
In-Route Skyline Querying for Location-Based Services

Xuegang Huang and Christian S. Jensen

Department of Computer Science, Aalborg University, Denmark
{xghuang,csj}@cs.aau.dk

Abstract. With the emergence of an infrastructure for location-aware mobile
services, the processing of advanced, location-based queries that are expected
to underlie such services is gaining in relevance. While much work has assumed
that users move in Euclidean space, this paper assumes that movement is con-
strained to a road network and that points of interest can be reached via the net-
work. More specifically, the paper assumes that the queries are issued by users
moving along routes towards destinations. The paper defines in-route nearest-
neighbor skyline queries in this setting and considers their efficient computation.
The queries take into account several spatial preferences, and they intuitively re-
turn a set of most interesting results for each result returned by the corresponding
non-skyline queries. The paper also covers a performance study of the proposed
techniques based on real point-of-interest and road network data.

1 Introduction

Location-based services (LBSs) utilize consumer electronics, mobile communications,
positioning technology, and traditional map information to provide mobile users with
new kinds of on-line services. Examples include location-sensitive information services
that identify points of interest that are in some sense nearest and of interest to their users
and that offer travel directions to their users. Data management is a core aspect of the
provisioning of LBSs, and advanced services pose new challenges to data modeling as
well as update and query processing.

Using the moving users’ freedom of movement, three scenarios for LBSs can be
distinguished. First, unconstrained movement is characterized by the mobile users be-
ing able to move freely in physical space. Next, constrained movement occurs when
movement is constrained by obstacles, e.g., buildings and restricted areas. The third
scenario is that of network-constrained movement, which is this paper’s focus. Here,
user movement is restricted to a transportation network, and Euclidean distances are
generally of little use. Rather, the notion of travel distance takes center stage, and query
processing techniques must use this distance notion.

This paper considers so-called in-route queries. These assume that the user’s des-
tination is known, in addition to the user’s current location; and they assume that an
anticipated route towards the destination is known. This setting is motivated by the ob-
servation that few mobile users move about aimlessly, but rather travel towards a known
destination along a known route. Such routes can be obtained from navigation systems
or past behavior [3].

Next, users are likely to take several spatially-related criteria, with varying weights,
into account when deciding on points of interest to visit. As examples, a user looking

Y.-J. Kwon, A. Bouju, and C. Claramunt (Eds.): W2GIS 2004, LNCS 3428, pp. 120–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

augustas
LNCS 3428, pp120-135, April 2005.(URL: http://www.springerlink.com/link.asp?id=hqy70fvd46yb2taw)Copyright © Springer-Verlag

In-Route Skyline Querying for Location-Based Services 121

for a gas station may prefer to minimize detour rather than distance, while a user search-
ing for an emergency room is likely to be interested in minimizing the distance and is
insensitive to the detour. We propose to use the mechanism inherent in the skyline oper-
ator [2] to balance several criteria, and we generalize the skyline mechanism to enable
queries that return larger result sets from which the user can then choose. The skyline
mechanism returns a result if no other result exists that is better with respect to all the
criteria considered. This is useful when a total ordering cannot be defined on the space
of all criteria.

The paper offers algorithms for in-route kth order skyline queries, and it covers
performance studies with real point-of-interest and road network data. Although focus
is on spatial preferences, non-spatial preferences can be integrated into the contribution.

Inspired by recent work by Speičys et al. [17] and Hage et al. [8], we use generic
data structures for representing a road network and points of interest within the network.
These structures separate the network topology from the points of interest, which is
important for maintainability, and are kept simple, so that the paper’s contributions are
broadly applicable.

Query processing for network-constrained moving objects has recently received at-
tention in the research literature. Data models and query processing frameworks [8, 15,
17] as well as indexing methods [6, 13] have been proposed for this scenario. Nearest
neighbor querying has attracted the most attention [9, 18, 20]. The paper builds on these
advances, and it considers in detail the approaches for in-route nearest neighbor query
proposed by Shekhar and Yoo [20].

Next, the skyline operator was recently introduced into the context of databases [2].
Several skyline algorithms have since appeared [4, 11, 12, 14, 21]. Most algorithms
assume that the points to be queried are stored in an R-tree like structure [7]. This paper
generalizes the skyline operator and applies it in a new setting; and it does not assume
the presence of an index, but rather uses different means of pruning the search space.

Three contributions may be identified. First, the paper advances the idea of in-route
movement with associated spatial preferences and consequent kth order skyline queries.
Second, techniques for computing such queries for different kinds of in-route movement
are presented. Third, a performance evaluation using real point-of-interest and road
network data is covered.

Section 2 introduces the data model, the road network representation, and basic
algorithms. The next section discusses the movement of in-route users and the corre-
sponding nearest-neighbor based preferences used in queries. Then Section 4 proposes
the query algorithms, and Section 5 covers the performance experiments. The last sec-
tion summarizes and offers research directions.

2 Data Model and Basic Algorithms

2.1 Problem Statement

As discussed, we assume that the users of LBSs are road-network constrained; for ex-
ample, users may drive by car or may be bus passengers. Next, a number of facilities
or so-called points of interest, e.g., gas stations and supermarkets, are located within
the road network. We assume that users query the points of interest en route towards

122 Xuegang Huang and Christian S. Jensen

a destination. Specifically, the users issue queries with the purpose of finding a point
of interest to visit while moving along a pre-defined route towards a given destination.
Having found a point of interest, the user visits this point and then continues towards
the destination. Section 3 discuses distance-related preferences.

We term users query points and the points of interest data points. We proceed to
model the problem scenario, including the road network, data points, and the current
location, route, and destination associated with query points.

2.2 Data Model

A road network is a labeled graph RN = (V, E), where V is a set of vertices and E
is a set of edges. A vertex models an intersection or the start or end of a road. An edge
e models the road in-between two vertices and is a three-tuple e = (u, v, w), where
u, v ∈ V are vertices and w is the length (or, weight) of e. We assume that an edge may
be traversed in both of its directions.

Next, a data point dp is a two-tuple dp = (e, posu), where e is the edge on which dp
is located and posu represents the distances from vertex u of e to dp. The distance from
v of e to dp is then w−posu. Note that adding and removing data points does not affect
the graph itself, which is important for maintainability in practice. A data point found
by an algorithm proposed in this paper is a candidate point, cp = (dp, x1, . . . , xm),
where the xi are attributes generated by the particular algorithm. A query point qp has
the same format as a data point, and posu denotes the current distance from vertex u of
e to the (moving) point.

Finally, a route is given by a sequence of neighboring vertices 〈r0, r1, . . . , rl〉,
where ri ∈ V, i = 0, . . . , l. We assume the current location c of the query point is on

5
�
�
�
�

Destination

r
r

r

r

dp

2

dp

dp

Data Points1

2

3

43

1
r

c

0
r

Query Point

�
�
�
�

�
�
�

�
�
�

�
�
�
�

Fig. 1. Data Model Concepts.

the edge between r0 and r1, as edges of a
route that have already been traversed are
of little interest in our context. It is also
assumed that the query point cannot make
a “u-turn” between its current location c
and r1. The destination associated with a
route is the last vertex, rl. A desired des-
tination that is not represented by a ver-
tex may be handled by introduction of a
temporary vertex into the road network,
or by running the algorithms twice, once

for each neighbor vertex of a destination on an edge, followed by refinement of the
results. Figure 1 illustrates the concepts defined above.

2.3 Disk-Based Road Network Representation

A road network is stored as two paginated adjacency lists: one for vertices and one
for edges. To obtain locality in operations, vertices are organized in pages according to
their Hilbert values.

In-Route Skyline Querying for Location-Based Services 123

Each element in the adjacency list of a vertex v corresponds to an adjacent vertex
and contains 3 entries: a pointer to the page that contains the adjacent vertex, a pointer
to the page in the adjacency list of edges that contains the corresponding edge, and the
length of this edge.

The adjacency list for edges records the relations between edges and data points.
The adjacency lists for two edges e1 and e2 are put in the same page if their vertices are
in the same page. Each element in an edge’s adjacency list contains information about
a data point located on this edge.

2.4 Basic Operations and Algorithms

Skyline Operation. The skyline operation retrieves those points in an argument data
set that are not dominated by any other points in the set. More specifically, consider
a set of points in l-dimensional space. Point p1 dominates point p2 if p1 is at least as
good as p2 in all dimensions and better than p2 in at least one dimension [2]. Here,
we define “better” as “smaller than.” For example, assume we have points p1 = (2, 4),
p2 = (3, 5), p3 = (1, 6) in two-dimensional space. Point p1 dominates p2 as it is better
than p2 in all dimensions. But p1 and p3 do not dominate each other. So p1 and p3 are
the skyline points in set {p1, p2, p3}.

We are interested in finding not only those points that are not dominated by any
other point, but also the points that are dominated by less than k other points, termed
the kth order skyline points. This generalization is similar in spirit to the generalization
of the nearest neighbor query to the k nearest neighbors query.

Many existing skyline algorithms assume that the argument points are pre-processed
into a data structure such as the R-tree. In contrast, we aim to prune unnecessary search
of candidate points before the skyline operation, and we assume instead that the candi-
date points are organized in a simple main-memory list structure.

For a point set P = {p1, . . . , pn} and pi = (dp, x1, . . . , xm), we denote the kth
order skyline operation by SKYLINE (k, P, {d1, . . . , dl}), where {d1, . . . , dl} are the
dimensions to be considered. To compute the result, each point is compared to all other
points to determine its skyline order. The set of points with skyline order less than k is
the result.

Distance Function. We define the distance between two vertices vi, vj , denoted by
D(vi, vj) as the sum of lengths of the edges along the shortest path between these
vertices. We use Dijkstra’s single-source shortest path algorithm [5] for computing such
distances. Since edges may be traversed in both directions, D(vi, vj) = D(vj , vi).

In addition, for two vertices vi, vj along a route R, the road distance from vi to vj

along the route is denoted by D(vi, vj , R) and is defined as the sum of edge lengths
between each two neighboring vertices in the vertex sequence of route R. If vi is after
vj along the route, the edge lengths are counted as negative so that D(vi, vj , R) < 0.
Note that D(vi, vj) ≤ |D(vi, vj , R)|. We also use D(c, r, R) to denote the distance
from the query point’s current location c to a vertex r along route R. This distance is
the sum of the distance from c to r1 and D(r1, r, R).

124 Xuegang Huang and Christian S. Jensen

Spatial Range and Nearest Neighbor Queries. We use RQ(v, d), where v is a vertex
and d is a real-valued range, to denote the range query that returns all data points that
are within distance d of vertex v. We use a traditional best-first search algorithm [10]
extended by the reading of data points from edges for computing this query.

We use NNQ(k, v), where k is a positive integer and v is a vertex, for denoting the
set of (up to) k data points that satisfy the condition that no other data points are nearer
to vertex v than any point in the argument data set. A number of algorithms exist that
compute this query [9, 15, 18, 20], and we use and algorithm that is based on ideas
from these. Briefly, it is a traditional best-first search, extended incrementally to read
data points from edges and to retrieve the k nearest ones.

We also use an algorithm that, for a vertex v, finds the (up to) k nearest neighbor
data points that are also within distance d of v. We denote this query by RNNQ(k, v, d).
This algorithm combines the range and nearest neighbor algorithms.

3 Classification of In-Route Nearest Neighbor Queries

We first discuss the possible distance-related preferences for in-route skyline queries.
Then we propose a query classification based on the movement of the query point.

3.1 Distance-Related Preferences

Two distance-related preferences are of particular interest in relation to a query point, a
data point, and a destination.

Total distance difference: The pre-defined movement is from the current location to
the destination along the route. To visit a data point, the query point will change
its movement, to go from the current location to the data point and then to the
destination. The total distance difference is the larger or smaller distance, compared
to that of the pre-defined movement, that the query point must travel to visit the data
point and then go to the destination.

Distance to the data point: The distance to the data point is the distance the query
point needs to travel to reach the data point.

Optimizing for one preference may adversely affect the other. So if short total distance
as well as short distance to the data point are of interest, combining these in a skyline
query is natural. For brevity, we will in the sequel denote the total distance difference
as the “detour,” while the distance to the data point is denoted as the “distance.”

To find the skyline points, we need to first associate distance and detour values
with the data points. Our focus will be on the process of searching for candidate points
in the skyline operation. We proceed to classify the possible movements of a query
point and consider the distance and detour values for each classification. The resulting
classification may be used when pruning the search.

3.2 Classification

Although a query point may move unpredictably, it will always be leaving for a data
point at a vertex along its route, and its return to the route can also be characterized by

In-Route Skyline Querying for Location-Based Services 125

a vertex along the route. We consider next the general case and then two special cases
that are likely to be of interest in specific real-world uses. Recall that without loss of
generality, the query point’s current location c is between r0 and r1 along the route and
the destination rl is the last route vertex. All three cases are shown in Figure 2.

General Case. We first discuss the general case of a query point’s movement. A query
point issues a query en route towards its destination. The user selects a data point from
the result, visits that point, and then proceeds to the destination.

Destination
�
�
�

�
�
�
c

Query
Point

.
r1 r r

0

dp T: Traverse Case
B: Best Case

B G G
T

G: General Case

r

ri j l

B

�
�
�
�

Fig. 2. Classification.

In the general case, the
query point leaves its route for
data point dp at vertex ri and
returns to the route at rj—see
the sub-paths labeled “G” in
Figure 2. Two vertices are spe-
cial: the “leaving” vertex, ri,
at which the query point leaves
the route, and the “returning”
vertex, rj , at which the query
point returns to the route. Ver-
tices ri and rj can be any ver-

tices in the pre-defined route and rj may possibly be the destination. In Figure 2, if
the route is R, the distance from the query point’s current location to data point dp is
D(c, ri, R) + D(ri, dp), and the detour is D(ri, dp) + D(dp, rj)−D(ri, rj , R).

Traverse Case. In the special case considered here (see label “T” in Figure 2), the
query point leaves the route at ri for data point dp and returns to the route at ri. In this
case, the “leaving” and “returning” vertices are the same vertex. The distance to the data
point is the same as the general case, while the detour value is D(ri, dp)+D(dp, ri) =
2D(ri, dp) so that unless the data point is on the route, the detour is bigger than zero.
This case applies to users who are faithful to their route, which may be the case for,
e.g., tourists following a scenic route.

Best Case. In this case (see label “B” in Figure 2), the query point leaves the route
for data point dp at r1 and then goes directly towards the destination in the route. The
distance and detour for this case are obtained by replacing i, j by 1 and l in the formulas
given for the general case. Observe that in this case, the route carries little significance
to the user.

In addition to the traverse and best cases, other special types of movement are possi-
ble. We simply categorize these as belonging to the general case. So in the next section,
we provide algorithms for the traverse case and the best case; and based on the observa-
tions from these algorithms, we present an algorithm for the general case of the in-route
nearest neighbor skyline query.

126 Xuegang Huang and Christian S. Jensen

4 Algorithms for In-Route Skyline Queries

One basic approach to compute the SKYLINE query is to scan all data points, deter-
mining for each point whether it is a skyline point. Assuming a large number of data
points, this is too costly. A strategy should be employed that prunes unnecessary search.

4.1 Algorithm for the Traverse Case

In the traverse case, the query point leaves the route and returns at the same vertex.
Shekhar and Yoo [20] have previously considered this case, and our algorithm for this
case is similar to theirs, the main differences being that we use road distance and any k,
while they use Euclidean distance and assume k = 1.

Given an order k, a query point’s current location c, and a route R = 〈r0, r1, . . . , rl〉,
the algorithm for the traverse case, TraverseSQ , is seen below. Two auxiliary queues,
T and P , are used to store the result data points of nearest neighbor queries and the
candidate points for the skyline query.

(1) procedure TraverseSQ(k, c,R)
(2) P ← ∅
(3) T ← NNQ(k, r1)
(4) for each t ∈ T
(5) dis ← D(c, r1, R) + D(r1, t)
(6) det ← 2D(r1, t)
(7) P ← P ∪ {(t, dis, det)}
(8) d← distance from r1 to its kth neighbor
(9) for each ri, i = 2, . . . , l
(10) T ← RNNQ(k, ri, d)
(11) if T not empty
(12) for each t ∈ T
(13) dis ← D(c, ri, R) + D(ri, t)
(14) det ← 2D(ri, t)
(15) P ← P ∪ {(t, dis, det)}
(16) d1 ← distance from ri to its kth neighbor
(17) if d1 < d
(18) d← d1

(19) return (SKYLINE (k ,P , {dis , det}))
The algorithm is based on the following observations (Figure 3). Assume r1 and

r2 are route vertices. Let data point dp1 be the kth nearest neighbor of r1 and let data
point dp2 be the k + 1st nearest neighbor of r1. Then D(r1, dp2) > D(r1, dp1). Since
the query point’s current location c is before r1, it is obvious that the distance from the
query point’s current location to dp1, via r1, is smaller than the distance to dp2. Also in
this case, the detour of dp1 is 2D(r1, dp1) and the detour of dp2 is 2D(r1, dp2). So dp1

dominates dp2. Since dp1 is the kth nearest neighbor of r1, dp2 is at most in the k +1st
order skyline. As we perform nearest neighbor search incrementally, there is no need to
continue after the kth nearest neighbor of r1 is found.

In-Route Skyline Querying for Location-Based Services 127

Let d1 = D(r1, dp1). A k range nearest neighbor query is issued at r2 with range
d1 (dashed polygon in Figure 3). If the kth nearest neighbor to r2, e.g., dp3 is found, it
will be collected as a candidate point. And its distance to r2, i.e., d2 = D(r2, dp3), will
be compared to d1 to possibly obtain a smaller search range at the next route vertex.

For any data point outside the range of d1, e.g., dp4, it is obvious that the detour

4
dp

2
dp

1dp

3
dp

2

1

r

r

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 3. Observations for the Traverse Case.

of dp4 is bigger than the detour of dp1. The
distance from the user’s current location to
dp1 is D(c, r1, R) + d1, and the distance
to dp4 is D(c, r1, R) + D(r1, r2, R) +
D(r2, dp4). So any data point like dp4 will
be dominated by dp1, which means that
such data points will at most be in the
k + 1st order skyline. So there is no need
to expand the search beyond d1 at r2.

Note that if the query point can leave
for the data point at only a few spec-
ified vertices along the route, algorithm
TraverseSQ can easily be adapted to han-
dle this special case more efficiently.

The complexity of the algorithm is dominated by the two basic operations, NNQ in
line 3 and RNNQ in line 10, the inner loop in lines 12–15, and the skyline operation.
The two primitive operations can be seen as network expansion processes that use Di-
jkstra’s single source shortest path algorithm to search for data points along the edges.
Let |E| be the number of edges and |V | the number of vertices in the road network. The
complexity of this operation is then O(|E| + |V |log|V |), if an F-heap is employed [5].
Taking into account that (up to) k data points are to be retrieved, each of the two oper-
ations has a complexity of O(|E|+ |V |log|V |+ k). We assume that the data points on
an edge can be accessed in the order of their distances from the beginning (and ending)
vertex of the edge. The inner loop runs at most k times at each route vertex. The com-
plexity is O(k|R|), where |R| is the number of route vertices. The skyline operation, as
described in Section 2.4, compares each argument point with all other argument points
to determine its skyline order. Since up to k data points may be found at each route ver-
tex, the complexity of the skyline operation is then O(k2|R|2). Thus, the complexity of
the TraverseSQ algorithm can be given as O(|R|(|E|+ |V |log|V |+k2|R|)). Section 5
provides a much more detailed empirical study of the performance of the algorithm.

4.2 Algorithm for the Best Case

The skyline algorithm for the best case only takes the current location c, vertex r1 and
destination rl on the route into consideration. For any skyline point dp found by this
algorithm, the movement of the query point is from c to dp via vertex r1 and then from
dp to rl.

The algorithm is based on observations illustrated in Figure 4 and explained next.
Let ri and rj be vertices on route R and let the query point’s movement be from ri to
the data point and then to rj . Then, to find all the candidate points, two range queries are
issued at ri and rj . Let dp1 be the kth nearest neighbor of ri and let d1 = 2D(ri, dp1)+

128 Xuegang Huang and Christian S. Jensen

D(ri, rj , R) and d2 = D(ri, rj , R)+D(ri, dp1). Then d1 is the distance from ri to the
kth neighbor data point dp1 and the back, plus the distance from ri to rj . So, that all
the k nearest neighbor data points from route vertex ri should be found within a range
around ri of size d1. Next, d2 is the distance from dp1 to ri plus the distance from ri to
rj along the route. Consideration of a range of size d2 around vertex rj is sufficient to
find all the k nearest neighbor data points of ri. We proceed to discuss this observation
in detail.

With d1 and d2, the two range queries are then RQ(ri, d1,RN) (dotted polygon in
Figure 4) and RQ(rj , d2,RN) (dashed polygon in Figure 4). Let all the data points in
the road network be in set S, let the data points found by the range query using ri be in
set Si, and let the data points found by range query using rj be in set Sj .

i

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

j
r

dp

S1

r

S2

5

dp
3

dp
4

dp
2

dp
1

Fig. 4. Observations for the Best Case.

It is clear that dp1 be-
longs to Si ∩ Sj : dp1 ∈ Si

since D(ri, dp1) ≤ d1; and
D(dp1, rj) ≤ D(dp1, ri) +
D(ri, rj , R), so dp1 ∈ Sj . Also
the detour of dp1 is less than or
equal to 2D(ri, dp1) since the
length of the shortest path from
ri via dp1 to rj is no longer
than 2D(ri, dp1) + D(ri, rj , R).
It should be noted that dp2 ∈ Sj ,
but dp2 may not be in Si ∩ Sj .

We proceed to explain why
data points in Si ∩ Sj dominate
other data points. Without loss of

generality, we compare dp1 with dp3, dp4, and dp5 from Figure 4. It can be observed
that dp3 is inside neither Si nor Sj . So D(ri, dp3) > D(ri, dp1) and D(dp3, rj) >
D(dp1, rj). So the distance from ri to dp1 is smaller than that to dp3. Also, since the
whole road length from ri via dp1 to rj is smaller than from r1 via dp3 to rj , the detour
of dp1 is smaller than that of dp3. So any data point such as dp3 will be dominated by
dp1.

For dp4, since dp1 is the nearest neighbor to ri, D(ri, dp4) ≥ D(ri, dp1), and as
dp4 does not belong to Sj , D(dp4, rj) > D(dp1, rj). So dp4 is also dominated by dp1.

For dp5, we have D(ri, dp5) > 2D(ri, dp1) + D(ri, rj , R), so the distance from
ri to dp5 is bigger than the distance to dp1. And the detour from ri to rj via dp5 is
D(ri, dp5) + D(dp5, rj) − D(ri, rj , R) > 2D(ri, dp1). As the detour of dp1 is less
than or equal to 2D(ri, dp1), dp5 is dominated by dp1.

Since dp1 is the kth nearest neighbor of ri, all the other k − 1st nearest neighbors
whose distances to ri are smaller than that of dp1 are also in Si ∩ Sj . So there are at
least k data points in Si ∩ Sj . And based on the discussion above, data points not in
Si ∩ Sj are dominated by the points inside this region, making them at most k + 1st
order skyline points. Thus, there is no need to check data points not in Si ∩ Sj .

The algorithm that implements the above-described search procedure is given next.
It takes an order k, a query point’s current location c, two route vertices ri and rj , and

In-Route Skyline Querying for Location-Based Services 129

a route R as arguments. Two auxiliary queues, T1 and T2, store the data points found in
the two range queries at ri and rj . Queue P stores the result set of candidate points.

(1) procedure DNNQ(k, c, ri, rj , R)
(2) T1,T2 ← ∅; P ← ∅
(3) d ← distance from ri to its kth neighbor

// compute by this by expansion from r1 and pause when the kth neighbor is found
(4) d1 ← 2d + D(ri, rj , R)
(5) d2 ← D(ri, rj , R) + d
(6) T1 ← RQ(ri, d1) // continue the paused expansion
(7) T2 ← RQ(rj , d2)
(8) for each t ∈ T1 ∩ T2

(9) dis ← D(c, ri, R) + D(ri, t)
(10) det ← D(ri, t) + D(t, rj)−D(ri, rj , R)
(11) P ← P ∪ {(t, dis, det)}
(12) return P

With the input arguments k, c, and route R = 〈r0, r1, . . . , rl〉, the skyline query
algorithm for the best case, BestSQ , follows.

(1) procedure BestSQ(k, c,R)
(2) P ← DNNQ(k, c, r1, rl, R)
(3) P ← SKYLINE (k,P , {dis , det})
(4) return P

Algorithm DNNQ suggests that to find candidate points for any type of movement,
one needs to perform two range queries, at the “leaving” and “returning” vertices, and
then collect data points in the intersection of the two ranges. We proceed to present a
general skyline algorithm that is applicable to any type of movement of the query point.

The complexity of the BestSQ algorithm is dominated by the two range queries in
lines 6 and 7 and the iteration in lines 8–11 in algorithm DNNQ , as well as the skyline
operation. The range queries can be treated as network expansion processes. In the
worst case, the whole network and all data points DP are read, yielding a complexity
of O(|E| + |V |log|V | + |DP |). The iteration has complexity at most O(|DP |2). So,
taking also into account the complexity of the skyline operation, as described in the
previous section, the complexity of algorithm BestSQ is O(|E|+ |V |log|V |+ |DP |2).

4.3 Algorithm for the General Case

While the two special cases may be prevalent, other cases exist. We thus provide an
algorithm that works independently of the kind of movement of the user. The algorithm
is based on the observation from DNNQ that since there always needs to be range
queries at all the route vertices, we can issue range queries at each route vertex with the
biggest range once and for all and then check the data points in the intersections of each
pair of ranges.

Two auxiliary structures are used in the algorithm. First, a set of queues T =
{T1, . . . , Tl} store result data points found from the range queries at route vertices. To

130 Xuegang Huang and Christian S. Jensen

retrieve the data points in Ti within a distance range d, an auxiliary function Retr(Ti, d)
is used. Next, a float array D stores the distance from each route vertex to its kth nearest
neighbor.

The general in-route nearest neighbor skyline algorithm, GeneralSQ , uses the same
arguments as does TraverseSQ and is given below.

(1) procedure GeneralSQ(k, c,R)
(2) P ← ∅; Ti ← ∅; Di ← 0, (i = 1, . . . , l)
(3) for each ri ∈ R
(4) d← maximum range for ri

// computed by comparing the range size for each pair of route vertices
(5) Ti ← RQ(ri, d)
(6) Di ← distance from ri to its kth neighbor
(7) for each pair ri, rj ∈ 〈r1, . . . , rl〉, i
= l
(8) d1 ← 2Di + D(ri, rj , R)
(9) d2 ← D(ri, rj , R) + Di

(10) for each t ∈ {Retr(Ti, d1) ∩ Retr(Tj , d2)}
(11) dis ← D(c, ri, R) + D(ri, t)
(12) det ← D(ri, t) + D(t, rj)−D(ri, rj , R)
(13) P ← P ∪ {(t, dis, det)}
(14) P ← SKYLINE(k,P , {dis, det})
(15) return P

The algorithm first issues range queries at each route vertex with the biggest range
to obtain all possible data points. Then, for each pair of route vertices ri and rj , the
algorithm finds candidate data points assuming that the query point’s movement is from
ri to the data point and then to rj . The results are then filtered by the SKYLINE
algorithm. Finally, all skyline points are collected. It is possible that one data point is
collected more than once because of different kinds of movement.

Considering the algorithm’s complexity, we observe that the RQ operation in line 5
is issued for each route vertex. This yields a complexity of O(|R|(|E| + |V |log|V | +
|DP |)), as discussed earlier. The iteration in line 7 executes |R|(|R| − 1)/2 times.
At each iteration, the nested iteration starting in line 10 checks all data points found
for a pair of route vertices, which is all data points in the worst case. This yields a
complexity of the entire iteration of O(|DP |2|R|2). The skyline operation has com-
plexity O(|DP |2|R|4). Thus, the complexity of algorithm GeneralSQ is O(|R|(|E| +
|V |log|V |) + |R|4|DP |2).

It can be seen from the complexity analysis that if there are many route vertices, it
will be relatively costly to gather the candidate points for each intersection of ranges,
since there will be many pairs of vertices. We observe that GeneralSQ may work well
if there are only a few possible “leaving” and “returning” vertices along the route. This
corresponds to a scenario where a traveler would like to leave the route for a point of
interest and return at some “familiar” or “well-known” locations along the route.

We proceed to offer a more detailed study of the performance of this and the previ-
ous two algorithms covered in this section.

In-Route Skyline Querying for Location-Based Services 131

5 Experimental Evaluation

The experiments described here use a real-world representation of the road network
covering the municipality of Aalborg, Denmark. The road network contains 11, 300
vertices, 13, 375 bi-directional edges, and 279 data points that can be accessed via the
network. So the data density, the number of data points over the number of edges of a
road network, is 2%.

We define the size of a route as the number of vertices it contains. The page size
is set to 4k bytes, and an LRU buffer is employed for simulation. A total of 136 pages
contain adjacency lists of vertices, and 3 pages contain adjacency lists of edge. For
the GeneralSQ algorithm, we use 10% of the number of route vertices as the possible
“leaving” and “returning” vertices and assume that the “leaving” vertices are before the
“returning” vertices.

To evaluate the effect of route size, skyline order (k), and buffer size, three experi-
ments are conducted that measure query performance in terms of CPU time, I/O cost,
and number of candidate points. The CPU-time is the actual running time for these al-
gorithms. The I/O cost is the amount of pages read into the LRU buffer. The number
of candidate points is the count of the candidate points that are found in these algo-
rithms before the skyline operation. Since an in-memory skyline algorithm is used in
the algorithms, the skyline computation is only evaluated in terms of CPU-time.

In the experiments, random routes are generated. The current location and desti-
nation are assumed to be the first and last vertices in the route. For each algorithm, we
execute a workload of 100 queries and report the average performance. The experiments
were performed on a Pentium IV 1.3 GHZ processor with 512 MB of main memory and
running Windows 2000. The C++ programming language was used. To determine the
variations in results due to external factors beyond our control (e.g., operation system
tasks), we executed the same workloads multiple time. The results obtained exhibit only
insignificant variations across repeated executions.

It should also be noted that the I/O costs for all the algorithms are measured using
simulation. These costs are thus independent of the hardware and operating system
used. Also, for the algorithms we have discussed, the I/O cost is more significant than
the CPU time.

5.1 Experiment on the Effect of Route Length

In this experiment, the skyline order k is set to 5, and the buffer size is 10% of the road
network size. The route size is varied from 50 to 300 to check the CPU time and I/O
cost of the three algorithms. The results are shown in Figure 5.

It is clear that the TraverseSQ algorithm has the best performance and that BestSQ
is in turn better than GeneralSQ . We proceed to discuss the findings for each algorithm.

It can be observed that the cost of TraverseSQ grows slightly with an increase in
route size. Since the data density of the road network is 2%, when the number of route
vertices is small, the data points are far from the route vertices. CPU and I/O costs grow
slightly as the route size increases because a search process is required for each route
vertex. But when the amount of route vertices grows, chances of finding a k-nearest
neighbor close to a route vertex are higher, so that the search range for subsequent

132 Xuegang Huang and Christian S. Jensen

15010080 200
0

10,000

50,000

100,000

5000

500

CPU Time (msec)

TraverseSQ BestSQ GeneralSQ

1000

Route Size

50 300

(a) CPU Time

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

50

I/O Accesses (Pages)

TraverseSQ BestSQ GeneralSQ

100 200 300

Route Size

1E+1

1E+2

1E+3

1E+7

1E+6

1E+5

1E+4

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

(b) I/O Accesses

15010080 200
0

Number of Candidate Points
50,000

5000

1000

100

10,000

GeneralSQBestSQTraverseSQ

500

Route Size

50 300

(c) Candidate Points

Fig. 5. Performance of Algorithms Versus Route Size.

vertices is smaller. Also, it can be seen from Figure 5(c) that the numbers of candidate
points are so small that the skyline operation has no impact on the overall performance
of TraverseSQ .

The overall cost of BestSQ grows slightly with an increase in route size. This is
because the sizes of the two range queries in the BestSQ algorithm depend both on
the route size and the distance from the first route vertex to its kth nearest neighbor
data point. When the route size is small, the distance from the first route vertex to its
k-nearest data point has the biggest effect on the cost. As the route size grows, its effect
on the performance of the algorithm increases little by little. Note that in this case, the
maximum number of candidate points can be found is 279. Because of this, the skyline
operation has only minor impact on the overall performance.

It can be seen from Figure 5 that the cost of GeneralSQ increase drastically with the
growth of route length. When the route size grows, more range queries are issued. The
size of these range queries also grows since the route is longer. Also, since the number of
candidate points exceeds 5, 000 when the route size is 150, secondary-memory skyline
processing is required.

5.2 Experiment on the Effect of k

In this experiment, the route size is set to 100, and the buffer is 10% of the size of
the road network. The skyline order k is varied from 1 to 50. The results are shown in
Figure 6. The general performances of the three algorithms follow the same trends as
in the experiment on the effect of route size. However, when k = 50, TraverseSQ and
BestSQ are quite close. This is because when k = 50, all the data points have been
scanned by both algorithms. We proceed to discuss each individual algorithm.

It can be observed that the cost of the TraverseSQ algorithm increases with an
increase in k. When k is increased from 10 to 50, the increase is quite significant. This
is because the performance of TraverseSQ depends mostly on the k nearest neighbor
search at the first several vertices in the route, so that when the k is increased, the search
range at these beginning vertices is enlarged. When k = 50, scanning of all the data
points is unavoidable. Note that since the candidate points found is always less than
100, the skyline operation does not have a substantial impact on the performance.

In-Route Skyline Querying for Location-Based Services 133

TraverseSQ BestSQ GeneralSQ

CPU Time (msec)

0 (k)

100

500

1500

2000

2500

5020151051

1000

(a) CPU Time

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

I/O Accesses (Pages)

TraverseSQ BestSQ GeneralSQ

(k)
5 10 5020

1E+2

1E+1

1E+3

1E+4

1E+5

1E+6

1E+7

��
��
��
��

(b) I/O Accesses

TraverseSQ

100

500

BestSQ

50

0

Number of Candidate Points

5020151051

5000

3000

1000

(k)

GeneralSQ

(c) Candidate Points

Fig. 6. Performance of Algorithms Versus k.

As k is increased, the cost of the BestSQ algorithm increases slightly. This is be-
cause when k increases, the cost of searching for the kth nearest neighbor increases.
But the cost of the two range queries does not increase much since the route size is the
major factor in determining the range size. Also note that since the maximum number of
candidate points for BestSQ is 279, when k is bigger than 15, the amount of candidate
points comes to be this maximum value.

The cost of the GeneralSQ algorithm also increases with an increase in k. Since
the route size is fixed at 100 in this experiment, the number of range queries is constant.
The bigger k is, the larger the size of these range queries. The slight increase in cost as k
increases indicates that route size has the biggest effect on performance of GeneralSQ .
Also, note that as the number of candidate points is always below 5, 000, the skyline
operation does not have great impact on the overall cost.

5.3 Experiment on the Effect of Buffer Size

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

10%

I/O Accesses (Pages)

TraverseSQ BestSQ GeneralSQ

20% 30% 40% 50%

Buffer Size

1E+7

1E+6

1E+5

1E+4

1E+3

1E+2

1E+1
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Fig. 7. I/O Accesses Versus Buffer Size.

In this experiment, k is set to 5 and the
route size is set to 100. The buffer size is
varied from 10% to 50%. Since the buffer
size has little influence on the CPU time
and number of candidate points, the experi-
ment only considers I/O cost. It can be seen
in Figure 7 that the number pages accessed
decreases greatly with as the buffer size in-
creases. This is because when the buffer
grows, more road network data reside in the
buffer, thus decreasing the chances of read-
ing data from outside the buffer. For the
TraverseSQ algorithm, when the buffer size increases to 20% of the road network,
the I/O access do not change since the size of the pages accessed by the TraverseSQ
algorithm is smaller than the size of the buffer.

134 Xuegang Huang and Christian S. Jensen

6 Summary and Future Work

This paper introduces a novel location-based query in a road network based usage
scenario, namely the in-route nearest neighbor skyline query. Two interesting special
case of the general usage scenario considered are identified. The paper then proceeds
to reuse and extend existing query processing techniques to apply to the new type of
query. Specifically, it provides algorithms for the two special cases as well as the gen-
eral case. Finally, the paper reports on experimental performance studies with the three
algorithms. Real point of interest and road network data are used.

Providing efficient support for in-route location-based queries for moving users is an
interesting and important topic in traveler information system. Since movement is nor-
mally restricted to a transportation network, traditional spatial-temporal queries, e.g.,
nearest neighbor, spatial range, closest pair, distance join, need to be re-considered be-
cause Euclidean distance becomes inappropriate. The algorithms proposed in this paper
may be extended to make use of indexing and pre-computation techniques. Several re-
search directions may be identified, including the following two:

– It is required in this paper that the pre-defined route is a sequence of neighboring
vertices, while in the real world a pre-defined route may also consist simply of
several specified locations in the road network. Algorithms in the context of such
routes is an interesting direction for future work.

– In this paper, all the data points are organized into one group, and the in-route query
finds k candidate points from this group. More complex query preferences may
occur naturally in real applications. For example, a moving user may want to visit
a bank as well as a supermarket before arriving at the destination. Processing of
location-based queries under such complex settings is also an interesting direction
for future work.

Acknowledgments

This work was supported in part by grant 216 from the Danish National Center for IT
Research. In addition to his primary affiliation, the second author is an adjunct professor
at Agder University College, Norway.

References

1. R. Benetis, C. S. Jensen, G. Karciauskas, S. Šaltenis. Nearest Neighbor and Reverse Nearest
Neighbor Queries for Moving Objects. In Proc. IDEAS, pp. 44–53, 2002.

2. S. Borzsonyi, D. Kossmann, K. Stocker. The Skyline Operator. In Proc. ICDE, pp. 421–430,
2001.

3. A. Brilingaitė, C. S. Jensen, N. Zokaitė. Enabling Routes as Context in Mobile Services. In
Proc. ACM GIS, pp. 127–136, 2004.

4. J. Chomicki, P. Godfrey, J. Gryz, D. Liang. Skyline with Presorting. In Proc. ICDE, pp. 717–
816, 2003.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms: Second
Edition. The MIT Press, 2001.

In-Route Skyline Querying for Location-Based Services 135

6. E. Frentzos. Indexing Objects Moving on Fixed Networks. In Proc. SSTD, pp. 289–305,
2003.

7. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. SIGMOD,
pp. 47–57, 1984.

8. C. Hage, C. S. Jensen, T. B. Pedersen, L. Speičys, and I. Timko. Integrated Data Management
for Mobile Services in the Real World. In Proc. VLDB, pp. 1019–1030, 2003.

9. C. S. Jensen, J. Kolář, T. B. Pedersen, I. Timko. Nearest Neighbor Queries in Road Networks.
In Proc. ACMGIS, pp. 1–8, 2003.

10. D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching. Addison-
Wesley Pub Co., 1998.

11. D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in the Sky: an Online Algorithm for Sky-
line Queries. In Proc. VLDB, pp. 275–286, 2002.

12. H. X. Lu,Y. Luo, X. Lin. An Optimal Divide-Conquer Algorithm for 2D Skyline Queries. In
Proc. ADBIS, pp. 46-60, 2003.

13. D. Pfoser, C. S. Jensen. Indexing of Network Constrained Moving Objects. In Proc.
ACMGIS, pp. 25–32, 2003.

14. D. Papadias, Y. Tao, G. Fu, B. Seeger. An Optimal and Progressive Algorithm for Skyline
Queries. In Proc. SIGMOD Conf., pp. 467–478, 2003.

15. D. Papadias, J. Zhang, N. Mamoulis, Y. Tao. Query Processing in Spatial Network Databases.
In Proc. VLDB, pp. 802–813, 2003.

16. N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries. In Proc. SIGMOD,
pp. 71–79, 1995.

17. L. Speičys, C. S. Jensen, A. Kligys. Computational Data Modeling for Network Constrained
Moving Objects. In Proc. ACMGIS, pp. 118–125, 2003.

18. C. Shahabi, M. R. Kolahdouzan, M. Sharifzadeh. A Road Network Embedding Technique for
K-Nearest Neighbor Search in Moving Object Databases. In GeoInformatica 7(3), pp. 255–
273, 2003.

19. Z. Song, N. Roussopoulos. K-Nearest Neighbor Search for Moving Query Point. In Proc.
SSTD, pp. 79–96, 2001.

20. S. Shekhar, J. S. Yoo. Processing In-Route Nearest Neighbor Queries: A Comparison of
Alternative Approaches. In Proc. ACMGIS, pp. 9–16, 2003.

21. K. L. Tan, P. K. Eng, B. C. Ooi. Efficient Progressive Skyline Computation. In Proc. VLDB,
pp. 301–310, 2001.

22. Y. Tao, D. Papadias, Q. Shen. Continuous Nearest Neighbor Search. In Proc. VLDB, pp. 287–
298, 2002.

	In-Route Skyline Querying for Location-Based Services
	1 Introduction
	2 Data Model and Basic Algorithms
	2.1 Problem Statement
	2.2 Data Model
	2.3 Disk-Based Road Network Representation
	2.4 Basic Operations and Algorithms

	3 Classification of In-Route Nearest Neighbor Queries
	3.1 Distance-Related Preferences
	3.2 Classification

	4 Algorithms for In-Route Skyline Queries
	4.1 Algorithm for the Traverse Case
	4.2 Algorithm for the Best Case
	4.3 Algorithm for the General Case

	5 Experimental Evaluation
	5.1 Experiment on the Effect of Route Length
	5.2 Experiment on the Effect of k
	5.3 Experiment on the Effect of Buffer Size

	6 Summary and Future Work
	References

