 200 m.

All three road network modifications increase the performance of the segment based policy and out-
perform the vector-based policy. The segment-based policyhas the best performance when using the road
network resulting from the direction-based modification. The performance of a theoretical, constant-speed
optimal policy, to be explained and discussed in the next section, is also included in Figure 6. This policy
in effect assumes that a moving object always stays on the same segment and moves at constant speed,
meaning that updates thus only occur due to speed variations. Based on these experiments, we select the
direction-based approach as the best of the three road network modification approaches.

3.6 Comparison of Suburban Versus City Driving

Another round of experiments were conducted to see the effects of city versus suburban driving. For these
experiments, we used GPS logs from 10 cars that total more than one million GPS points. We divided these
points into two parts, .56 million points that are located within a rectangular region enclosing the center of
Aalborg were designated as city points, and .45 million points outside this region were designated as sub-
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Figure 6: Comparison of Road Network Modifications

urban points. Figure 7 shows how different techniques perform for the city and suburban data. Specifically,
we consider the segment-based policy with an unmodified roadnetwork and the network resulting from
application of the direction-based approach transformation (algorithm DSC), and we consider the “optimal”
policy. Thresholds range from 40 to 1000 m.
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We expect smoother speed variations for suburban driving than for city driving. The better performance
of the “optimal” policy (which is sensitive only to speed variations) for suburban driving than for city
driving confirms this. It can also be observed that the experiments with the unmodified road network differ
little for city and suburban driving. This suggests that using the unmodified road network, the majority of
updates happens due to segment changes, not due to speed variation. It should also be noticed that use of
the transformed road network yields better performance forcity as well as suburban driving, in comparison
to use of the unmodified network. This indicates that many updates caused by segment changes were
avoided. Finally, it is observed that, with the modified network, the segment-based policy performs better
for suburban driving than for city driving. This may be due toboth the smoother suburban speed variations
and longer suburban road segments.

4 Update Reduction Using Routes

The focus of this section is the use of the routes of moving objects for update reduction. At first, we
introduce a theoretical, constant-speed optimal policy. Then we consider the use of a user’s routes, which
are ‘long’ segments, in the segment-based policy instead ofthe use of road-network segments.

4.1 Theoretical, Constant-Speed Optimal Policy

One may distinguish between the updates sent from client to server based on the outcomes of the associated
map matching. Recall that in segment-based tracking, when the server receives an update with a position
pi, it attempts to map match the position onto the road network,rn , to find the most probable polylinempl
and pointmp on it.

With MM being the map matching function then(mpl,mp) = MM(pi, rn); and if MM(pi, rn) =
(null, null), the map matching is unsuccessful, and tracking is done in vector mode. Assuming that the
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map matching is successful and expresion
(

MM(pi, rn)
)

.mpl returns polylinempl to which a given point
pi is map matched, then if

(

MM(pi−1, rn)
)

.mpl =
(

MM(pi, rn)
)

.mpl , we say that the update is caused
by speed, while if

(

MM(pi−1, rn)
)

.mpl 6=
(

MM(pi, rn)
)

.mpl , we say that the update is caused by a
segment change(positionpi−1 is that of the previous update).

The theoretical, constant-speed optimal policy introduced here indicates how few updates it is possible
to achieve with the segment-based policy in the best case that occurs when a moving object travels on only
one segment and no updates occur due to segment change. The policy is optimal under the assumption that
the speed of a moving object is modeled as being constant in-between updates.

This policy is included here because it gives a measure of optimality under the assumption of constant-
speed prediction. The policy is used for comparison purposes only and is not a practical policy. The policy
is impractical because it assumes that the entire polyline along which a vehicle will ever move is known
in advance. We are able to use this policy here because we havethe entire GPS logs for each vehicle.
Using these, we simply construct (very long) polylines thatprecisely track each vehicle “ahead of time.” In
practice, we receive GPS positions in real time.

In Figure 6, the curve for the constant-speed optimal policygives the lower bound for the number of
updates needed by the segment-based policy. The deviation of the segment-based policy using the non-
modified road network from the optimal case is substantial. Using the modified road networks, the per-
formance is significantly closer to the optimal case. For example, for a threshold of 200 m, the use of the
road network modified using the direction-based approach increases the average time duration in-between
consecutive updates from 28 to 46 s in comparison to the use ofthe unmodified road network.

4.2 Use of Routes

It seems reasonable to assume that individuals who travel are traveling in order to reach a destination.
Folklore also has it that travelers frequently use the same routes to their destinations. For example, a person
going from home to work may be expected to frequently use the same route. This general type of behavior
is confirmed by the GPS logs we have available [9].

Taking advantage of knowledge of the routes used by a moving object can reduce the number of updates
caused by segment changes. Since a route is a sequence of partial road segments, a route is represented
simply as a polyline. Therefore, the segment-based policy,which is applicable to any polylines, is also
directly applicable to routes. All that is needed is to collect the routes of each user [2].

When using the segment-based policy with routes, we effectively assume that we know the future posi-
tions of an object. This is like in the theoretical, constant-speed optimal policy. The differences from that
policy are that the polylines that represent routes are created from the road network, not from GPS logs, and
that deviations from the assumed route are handled. Specifically, if an object deviates from its route, this is
treated simply as a segment change. This will most likely trigger an update, but it will not lead to failure.

For experiments, we have extracted log data that representsroutes from home to work of drivers rep-
resented in our GPS data. The data set contains 56,000 log entries. Using this data, Figure 8 reports the
performance of the segment-based policy when routes are used, as well as of the theoretical approach based
on the same data.

The policies have practically the same performance. The small deviations between the two are only
visible for higher threshold values, which is due to the small numbers of updates for these. For example,
at a 50 m threshold, each policy has more than 1850 updates, which renders the difference of 96 updates
invisible. At a 950 m threshold, each policy has just above 228 updates, rendering the difference of 14
updates visible. The slight deviations between the policies may be explained by the differences between
the routes used by the two policies. In particular, the routes constructed from GPS points and used by the
theoretical policy are slightly more detailed and thus longer than the ones used by the segment-based policy.
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Figure 8: Use of Routes Versus the Theoretical Approach

The conclusion is that knowing the route of an object in advance can eliminate virtually all updates
caused by segment changes and thus significantly improves the performance of the segment-based policy.

5 Update Reduction Using Acceleration Profile

Even if the future trajectory of an object is known preciselyand updates caused by segment changes thus
are eliminated, updates still occur due to variations in speed. The reason is that the segment-based policy
assumes that objects move at constant speed—it takes an update to change the speed.

In this scenario, the modeled speed of an object moving alonga road is a stair function. Figure 9 presents
the variation of a car’s speed along a part of its route from home to work. The stepwise constant speed is the
one used by the segment-based policy with a 70 m threshold. Each new step in the stair function is marked
with a dashed line and represents an update. The density of the steps depends on the threshold—smaller
thresholds yield more updates.

It is reasonable to expect that more accurate modeling of thespeed variation of an object along its
route, e.g., using averages of the speeds during past traversals of the route, can help better predict the future
position of the object as it moves along the route. Figure 10 illustrates the speed variation of one car along
part of its route from home to work. Here, the thin lines represent the speeds for 12 different traversals of
the route, and the solid line represents the average speed along the route.

The figure reveals a clear pattern in how fast the car drives along the route during different traversals.
The geometry of the route, the driver’s habits, and the traffic situation are probably the primary causes
for this correlation. Figure 11 displays the geometry of ourpartial route. The figure contains distance
measures that allow the reader to correlate the geometry with the patterns displayed in Figure 10. The
first deceleration of the car happens in preparation for negotiating a sharp 90 degree curve. Then the car
accelerates, decelerates, makes a right turn, and decelerates further as it reaches a traffic light. On green,
the car accelerates along a main road where it subsequently passes through two large rotaries. It can be seen
that the car reaches its highest speed on the long, straight stretch of main road and that the speed as it enters
a rotary is on average higher than the speed at the traffic light. It can also be seen that the car decelerates
more quickly than it accelerates. We expect this type of behavior to be typical.
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Figure 10: Speed Pattern for 12 Traversals of a Partial Route

The clear pattern in Figure 10 indicates that tracking with better performance can be achieved by more
accurate modeling of the predicted, future speed of a movingobject.

We consequently create an acceleration profile for capturing the average speed variation of the move-
ment of an object along a route. It should be noted that a profile is created for each combination of a route
and object using the route. Assigning profiles to the road network that are to apply to all moving objects and
for all uses of the segments of the road network is expected tobe less useful. We assume the presence of a
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Figure 11: Geometry of Partial Route with Indications of Traffic Lights and Rotaries

separate software component that generates frequently used routes for the moving objects being tracked [2].
Having this be a separate component is reasonable, as routesare useful for other tasks than tracking.

An acceleration profile consists of acceleration values together with the distance intervals during which
these values apply. A profile is created by first dividing the average speed variation along the route into
intervals where the acceleration changes sign (i.e., from positive to negative or vice versa). Then the average
acceleration is calculated for each interval. We define an acceleration profileapf as a sequence ofn + 1
measuresmi andn accelerationsai, (m0, a0, . . . ,mn−1, an−1,mn). Accelerationai is valid in interval
[mi,mi+1).

To see how an acceleration profile is used, assume an object moves with speedv0 and that its current
location (“measure”) along the route ism0 distance units after the start of the route, wherem0 belongs to
the interval[mbegin ,mend ) in which the acceleration profile has acceleration valuea. Then the predicted
positionmpred and speedvpred of the object within interval[mbegin ,mend) at timet is given by:mpred =
m0 + v0t + (a/2)t2 (vpred = v0 + at).

Figure 12 exemplifies speed modeling when using an acceleration profile. The figure concerns the
movement of one moving object along a route. We assume that the segment-based policy with a 70 m
threshold is used. In this figure, the light vertical dotted lines mark updates. To provide better insight into
the behavior of the policy used, we include the deviation between the real position of the moving object and
its position as predicted by the policy.

The algorithm “Predict Positions with Segment policy and Acceleration profile,”PPSA, extends a pre-
viously proposed algorithm [4] with the ability to modify the speed of an object according to an acceleration
profile.

The algorithm takes two parameters as input,mopa andt, where the first parameter is a structure with
five elements: (i) A polyline,mopa .pl , that specifies the geometrical representation of the moving object’s
route, (ii) an acceleration profile,mopa .apf , for speed prediction along the route, (iii) the location ofthe
client, mopa .m, given as a measure value on the route, (iv) the speed,mopa .plspd , of the object, and (v)
the time,mopa .t , when the location and speed were acquired. Parametert > mopa .t is the time point for
which the location of the object should be calculated. The result is the coordinates of predicted location of
the object at timet.
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Figure 12: Speed Modeling Using Acceleration Profile

Algorithm PPSA(mopa, t)
1. mpred ← mopa .m
2. vpred ← mopa .plspd
3. tpred ← t−mopa .t
4. while tpred > 0 do
5. accel ← getAcceleration(mpred ,mopa .apf )
6. S ← accel .end −mpred

7. dt ← 0
8. if v2

pred + 2 · accel .a · S ≥ 0 ∧ accel .a 6= 0 then

9. dt1 ←
(

− vpred+
√

v2

pred + 2 · accel .a · S
)

/accel .a

10. dt2 ←
(

− vpred−
√

v2

pred + 2 · accel .a · S
)

/accel .a

11. dt ← max
({

0,min({dt |dt ∈ {dt1, dt2} ∧ dt > 0})
})

12. if dt = 0 then dt ← S/vpred

13. accel .a← 0
14. if tpred < dt then dt ← tpred
15. mpred ← mpred + vpred · dt + accel .a · dt2/2
16. vpred ← vpred + accel .a · dt
17. tpred ← tpred − dt

18. if mpred ≥M (mopa .pl ,mopa .pl .pend) then return mopa .pl .pend

19. return M−1(mopa .pl ,mpred)

19



The algorithm first initializes temporary variables: Variablesmpred andvpred are set to contain start-
ing location and speed of the moving object, and variabletpred initially holds the time elapsed since the
time when the moving object’s location was acquired. The object’s movement should be predicted for this
duration of time. In general, several acceleration intervals are passed through during this duration of time,
meaning that different acceleration values should be applied during the prediction. The algorithm iteratively
calculates the time required to pass through each acceleration interval and reduces the prediction timetpred
with this time. When the prediction time is exhausted (line 4), the loop stops, and the algorithm calculates
and returns the coordinates of the predicted location.

In line 5, acceleration valuea for the predicted location of the objectmpred and boundary pointend
of the acceleration interval where acceleration valuea applies are retrieved and stored inaccel ; these are
returned by functiongetAcceleration. In the case wherempred is equal to boundary pointmi, the boundary
point mi+1 of the next acceleration interval is returned. If there are no more acceleration intervals, an
acceleration value of0 is returned, and the boundary point is set to∞. Notice thatmpred is initially equal
to the location of the object at the time of the update (line 1).

In line 6, the distanceS to the end of the acceleration interval with accelerationaccel .a is calculated.
The timedt required for the object to reach the end of the acceleration interval (moving with acceleration

accel .a) is calculated in lines 9–11. This time is calculated using the quadratic equationaccel .a · dt2/2 +
vpred · dt − S = 0. It has solutions only ifv2

pred + 2 · accel .a · S ≥ 0 (line 8), and only positive solutions
are valid, as the meaning of the solution is time. If there aretwo positive solutions, the solution with the
smaller value is the valid one (line 11). If the equation has no valid solution, the resultdt is equal to0. In
this case, prediction using constant speed is performed (lines 12 and 13).

After the time required to reach the end of the acceleration interval is calculated, this time is compared
to remaining prediction timetpred . If the time left for which prediction should be done,tpred , is less than
time required to go distanceS, then the algorithm does prediction only for timetpred (line 14). Lines 15 and
16 then calculate the predicted locationmpred and speedvpred . The prediction time is reduced in line 17,
and the loop is repeated iftpred > 0.

Finally, the coordinates corresponding to locationmpred are calculated and returned. This is done in
lines 18 and 19. If the predicted locationmpred is beyond the end of the route as described by polyline
mopa .pl (line 18), the end point of the polyline is returned. This is done by comparing the predicted
measure on the polyline with the measure of the end pointpl .pend of the polyline. FunctionM calculates
the measure value on a given polyline of a given coordinate point. Otherwise, the coordinate point ofmpred

is calculated with the inverse functionM−1, which calculates the coordinate point of a given measure value
on a given polyline.

Experimental results for the segment-based policy using routes and acceleration profiles are presented
in Figure 13. These experiments are based on data from the movement of five cars along different routes.
The GPS data set used here consists of a total of 57,202 records. The experiments shows that the use of
acceleration profiles is able to improve performance. This confirms that when knowing the past acceleration
pattern of an object’s movement along a route, it is possibleto more accurately predict the future positions of
the object along the route. For example, using a threshold of250 m, the average time in-between updates is
increased from 72 to 98 s. We note that with acceleration profiles, we outperform the previously introduced
theoretical policy that was optimal only under the assumption of constant-speed prediction.

In closing, it is also worth considering a few speed modelingalternatives and some implication of our
choice. In reality, the travel speed associated with a road segment varies during the day, and different drivers
may well negotiate the same segment with different speeds. By associating acceleration profiles with routes
that are specific to individual drivers, we capture the variation among drivers. And because the same route
(e.g., from home to work or from work to home) is typically used during the same time of the day, the
variation of speeds across during the day is also taken into account fairly well. Next, if significant variations
exist within the observations based on which the acceleration profile of a route is constructed, it is possible
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Figure 13: Results Using Acceleration Profile

to create several speed profiles, e.g., so that rush-hour andnon-rush-hour profiles are available. We did
not find a need for several acceleration profiles in the GPS data we have used. Finally, we feel that the
alternative of associating acceleration profiles with the road network itself leads to solutions that either will
be more complex or will be less accurate.

6 Related Work

When predicting the future position of an object, the notionof trajectory is typically used [10, 14, 15, 19],
where a trajectory is defined in 3-dimensional [14] or 4-dimensional [15] space. The dimensions are a two-
dimensional “geographical” space, a time dimension, and anuncertainty thresholds dimension. A point in
this space indicates when an object is in a given location andwhat the uncertainty of the representation
of the location is. Such points may be computed using speed limits and average speeds on specific road
segments belonging to a trajectory. Xu and Wolfson [19] use average real-time speeds reported every 5
minutes by in-road sensors. In our techniques, the prediction of an object’s movement is done using the
speed received from the object. For more accurate prediction, we introduce acceleration profiles that allow
for quite accurate modeling of the speed variation along a route. An acceleration profile is a property of the
combination of a physical road network and the habits of a concrete driver.

Wolfson et al. [16] propose two location update policies, termed immediate linear and delayed linear.
These do not provide accuracy guarantees, as an object does not update its location when the deviation
reaches some threshold. The occurrence of an update dependson the overall behavior of the deviation,
estimated using a linear function, since the last update. Experiments on simulated data show that these
policies are inferior to more recent policies, also by Wolfson et al. [17]. Like ours, these offer accuracy
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guarantees. Unlike ours, they assume that objects move on predefined routes already known to the objects,
and route selection is done on the client side. If an object changes its route, it sends a position update
with information about the new route to the server. In contrast, we accommodate objects with memory
restrictions, and we consider the case where routes are not known and where map matching may not even
succeed.

Lam et al. [11] present an adaptive monitoring method (AMM) that takes into consideration not only
update, deviation, and uncertainty costs, but also the costof providing incorrect results to queries, during
the process of determining when to issue updates. In AMM, themoving objects that fall into a query region
need close monitoring, and a small update threshold is used for them. Objects not inside a query region may
have big thresholds. Our algorithm allows different objects to have different thresholds and allows threshold
to change dynamically.

Karimi and Liu [10] describe a technique for trajectory prediction. This technique assigns probabilities
to the roads emanating from an intersection according to howlikely it is that an object entering the inter-
section will proceed on them. The sub-road network within a circular area around an object is extracted,
and the most probable route within this network is used for prediction. When the object leaves the current
sub-network, a new sub-network is extracted, and the procedure is repeated. The probabilities are not in-
dividual to each object, but are used for all objects, and they do not take into account past choices during
the trip of an object. In contrast, we use complete routes. Tocalculate routes, not only the trajectory of a
moving object, but the time of the trip and start and destination points are taken into account. Moreover we
use speed profiles.

Wolfson et al. [19] have recently investigated how to incorporate travel-speed prediction in a database.
They assume that sensors that can send up-to-date speed information are installed in the roads. In contrast,
we use so-called GPS-based floating-car data, and we predictpositions based on historical records and for
each moving object in isolation. This avoids the need for in-road sensors and for gathering information from
such sensors.

Next, Wolfson and Yin [18] consider tracking with accuracy guarantees. Based on experiments with
artificial data generated to resemble real movement data, they conclude that a version of the point-based
tracking as discussed in Section 2.3 is outperformed by a tracking technique that resembles the segment-
based tracking also discussed in Section 2.3. For a small threshold of 80 m, the latter is a bit more than twice
as good as the former; for larger thresholds, the differencedecreases. Their metric is numbers of updates per
distance unit. They consider neither road-network modification, the use of routes, nor acceleration profiles.
Their versions of point and segment-based tracking assume that map-matching always works and fail if this
is not the case. This was possible because the data used in experiments was generated to be perfectly map
matched. We believe that the techniques presented in Section 2 are good representatives of the techniques
presented by Wolfson and Yin. It should also be noted that Ding and Güting [5] have recently discussed the
use of what is essentially segment-based tracking within anenvisioned system based on their own proposal
for a data model for the management of road-network constrained moving objects.

Gowrisankar and Nittel [8] introduce a dead-reckoning policy that uses angular and road deviations, so
that an update is issued whenever one of these deviations exceeds a defined threshold.

When only low accuracy of predicted positions are needed, cellular techniques [1, 12, 13] may be used.
With such techniques, the mobile network tracks the cells ofthe mobile objects in real time in order to be
able to deliver messages or calls to the objects. In this approach, update is handled in the mobile network. In
contrast to these techniques, we consider scenarios where higher accuracy, well beyond those given by the
cells associated with the base stations in a cellular network, are needed and where positioning with respect
to a road network is attractive.

Assuming a network of geo-stationary “presence” sensors, Goel and Imielinski [7] propose to use an
MPEG-based prediction model in order to determine the current location of an object while using as little
sensor battery power as possible.
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Next, Fox et al. [6] explore the use of statistical methods, e.g., multiple hypothesis tracking, in a more
abstract location estimation context than the one we consider. Integration of such methods into our setting
may enable more detailed analysis of the proposed tracking techniques.

In contrast to all related work, this paper uses a substantial data set of real GPS logs for guiding the
process of designing practical techniques for the trackingof moving objects.

7 Summary, Conclusions, and Future Work

The paper presents and empirically evaluates several techniques for the segment-based tracking of moving
objects. These extend the basic segment-based tracking previously proposed [4]. The proposed techniques
are robust generally applicable: They function even if no underlying road network is available or if map
matching is not unsuccessful, and then apply to mobile objects with even stringent memory restrictions.

The performance of basic segment-based tracking is sensitive to the segmentation of the road-network
representation used and to the speed variations of the moving objects. Based on these observations, the paper
presents several techniques that aim to reduce the number ofupdates needed for segment-based tracking
with accuracy guarantees:

• Road network modification. The segment-based representation of the underlying road network used
in segment-based tracking is modified with the goal of arriving at a segmentation that enables objects
to use as few segments as possible as then move in the road network. This then reduces the number
of updates caused by segment changes.

• Use of routes. A route is a polyline, constructed from (partial) road-network segments, that captures
an object’s entire movement from a source to a destination. As segments are themselves polylines,
segment-based tracking readily accommodates the use of routes. Routes are specific to individual
moving objects, and the use of routes is expected to reduce the number of updates caused segment
changes.

• Use of acceleration profiles. An acceleration profile divides a route into intervals withconstant accel-
eration and thus enables quite accurate modeling of the speed of an object as it travels along a route.
The idea underlying the use of acceleration profiles is to reduce the number of updates incurred by
speed variations.

Experimental performance studies using real GPS logs and a corresponding real road network represen-
tation leads to the following main conclusions:

• It is possible to improve the performance of segment-based tracking by automatic re-segmentation
of the underlying road-network representation. Experiments with three re-segmentation algorithms
demonstrate this as well as offer insight into which types ofmodification are most effective in reduc-
ing the number of updates. Experiments with city and suburban driving indicate that segment-based
tracking is more efficient for the latter.

• It is indeed very attractive to use pre-computed routes for the moving objects in segment-based track-
ing, instead of using segments from the road-network representation. The GPS logs used confirm
conventional wisdom, that mobile users are creatures of habit (or efficiency) that frequently use the
same routes through the road network to reach their destinations.

• The GPS data used also reveal distinctive speed patterns forthe mobile users. The experimental results
show that the use of acceleration profiles increases the performance of segment-based tracking.

With acceleration profiles, tracking with a 200 m accuracy guarantee can be done with an average of
one update each 77 s. This is in contrast to one update every 30s for basic segment-based tracking.
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Several promising directions for future work exist. First,it would be of interest to evaluate the costs
of data transmission, in terms of actual phone-bill cost fora mobile user. Such modeling should take into
account the pricing policies of mobile network operators. Second, it would be interesting to study further the
creation and incremental maintenance of acceleration profiles. Self-learning techniques may be applicable.
Third, a road network can be modified according to the GPS datacollected from all users. This way, the
connection of the road segments can be based on the use of the road network by the users. This may lead to
longer segments for the majority of users, thus improving the performance of the segment-based tracking.
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8 Appendix

The appendix reports on additional experiments with the tracking techniques presented earlier. Various data
sets from the INFATI data [9] are used in the experiments.

8.1 Update Rates for Driving on Highways Versus in Towns

We proceed to illustrate details of segment-based trackingfor different accuracy thresholds and for highway
and town driving. In particular, the following experiment distinguishes between updates caused by segments
ending and other updates, and it illustrates the differences in update behavior between highways and other
roads.

As the speed of a car is expected to be highest on highways, frequent updates could be expected there.
However, because the speed variation may also be smaller on highways, where there are no sharp turns,
intersections, or traffic lights, the opposite may well holdinstead.

To illustrate the update behavior on a highway versus on townroads, we extract one trip that consists
of about 1,900 GPS positions is about 22 kilometers long. During the first part of the trip, until the 18.2nd
kilometer, the car was driving on a highway. At the 18.2nd kilometer, the car exited the highway and
used town roads for the remainder of the trip. The experimentuses the segment-based policy and the DSC
modified road network.

Figure 14 covers the updates that occurred during the trip, starting at the 5th kilometer. They axis
displays different accuracy thresholds, ranging from 40 meters to 1000 meters. Thex axis displays the
measure along the line composed of GPS positions belonging to the trip. Put differently, it shows the
distance along the trip from the start of the trip.

Small circles (◦) in black indicate the position of the predicted position ofthe car at the time of a
“usual” update. If the predicted position of the care was at the end of a segment when an update occurred,
the predicted position is indicated by a large, gray circle (◦). Next, a small plus (+) in black marks the GPS
position at the time of a usual update, i.e., one where the predicted position is not at the end of a segment.
If the predicted position is at the end of a segment when the update occurs, the GPS position at the time of
update is shown by a large, gray plus (+).

To illustrate, consider the case in the figure where an updateoccurred between the 13th and 14th kilo-
meter and where the accuracy threshold is 250 meters. Here, the update happened because the car slowed
down: the predicted position (◦) is in front of the GPS position (+). As another example, consider the update
that happened between the 7th and 8th kilometer when using anaccuracy threshold of 700 meters. Here,
the predicted position (◦) reached the end of its current segment and stopped. Later, when the GPS position
got 700 meters in front of the predicted position, the updateoccurred.

In addition to offering a concrete example of the workings ofsegment-based tracking, Figure 14 shows
that for all thresholds, quite few updates occur on the highway. For thresholds that exceed 500 meters,
updates only occur due to segment ends, which appear to be at 7.1, 8.2 and 14.4 kilometers along the trip.
Note that for the 100 meter threshold, no update is associated with the segment end at kilometer 14.4. This
is so because the predicted position was map matched to a different road segment during the update at
11.5 kilometers. In particular, the two movement directions along the highway are represented by different,
but close and parallel, sequences of connected road segments of differing lengths.

On town roads, the update rate is much higher, especially forthe smaller accuracy thresholds. Also,
many of the updates are usual updates rather than updates that occur due to segment ends. This is the case
because road segments are relatively long (especially for the main roads) and because the probability of
exiting a segment at other places than the ends of the segmentare significant.

Recall that the DSC modified road network was used for the experiment. For the modified road network,
the predicted positions might be away from line composed from the GPS positions. This happens because
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the predicted position continues to move on the current roadsegment until update is issued, even if the car
has (recently) turned onto a different road segment. In Figure 14, the measure of the predicted position is
the projection of the predicted position onto the line composed from the GPS positions.

8.2 Use of Routes Versus Routes With Acceleration Profiles

We proceed to look into the effects of using route with acceleration profiles versus routes without such
profiles (i.e., with constant speed and zero acceleration) for tracking. We also illustrate the variation in
updates during tracking for different traversals of the same route by the same driver.

Using the same type of diagram as in the previous figure, Figure 15 illustrates the locations of updates
occurring while the same driver used the same route from hometo work a total of 12 times. The data set
for this experiment consists of about 10,000 GPS records, and the route is approximately 9 kilometers long.
The set is a subset of the data set described and used in Section 5. Specifically, we use the data from one
out of five cars. The data for this car is also illustrated in Figure 10. An accuracy threshold of 500 meters is
used in this experiment.

In Figure 15, they axis records the different trips, while thex axis shows records the measure along
the route in meters. A circle (◦) indicates the predicted position of the car at the time of anupdate, and a
plus (+) indicates the GPS position at the time of an update. In Figure 15, each update is represented by a
pair of a predicted position and a GPS position. The initializing update for each traversal is not displayed
because it does not provide any valuable information: when this first update occurs, the predicted position
is undefined, and the GPS position is projected onto the very start of the route.

Note also that the distance between the predicted position and the GPS position can exceed 500 meters—
this may occur if the driver turns of the GPS receiver or if theGPS receiver does otherwise not provide any
GPS positions for some time. As an example of this, consider the update in trip number 1 where the
GPS position during the update was at 3600 meters, while the predicted position during the update was at
4550 meters. Here, the predicted position moved forward during a time period of 31 seconds because the
client did not receive any GPS positions for this time. Such cases can be avoided by making the client send
a status message to the server when the client is unable to receive GPS positions. Then the server knows
that the accuracy threshold may not hold for this client for the time being.

In Figure 15, the updates that occur within the first kilometer show that the speed obtained from initial
the update was consistently too low. In fact, for the updatesshown first in the figure, the predicted positions
are only a few hundred meters into the route, while the GPS positions are far enough ahead to cause an
update. Next, it can be seen that there are very few updates from 1000 to 3500 meters. During this interval,
the car was driving on a main road with no traffic lights.

Further, it can be observed that almost every trip has an update where the GPS position is at 3600 meters
and the predicted position is ahead. This update thus occurred because the care slowed down. More specif-
ically, the car reached an intersection controlled by a traffic light. The slowdown occurred in most of the
trips because the driver entered the intersection from a side road and was making left turn. See Figure 11.
The traffic light had different timings for the main and side roads—the light is green for 19 seconds and red
for 48 seconds when approaching from the side road. Also, left turns may involve waiting for traffic moving
straight through the intersection.

Figure 16 employs segment-based tracking and uses an acceleration profile. The same data and the same
accuracy threshold are used for the results displayed in both Figure 15 and Figure 16.

The figures confirm that the use of an acceleration profile significantly decreases the number of updates.
Using an acceleration profile, there are only few updates within the first kilometer—after the initial update,
both the predicted position and the GPS position accelerate.

With the acceleration profile, there is only one update at 3600 meters, i.e., at the traffic-light controlled
intersection, where the car for almost all trips had to stop and wait before turning left. Without an accelera-
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tion profile, one update is consumed when the car slows down orstops, and another is consumed when the
car starts accelerating upon exiting the intersection (cf.Figure 15).

The acceleration profile copes well with the two roundaboutsand a traffic-light controlled intersection
with a minor road in the interval from 4000 meters to 6500 meters; these cause only few updates. At
6500 meters, there is a traffic-light controlled intersection with a road of equal size. Here, here the use of
the acceleration profile also leads to an improvement similar to what was observed for the intersection at
3600 meters.

In summary, for the route considered, the use of an acceleration profile increases the average time in-
between two consecutive updates by almost a factor of two, from 128 seconds to 250 seconds.

Next, Figure 17 reports deviations between the speeds reported by the GPS receiver and the speeds
used for prediction when updates occur. Routes of 5 cars, containing 57,000 GPS records, were used in
this experiment. Thex axis displays the speed deviation value obtained by subtracting the predicted speed
from GPS speed at the time of update, then rounding the resultoff to the nearest factor of 10. They axis
displays numbers of updates. For example, Figure 17(b) shows that using the segment-based policy with
routes, an acceleration profile, and an accuracy threshold of 40 meters results in more than 600 updates with
a deviation between the GPS and predicted speeds between -5 and +5 kilometers per hour. In the speed
deviation interval from +5 to +15 kilometers per hour, thereare 260 updates.

For both the segment-based policy with routes and the segment-based policy with routes and accel-
eration profile, the updates become more equally distributed across different speed deviations when the
accuracy threshold increases. This behavior occurs because the use of small thresholds results in updates
shortly after the GPS speed and the predicted speed start to deviate.

Use of the segment based policy with routes and accelerationprofiles results in smaller speed deviations
than does use of the segment based policy with routes and without acceleration profiles. For example, in
Figure 17(b), the biggest number of updates occurs in the speed deviation interval from -5 to +5 kilometers
per hour, while in Figure 17(a) the biggest number of updatesoccurs in the speed deviation interval from +15
to +25 kilometers per hour. This happens because there is a smaller deviation between the predicted speed
and the GPS speed when an acceleration profile is used for speed prediction (cf. Figure 12) in comparison
to constant speed prediction (cf. Figure 9).

8.3 Variation in Update Rates Among Drivers

We proceed to describe how individual drivers contributed to the performance results for the tracking tech-
niques, and how each driver used his or her car. For the experiments reported on here, we use data from 5
different cars.

Figure 18 and Figure 19 illustrate how much each car was beingused during different times of the day
and during the different days of the week. In Figure 18, thex axis displays the day of the week and they
axis displays the numbers of GPS records collected during a day. The figure shows that drivers were driving
more during the weekdays and less during the weekends. In Figure 19, thex axis displays the hour of the
day, and they axis displays the numbers of GPS records collected during anhour. This figure shows that
the majority of cars were used the most curing two time intervals, with 7 to 9 hours in-between them. For
example, car 4 was used most during the 5th hour and then (7 hours later) during the 12th hour; and car
1 was used most during the 6th hour and (8 hours later) during the 14th hour. This suggests that the cars
collected the majority of their GPS records driving betweenthe driver’s home and work.

Figures 20 and 21 show how data from individual cars performed with different tracking policies. Data
from 5 cars containing 568,000 GPS records were used in the experiments presented in Figure 20. For the
results presented in Figure 21, route data for the same 5 cars, consisting of 57,000 GPS records, were used.

For each tracking policy, the different cars exhibit slightly different performance. Car 2 has the best
performance for the vector-based policy. Car 4 has the best performance for the segment-based policy using
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routes. Next, Car 5 does best for the point-based policy; forthe segment-based policy using the unmodified
road network and, to a lesser degree, the DSC modified road network; and for the segment-based policy
using routes with acceleration profiles.

Although the different cars exhibit differences in tracking performance, each car has worst performance
across policies for the point-based policy, and the performance increases when using the segment-based
policy and unmodified road network. Use of the vector-based policy improves performance some, and use of
the segment-based policy with the DSC modified road network further improves performance. Even better
performance is achieved with the segment-based policy using routes and all cars have the best performance
when using the segment-based policy with routes and acceleration profiles.

8.4 Geographical Distribution of Updates

We proceed to illustrate how updates from selected vehiclesare distributed across the Aalborg area. Data
from 5 cars, totaling some 568,000 GPS positions, are used inthe experiment that also uses the segment-
based policy with the DSC modified road network and a threshold of 100 meters.

Figure 22 shows the Aalborg map with an overlay of select cells from a grid with a cell size of 1 square
kilometer. Specifically, all cells with at least 50 GPS are depicted. The numbers at the centers of the cells
indicate the percentage of GPS positions in the cells that triggered an update. For example, 8 % of all the
GPS positions in cell G11 triggered an update. The higher than average updates rate in G11 may be due to
the tunnel that goes under the Lim Fjord, which crosses through the Aalborg area.

Figure 22 shows that the update rate tends to be relatively high in the center of Aalborg, which, roughly,
is the square delimited by cells 13G and 10D. The update rate is also relatively high in inhabited suburbs
(e.g., cells A21, I17, G3, and K5) and tends to be relatively low in uninhabited suburbs (e.g., cells I7, D18,
and B21).
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b) Segment Based Policy Using Routes and Acceleration Profile
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Routes and Acceleration

Profile  Threshold=100m

a) Segment Based Policy Using Routes 
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Routes Threshold=40m

c) Segment Based Policy Using Routes 
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Routes Threshold=100m

e) Segment Based Policy Using Routes 
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Routes Threshold=500m

f) Segment Based Policy Using Routes and Acceleration Profile
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Routes and Acceleration

Profile  Threshold=500m

g) Segment Based Policy Using Routes 
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Routes Threshold=1000m

h) Segment Based Policy Using Routes and Acceleration Profile
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Routes and Acceleration

Profile  Threshold=1000m

Figure 17: Difference Between Predicted and GPS Speed at Times of Update
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Figure 18: Usage of the Cars During the Week
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Figure 19: Usage of the Cars During the Day
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a) Point based policy
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b) Vector based policy
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c) Unmodified Road Network 
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d) DSC Modified Road Network
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Figure 20: Performance of Tracking Policies for Different Cars

a) Segment Based Policy Using Routes
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b) Segment Based Policy Using Routes and Acceleration Profile 
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Figure 21: Performance of Tracking Policies for Different Cars Using Routes
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Figure 22: Geographical Distribution of Update Frequency
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