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Abstract 
 

Our goal is to support transaction-time 
functionality that enables the coexistence of ordinary, 
non-temporal tables with transaction-time tables.  In 
such a system, each transaction updating a 
transaction-time or snapshot table must include a 
timestamp for its updated data that correctly reflects 
the serialization order of the transactions, including 
transactions on ordinary tables. A serious issue is 
coping with SQL CURRENT_TIME functions, which 
should return a time consistent with a transaction’s 
timestamp and serialization order. Prior timestamping 
techniques cannot support such functions with this 
desired semantics.   We show how to compatibly extend 
conventional database functionality for transaction-
time support by exploiting the database system lock 
manager and by utilizing a spectrum of optimizations.  

1. Introduction 

For applications in, e.g., financial and medical 
domains, accountability and trace-ability are serious 
concerns. As a reflection of this, it is standard in 
accounting to post a compensating transaction, rather 
than performing an in-place update, when an error is 
discovered. This way, all past states of the accounting 
records can be reproduced. Transaction-time databases 
[8, 15] aim to support this type of application. Such a 
database retains all prior states as well as its current 
state. It offers a transaction-consistent view of these 
states, meaning that exactly the states of the database as 
of any past time are reproducible by means of “as of” 
queries that take a past time as parameter. It also 
supports queries that return the sequence of states of 
some record over some time interval. 

Given the enormous investments in existing 
database applications, it is highly desirable to gradually 
adopt new transaction-time support [2]. This implies 
that existing and new transaction-time applications 
should coexist harmoniously.  Thus transaction-time 
support should be introduced into a DBMS without 
impacting pre-existing applications. The extended 
DBMS should not change the semantics of non-
temporal queries and updates and existing applications 
should not experience degraded performance.  

We propose to support transaction time 
functionality at the granularity of a relational table. 
Those tables for which transaction-time support is 
needed are specified as transaction-time tables when 
they are created; conventional and transaction-time 
tables may coexist.  When a transaction-time table is 
modified, the DBMS timestamps its data.  As with 
concurrency control mechanisms generally, the 
implementation of transaction-time support may use 
aborts to ensure correctness. At worst, the user 
perceives aborts as suboptimal performance. 

Support for transaction time is delegated entirely 
to the DBMS.  A transaction-time database maintains 
the time at which a data item, e.g., relational record, is 
updated. This is called timestamping. Each data item d 
has two timestamps: that of the transaction whose 
modification produced d, denoted d.TT├ and called the 
start time, and of the transaction whose modification 
supplanted it, denoted d.TT ┤ and called the stop time. 
Item d is in the state of the database as of time t when 
d.TT├ ≤ t < d.TT┤.   An insert statement creates a data 
item with start time that is the timestamp of the 
inserting transaction and a stop time of “until-
changed,” which logically denotes the changing current 
time [6, 19]; a delete statement will change the stop 
time from until-changed to the timestamp of the 

Administrator
©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



deleting transaction; and an update statement is like a 
delete followed by an insert. 

The choice of the time used in these modification 
statements is subject to two semantic constraints.  
1. The ordering of transaction timestamps must agree 

with transaction serialization order. If transaction 
A is earlier in a serialization order than transaction 
B then TA < TB, where TX denotes the timestamp 
for transaction X.  

2. The CURRENT_DATE or CURRENT_TIME 
(SQL nullary functions [13, 17]) within a 
transaction must return a result consistent with the 
timestamp of that transaction. While the 
transaction time has fixed granularity [4, 5], e.g., 
microseconds, a CURRENT request is at a user-
specified granularity, such as DAY or SECOND. 
Consistency means that the timestamp when CAST 
to the user-specified granularity is identical to the 
CURRENT result.  

These constraints are challenging to ensure 
simultaneously, with good performance. Let us briefly 
consider some of the difficulties. 

A transaction is atomic; conceptually all actions of 
a transaction take place instantaneously.  Concurrency 
control within the DBMS provides this very convenient 
semantics in the presence of multiple users who 
simultaneously access and modify the database. Since 
all actions of a transaction conceptually take place at 
the same time, this requires the use of the same 
CURRENT_TIME value for all statements of a 
transaction. However, the SQL standard allows 
different statements in the same transaction to use 
separate CURRENT_TIME values, and which specific 
values to use are left to the implementation of the 
database management system.1  

If a DBMS does not ensure both that a single 
CURRENT transaction time is used for an entire 
transaction and that the time chosen is consistent with a 
valid serialization order, then it is possible that the 
answer to an “as of” query was never a valid, current 
state.  With SQL-92 [12], a query or modification can 

                                                           
1 The standard fixes the value only within a statement, and 

which fixed value to use is implementation defined. 
General Rule 3 of Subclause 6.8 <datetime value function> 
of the SQL-92 standard states “If an SQL-statement 
generally contains more than one reference to one or more 
<datetime value function>s, then all such references are 
effectively evaluated simultaneously. The time of 
evaluation of the <datetime value function> during the 
execution of the SQL-statement is implementation-
dependent.” [12, p. 110]. 

reference CURRENT_TIME, and this time can be 
stored as an attribute in the database or used to query 
the database, e.g., retrieving the database state current 
as of this time. This exposes the risk that a query using 
a transaction’s time will not include the results of the 
transaction whose CURRENT time is used to specify 
the “as of” time for the query.  And if transaction time 
and serialization order do not agree, the result of such a 
query may not include all transactions that serialized 
earlier, and may perhaps include transactions that 
serialized later.  

In this paper, we present techniques to enhance a 
conventional (non-temporal) DBMS to correctly and 
efficiently choose transaction timestamps in support of 
transaction time databases with CURRENT 
functionality. These techniques extend only the lock 
manager of the DBMS. Given the complexity of 
DBMS engines, limiting the impact on DBMS code is 
important.  We believe our incremental approach is 
essential to enabling adoption of temporal 
functionality. 

2. Related Work and Contribution 

2.1. Earlier Work 

Data replication and log analysis tools exist that 
are capable of extracting data from DBMS logs, thus 
supporting queries such as a transaction timeslice 
query, a query of a past state of a database [1, 11] that 
provides an answer based on that past state, as if the 
past state were the current state. However, tools such as 
these do not address the core problem of supporting 
transaction-consistent timestamping. Oracle's recent 
flashback query facility [20] appears to be better 
integrated into the DBMS, but it also accesses log data 
and, again, transaction-consistent timestamping seems 
not to be part of this facility. 

The classic approach to choosing timestamps [14, 
18] is to delay the timestamp choice until commit time. 
Then one can use the transaction’s time of commit as 
its timestamp. In such an approach, termed late 
timestamping, the transaction id is stored in the start or 
stop time of each data item modified by the transaction. 
Once the transaction commits, its timestamp is known, 
and the transaction id within data items is replaced with 
this time. With strict two phase locking, which we 
assume, commit order is consistent with transaction 
serialization order.  Hence timestamp order will 
likewise then be consistent with transaction 
serialization order, thereby satisfying the first 
constraint. 



The second constraint is still problematic, because 
requests for CURRENT TIME can return a value 
substantially earlier than the commit time, especially 
for long transactions. A previous approach [9] is 
summarized in Section 3 and referred to as the RTT 
approach. It satisfied the second constraint, of 
consistency between the result of CURRENT requests 
and the transaction’s timestamp when only accessing 
transaction-time data, though with some restrictions 
which we now point out, and elaborate in Section 3.2.  

2.2. A New Approach Is Needed 

There are two major limitations with the RTT 
approach, as well as an important aspect was not 
considered. 

2.2.1. Non-Temporal Data. Unlike transaction-time 
data, ordinary data is not timestamped. The problem 
then is to keep the timestamps that we assign to our 
temporal data consistent with transaction serialization 
order when some transactions only access ordinary 
data, some access temporal data, and some access both 
kinds of data. The RTT approach did not solve this 
problem, as it applies only to transactions that access 
transaction timestamped data.  Compatible extension to 
existing database systems requires a timestamping 
solution that works when ordinary data may be 
accessed with transaction-time data in the same 
transaction. We don’t want to restrict applications to 
accessing only transaction-time tables or only 
conventional tables. 
 
2.2.2. Multi-Granularity Locking. Range queries 
were not considered in the RTT approach. Support for 
range queries with correct serialization semantics 
requires that conflicts be detected not just at records, 
but also between records in ranges that are read by a 
query. Only then can “phantom” inserts into the range 
be prevented until the range query completes. The RTT 
approach did not address these conflicts when ordering 
timestamps.  

With locking-based concurrency control, phantom 
prevention is usually solved through multi-granularity 
locking with the range as a large granule containing the 
record as a smaller granule [10]. The range lock blocks 
the insertion of new records that are not yet in the range 
and for which it is not possible to hold a record lock. 
Database systems exploit multi-granularity locking to 
solve both the phantom problem and to prevent an 
explosion in the number of locks that need to be 
maintained. It is not clear how to reconcile the RTT 
approach with multi-granularity locking. 

 

2.2.3. Timeslice Queries. A timeslice query requests 
the state of part of the database as of some particular 
time that we call the read time. To correctly support 
timeslice queries, we must schedule transactions 
executing timeslice queries correctly in the transaction 
serialization order. These requirements do not differ 
from the requirements we normally place on 
transactions.  

What makes this task different from what we have 
discussed to this point is our desire to execute timeslice 
queries, which may be only part of a larger transaction, 
without locking the data that they read. This 
requirement stems once again from our goal of 
compatibly extending existing database systems, some 
of which currently execute snapshot transactions 
without locking. How to do so in the presence of 
CURRENT requests has not been considered before, 
including in the RTT approach.   

2.3. Our Contribution 

Compatible extension to existing database systems 
applies not just to functionality as discussed above. It 
also involves a desire to evolve current database 
implementations to provide that functionality. For this 
it is surely convenient if we can localize the code 
responsible for timestamp functionality within the 
database system code base. It turns out that this is 
possible. We enhance the lock manager present in 
almost all the database systems and already correctly 
serializing transactions.  We term this augmented lock 
manager a timestamping lock manager (TLM).  The 
TLM provides bounds on a transaction’s timestamp 
that constrain it to agree with the serialization order 
that it already provides. Logically, the TLM assigns a 
timestamp to all transactions, independently of whether 
or not they access transaction-time data.  

Performance is always an important issue. We 
focus on exactly when it is necessary to check 
timestamp bounds. In particular, we identify several 
situations in which checks are avoidable.  We also 
identify when we do not have to maintain the 
information needed for checking timestamps. For 
example, if no transaction has asked for 
CURRENT_TIME, we do not need to check timestamp 
information, and, at least in one strategy, do not even 
have to maintain this information.  In summary, our 
timestamping lock manager enables more sophisticated 
locking strategies, such as multi-granularity locking, 
along with important refinements that offer better 
performance. 

 



In Section 3, we describe the previously proposed 
RTT approach, as a basis for the approach proposed 
here. Section 4 presents our timestamping lock 
manager in its basic form. Section 5 describes our 
strategies to reduce the overhead added to the TLM for 
timestamping, by identifying when checking is not 
needed, and when maintaining auxiliary information is 
not needed. Section 6 shows how we can gracefully 
move from a strategy that minimizes overhead to one 
that minimizes the frequency of aborts. Section 7 
discusses time-slice queries and snapshot 
serializability, and shows how the TLM can provide 
this without locking. A final section provides a short 
summary and discussion. 

3. The RTT Approach 

The RTT approach [9] orders transaction 
timestamps so as to agree with the serialization order of 
the transactions when only transaction-time tables are 
supported. 

3.1. Bounds on Timestamps 

To minimize aborts, the RTT approach supports a 
flexible choice of the timestamp TA of a transaction A. 
The approach maintains a lower bound LBA and an 
upper bound UBA for the timestamp values that can be 
assigned to A. As long as this open-closed interval is 
non-empty (LBA < UBA), a legal timestamp assignment 
exists. At commit, a transaction is assigned a timestamp 
that is one chronon larger than its lower bound. If the 
interval becomes empty, transaction A cannot commit, 
and it is aborted.  

When transaction A starts, LBA is set to the current 
time and UBA is set to the largest possible time value. 
Lists that record the data items read, inserted, and 
deleted by the transaction are initialized as being 
empty. These lists are used for post processing at 
commit time. For each data item d, a variable d.TR is 
introduced that records the largest timestamp among 
transactions that have read d. 

The RTT approach maintains LBA to ensure that 
d.TT├ of any item d read by A and that d.TR and d.TT├ 
of any item d written by A will be earlier than TA, the 
timestamp we will assign to A. When A reads a data 
item d, LBA is set to d.TT├ if this increases the bound. 
When it writes an item d, LBA is set to the maximum of 
its current value, d.TR, and d.TT├.   At commit,  the 
read, insert, and delete lists are processed. We set d.TR 
to TA for all data items d read by A when this increases 

the value of d.TR.  Each d inserted or deleted in A is 
timestamped with TA. 

The RTT objective was to ensure that a 
transaction’s timestamp is consistent with the value of 
“now” that the transaction sees in its requests for 
CURRENT_DATE, CURRENT_TIME, and 
CURRENT_TIMESTAMP (in standard SQL; other 
time granularities are supported in non-standard ways 
in specific DBMSs [17]). The RTT approach 
constrains the upper bound UBA and lower bound LBA 
of A as a result of these requests. For example, if 
CURRENT_DATE is requested, LBA is set to the 
maximum of its current value and the first chronon 
during the date returned and UBA is set to the minimum 
of the last chronon of the date returned and its current 
value. This procedure exploits that CURRENT results 
have coarser granularities than transaction timestamps. 
For example, a transaction’s request of 
CURRENT_DATE yields an interval for the timestamp 
of possibly the entire day; a subsequent 
CURRENT_TIME request reduces that interval to at 
most one second.  Requests for “now” at any 
granularity are thus supported. 

The RTT approach uses start and stop times of 
each data item to ensure that write-write (WW) and 
write-read (WR) conflicts are handled correctly. For 
read-write (RW) conflicts, it remembers d.TR for each 
data item d, which records the last time the item is read. 
Conservative approximations of these values are kept 
in a read-timestamp table (RTT, hence the name of the 
approach) that does not retain information about each 
item, but rather identifies item classes by means of a 
hash function used to index the table. We apply a hash 
function to data items that distributes them among 
some number, e.g., 512, of classes. For each such class, 
the RTT then records a time that is no smaller than the 
largest d.TR for the data items d that hash to that class. 
This arrangement preserves correctness and enables 
efficient management of read timestamps.  

The advantage of this approach is that the size of 
the RTT can be limited without requiring a garbage 
collection scheme were this information to be retained 
(at least initially) for each data item. The drawback of 
associating times with data record classes rather than 
with the records individually is that this approach may 
result in additional aborts. However, by adjusting the 
range of the hash function (and hence the size of the 
table), one can control the trade-off between these two 
costs (memory costs and increased aborts).  

 



3.2. Limitations 

The RTT approach falls short in three respects. 
First, it fails to accommodate non-temporal data. It 
simply assumes that all data contain the timestamp 
d.TT├. Second, it assumes record granularity locking; it 
is not clear how to generalize RTT to multi-granularity 
locking, which is required to prevent phantoms. Third, 
it is not clear how to accommodate timeslice queries 
exploiting snapshot isolation that avoid locking. 

We tested the RTT approach in a prototype based 
on Berkeley DB [16], which provides (uni-granularity) 
page locking in its B-tree access method. We needed to 
extend the RTT approach for this to work. 
1. We had to introduce a write-timestamp table 

(WTT) that is only used for non-temporal data. 
This table is analogous to the RTT and stores the 
write times of non-temporal data items. The table 
enabled us to deal with WW and WR conflicts for 
the non-temporal data. 

2. We had to change the entries in the RTT from data 
items to data pages. Berkeley DB solves the 
phantom problem by page locking (a form of range 
locking). By remembering times associated with 
pages, we are able to correctly compute transaction 
times that are consistent with serialization order. 

This did have some negative consequences, however. 

1. Both RTT and WTT record timestamps at the 
granularity of pages. Thus, the conflict induced 
timestamp order is very conservative, and that can 
lead to excessive aborts.  

2. The solution is very specific to Berkeley DB. It is 
not clear how to apply this approach to other 
locking protocols, in particular to systems that 
exploit multi-granularity locking to reduce locking 
conflicts. Small granularities reduce timestamp 
ordering constraints and lead to fewer timestamp 
induced aborts.  
What we want is an approach that can apply to a 

wide class of database systems, where it is obvious that 
the serialization order and timestamp order agree, 
where execution cost is low, and where sophisticated 
conflict reduction techniques such as multi-granularity 
locking can be applied. We consequently pursued an 
architecture that localizes the timestamp management 
code and integrates it with the lock manager. 

4. Timestamping Lock Manager 

The timestamping lock manager (TLM) fully 
supports multi-granularity locking while also enabling 
CURRENT requests and accesses to both temporal and 
non-temporal data.  Just as important, this approach in 

many situations avoids some or all of the checking 
when it can be determined a priori that such checking is 
not needed. We present the fundamentals of this 
approach and examine a spectrum of refinements. 
Selecting the refinements most appropriate for an 
actual DBMS depends strongly on the specifics of that 
DBMS’s lock manager, which is an intricate and highly 
optimized piece of code. Similarly, the detailed 
performance improvements possible with each 
refinement also depend strongly on those specifics. 

Fundamentally, the TLM needs to ensure that each 
transaction has a time later than the times of all earlier 
conflicting transactions. That is, our current transaction 
must be later in time than the transactions that have 
made earlier accesses in conflicting lock modes to its 
accessed resources. Enforcing this within the lock 
manager can immediately be seen to guarantee that 
serialization and timestamp orders agree. Thus, the 
latest timestamp of any earlier conflicting transaction 
(the conflict modes are specified by the lock manager) 
becomes a lower bound for a transaction timestamp, 
i.e., earlier times are not acceptable because then 
timestamp order would not be consistent with conflict 
order.  CURRENT requests are handled the same way 
as with the RTT approach. 

Our TLM, in addition to the normal functions of a 
classical lock manager, maintains lower and upper 
bounds for each transaction.  It checks these bounds 
and aborts transactions for which it is not possible to 
assign a correct timestamp, i.e., when a timestamp 
range is empty. We describe here how we determine 
the bounds, and how these are maintained and checked 
during TLM execution. 

4.1. The Access Timestamp Table  

The TLM inspects conflicts to determine LBA for 
each transaction A. The TLM extends a conventional 
lock manager with information on timestamps for 
preceding conflicting accesses. We define an access 
timestamp table (ATT).  An ATT entry, like an RTT 
entry, contains the timestamp of the last access to any 
of a set of resources (assigned via a hash function). 
Unlike the RTT, it does this for each lock mode 
supported by the lock manager. Thus, the ATT 
supports the normal intention locks used to provide 
multi-granularity locking. Further, the ATT maintains 
this information for each resource locked by the lock 
manager. Thus, the ATT includes the same range 
resources that are used by the lock manager to prevent 
phantoms.  Like the RTT, the ATT needn’t persist 
across crashes since transactions after a crash will have 
timestamps later than the time of the crash. 



The ATT stores, for each lock mode and for each 
entry i, the largest timestamp of any earlier committed 
transaction accessing a resource that hashes to i (i.e., 
h(R) = i) with an access in that lock mode. We then 
define our lower timestamp bound for transaction A as 
follows.  

LBA = max{ATT(h(R). m) | transaction A accesses 
           resource R in mode mA and mA conflicts with m} 
 

The TLM computes the lower bound 
incrementally. When a transaction accesses a resource, 
it first acquires a lock in a mode mA appropriate for the 
access. When the lock is granted, the TLM updates LBA 
by examining the entry for the resource for each mode 
that conflicts with mA. The TLM then checks whether 
LBA < UBA. If not, then the TLM aborts the transaction. 
The TLM is illustrated in Figure 1. Note that it is 
possible to implement most of the TLM as a wrapper 
around the usual database lock manager. 

 

        Figure 1. Timestamping Lock Manager 

4.2. Using d.TT├ Instead of the ATT 

In a transaction-time database, the current version 
of record d contains the timestamp of the record’s last 
writer as d.TT├. So we can avoid storing a transaction 
time for d in the ATT and derive it instead from d itself 
when d is a transaction-time item. The item d is the 
precise resource, while the ATT entry identifies a 
resource class. So using d.TT├ provides a more refined 
result. We then avoid updating the ATT when dealing 
with write locks on d. 

But we do have to check the timestamps in the 
records that we write, instead of checking the ATT 
entries. This is like the RTT checking, where we only 
stored read lock information in the RTT.  Whether we 
choose to use d.TT├ or the ATT is a matter of 
implementation convenience. We might proceed as if d 
did not have a d.TT├, treating all data the same. This 
convenience comes at a price, however, because the 
coarser resource classes represented by the ATT may 
result in a greater number of aborts. 

4.3. Commit Time Actions 

At transaction commit, the system assigns a 
timestamp to the transaction in the open-closed interval 
(LB, UB].  This permits the transaction to successfully 
commit. If each transaction always checks the times for 
conflicting earlier accesses in the ATT at the time of 
each access, and all transactions update the ATT when 
committing, we minimize the time that we can assign as 
a transaction’s timestamp. ATT entries are 
monotonically increasing.  Early checking means that 
the ATT entry seen will be less than or equal to any 
later value.  Not updating the ATT until commit delays 
the time at which an ATT entry increases. 

Choosing the timestamp to be as early as possible 
means that a transaction B, reading or writing a 
resource previously locked by A, is less likely to have 
an empty timestamp range.  An empty range means that 
B has to abort to maintain consistency between 
serialization order and timestamp order. 

We need to maintain the ATT so that it continues 
to contain the latest timestamps of earlier committed 
transactions that accessed data using the various lock 
modes. Since we assume strict two-phase locking for 
transaction isolation, a transaction cannot gain access 
to a resource until prior conflicting transactions release 
their locks. Thus, at commit of transaction A, for every 
resource R locked by A in a mode m, we post TA in 
ATT(h(R).m) if that time exceeds the current value in 
that entry.  



5. Reducing Overhead 

A big attraction of deferring timestamp choice 
until transaction commit is that it is very inexpensive, 
requiring  
• no accessing of extra information while the 

transaction is accessing data, and  

• no extra updating at commit of auxiliary 
information used solely to correctly maintain 
timestamp order. 

However, a second data access to post timestamps to 
each updated data item is required. 

Unfortunately, this classical technique in its pure 
form cannot deal with CURRENT requests. 
Nonetheless, we want to drive our costs closer to 
commit time timestamp choice. 

There are three costs incurred by the TLM 
approach for dealing with CURRENT requests. 
1. The TLM needs to maintain a lower bound LBA 

and an upper bound UBA for each transaction A, 
independently of whether or not A accesses 
transaction-time data. 

2. The TLM needs to check, whenever a lock is 
granted to transaction A, that LBA < UBA. 

3. The TLM maintains the ATT to compute the lower 
bound on every lock acquisition. This is needed to 
permit us to choose a timestamp for the transaction 
to be as early as possible. 

If we can accept a slightly higher risk of aborting 
by choosing a transaction’s timestamp to be later, some 
large efficiency improvements are possible. The key 
assumptions are as follows. 
A1. We choose TA = min{tAcom, UBA}, where tAcom is 

the time when transaction A commits. (Recall that 
the RTT and prior TLM approaches both set TA to 
LBA + one chronon.) 

A2. If A’s CURRENT request occurs before UBA, then 
UBA can be moved earlier, but not earlier than 
when the request was made. If A’s CURRENT 
request occurs after UBA, then UBA is unchanged. 
Thus UBA is never moved earlier than tcur, the 
“current time”. 

In concert, these assumptions reduce the need both to 
check and to update the ATT. Indeed, we can exploit 
them to avoid maintaining an explicit lower bound. 
Implicitly, the lower bound becomes the earlier of tcur 
or UB.  

5.1. Reducing ATT Checking  

Transaction A checks the ATT to ensure that there 
is a feasible timestamp consistent with the access 
conflicts.  We can bypass this check of the ATT when 
tcur < UBA. 
1. No earlier committed transaction can have a time 

later than tcur by A1, which requires that earlier 
committed transactions have earlier times. 

2. Any transaction that commits later and conflicts 
with A will have a timestamp later than tAcom. 

a. A non-checking transaction, that is, one whose 
upper bound is later than tcur, will have a later 
timestamp by A1, which requires that its 
timestamp be the time that it commits.  

b. A checking transaction (with UB ≤ tcur) will, 
by checking, be later than prior conflicting 
transactions. By A2, UB is never moved 
earlier than the commit times of transactions 
whose conflicts are already checked.  

Hence, a transaction A does not have to check that 
LBA < UBA and that A needs to abort until tcur is later 
than UBA. Checking transactions check that conflicting 
entries in the ATT have timestamps less than UB, and 
abort when the check fails.  Thus, no transactions need 
maintain LB.   

In this modification of the TLM approach, some 
transactions have UB < tcur and are checking the ATT, 
some transactions have UB > tcur and are not checking, 
and some transactions have not yet made a CURRENT 
request, and so are not checking either, because their 
UB is at “forever.” 

5.2. Reducing ATT Maintenance  

If no active transaction is checking the ATT, a 
further optimization is possible: committing 
transactions do not have to update the ATT. The reason 
is that all committed transactions (and hence all earlier, 
conflicting transactions) have timestamps earlier than 
tcur. Hence, conflicts with these earlier transactions will 
not violate the required agreement between 
serialization order and timestamp order, since non-
checking transactions always commit at tcur. Further, if 
we start maintaining the ATT when we start checking, 
all transactions that commit after we start checking will 
have timestamps later than the value of tcur at the time 
we started to check. But these timestamps will be in the 
ATT, and our checking will discover the conflicts and 
order the timestamps correctly. 

We describe below two ways of exploiting these 
observations. 



5.2.1. “Current Request” Strategy.  In the Current 
Request (CR) approach, a transaction starts checking 
the ATT when it makes a CURRENT request. Before 
that, it has no upper bound, and hence the upper bound 
is not earlier than tcur. When transaction A makes a 
CURRENT request, the value of LBA is set to the 
maximum of tcur and first chronon (say the first 
microsecond) of the requested granularity (e.g., day for 
CURRENT_DATE, second for CURRENT_TIME), 
and the upper bound UBA is set to the last chronon of 
the requested granularity. 

Additionally, we do not maintain the ATT unless 
there is an active transaction that has made a 
CURRENT request and hence is checking the ATT. 
This is clearly sufficient as we begin checking even 
before we reach the upper bound. If no active 
transaction has requested CURRENT, then committing 
transactions do not have to update the ATT. 

The bookkeeping required is very simple. When 
transaction A first makes a CURRENT request, it 
becomes a checking transaction. It then increments a 
“checking transactions” counter CN. When A commits 
or aborts, it decrements CN. A committing transaction 
checks CN, and only posts its timestamp to the ATT 
when CN > 0. A checking transaction decrements CN 
during its commit prior to checking the counter. Thus, 
if it is the only current checking transaction, it need not 
update the ATT. 

5.2.2. “Upper Bound Checking” Strategy. The 
Upper Bound Checking (UBC) approach checks the 
ATT even less frequently than in the CR approach, by 
only starting to check precisely when UB ≤ tcur.  
Checking is less frequent than in the CR approach 
because a CURRENT request that would trigger 
checking in CR might have an upper bound not yet 
exceeded by tcur and so this CURRENT request would 
not invoke checking. 

As before, there is no need to maintain the ATT 
until there is a transaction that will check it. Thus, we 
delay updating the ATT until at least one transaction A 
exists with UBA ≤ tcur.  However, because transactions 
may become checking transactions via the mere 
passage of time as opposed to performing some action 
themselves, transactions cannot register themselves as 
checking transactions.  The ATT must be immediately 
maintained once this condition is satisfied. 

To “register” transactions as checking transactions, 
based on their upper bounds, the system maintains a 
check list CL of the transactions that have made 
CURRENT  requests.    Each  CL  element is a pair 
<IA, UBA >, where IA is the transaction id for 
transaction A.  We add this pair to CL as soon as A has 

an upper bound, i.e., as part of its first CURRENT 
request. CL is ordered by the transactions’ upper 
bounds (this can be done efficiently by maintaining CL 
as a priority queue). We remove A’s CL entry when A 
commits. Because we enter a transaction on CL as soon 
as it makes a CURRENT request, CL exists prior to our 
needing to maintain the ATT. 

We don’t begin updating the ATT until the earliest 
upper bound on CL is reached. However, note that the 
transaction with the earliest upper bound, i.e., the one 
that triggers the updating, does not itself need to update 
the ATT with its commit time. No subsequent 
transaction can commit with an earlier time and so no 
timestamp ordering violation is possible.  We stop 
maintaining the ATT when no checking transaction is 
active, as with the CR approach, but with fewer 
checking transactions. 

5.3. Performance 

In this section, we examine the performance of the 
TLM.  First, note that database concurrency is 
unaffected by the timestamping, as locking conflicts are 
unchanged. Also concurrency can be substantially less 
constrained than in Berkeley DB with its page 
granularity. The TLM exploits the granularity 
supported by the original DBMS.  We characterize the 
locking overhead involved in the completely 
unoptimized case, and then consider the impact that our 
optimizations have on reducing overhead. We argue 
that the overheads involved for expected system 
behavior are not large, especially when our 
optimizations are exploited. 

The performance improvements possible with each 
refinement are very specific to the lock manager being 
extended and to system workload: such things as 
number of locks, conflict rate, lock manager path 
length, etc. Hence, we make only general observations. 

First, what is the impact of the lock manager on 
execution path length seen by transactions in a database 
system?  There is no one specific figure, of course, but 
the concurrency control and recovery subsystem in a 
transaction processing application is typically 5–10% 
of the path. TP applications typically do more locking 
than most applications, so this is a high figure. The 
lock manager is less than half of that. Thus, at most 5% 
of the path is in the lock manager. So timestamping will 
impact total application path by at most a few percent. 

According to Gray and Reuter [7], lock manager 
instruction path for a non-blocking lock request is a 
few hundreds to one thousand instructions. This 
includes call overhead, searching lock lists, and testing 



their resource ids and lock modes. Releasing locks is 
usually done en masse at transaction end, incurring call 
overhead only once for all of a transaction’s locks. 

The incremental impact of timestamping is surely 
less than 20% to 30% of the path length of a lock 
manager without timestamping (equivalent to 1% to 
1.5% of the full execution path length). Checking 
timestamps in the ATT involves no list searching. 
Rather, a hash is computed (a few instructions) and 
ATT entries are checked or updated. Checking and 
updating together examine each lock mode of a locked 
resource. This may be as many as five or six 
comparisons and/or updates. The extra instructions are 
not more than a hundred. Further, as explained above, 
checking or updating the ATT is often unnecessary.  

The above overheads are not trivial, but given the 
modest contribution of the lock manager to transaction 
execution path, the impact on system performance will 
not be more than 2–3%. And our optimizations 
frequently eliminate the great bulk of this extra 
overhead. When all temporal transaction timestamps 
can be at their commit times, ATT checking during 
lock requests and ATT updating at commit are avoided, 
as is true when no temporal transactions are executing. 
In those cases, the extra lock manager overhead to 
check is minimal. 

We have only discussed the extra TLM cost for 
calculating the time used in a timestamp. We have not 
discussed storing timestamps in versions, which is 
more costly. We believe that this timestamping should 
be done after commit, as recommended by Salzberg 
[14]. Then the timestamping is outside of the response 
time for the transaction, and can be combined with 
page accesses that are already required for other 
reasons, greatly reducing this overhead.    

6. Controlling the Abort Rate  

The optimizations of Section 5 require that the 
timestamp we assign be either the upper bound for a 
transaction or tcur at the time of commit, whichever is 
earlier. This assignment is correct and also minimizes 
the TLM checking. However, it can increase the aborts 
required to keep timestamps consistent with 
serialization order. This might be a problem if database 
systems reply to CURRENT requests with a very 
precise time (e.g., a request for 
CURRENT_TIMESTAMP at a precision of micro-
second). Here, we explore both the nature of the 
problem and how we can extend our approach to 
minimize this problem. 

6.1. Increased Aborts 

Suppose transaction A starts executing at 1 P.M. 
and asks for CURRENT_DATE at 11 P.M.  A will 
have a timestamp, assigned by either Current Request 
or Upper Bound Checking approach, not earlier than 
11 P.M.  Another method might have been able to give 
A a timestamp as early as 1 P.M. While A may itself be 
able to commit, another transaction B, which reads data 
written by A, may have an upper bound of, say, 2:15 
P.M., by virtue of requesting CURRENT_TIME at that 
minute. B could have committed had A gotten the 
earlier timestamp. But with a timestamp after 11 P.M. 
for A, B must now abort. 

While abort frequency can increase, it may still be 
small. 
1. The number of distinct resource classes, i.e., the 

range of the hash function, can be made large, 
reducing the chance that a subsequent transaction 
encounters the effects of a long-running 
transaction as in our example. 

2. Most requests for CURRENT_TIME result in 
much smaller intervals between the earliest 
possible correct timestamp assignment and our 
technique of assigning the latest possible 
timestamp. CURRENT_TIME results in at most 
one second between the lower and the upper 
bound. Thus the flexibility of the more 
conservative approaches to keeping track of 
bounds for timestamps will be less than the 
example suggests.  

Regardless of the absolute number of additional 
aborts, we would still like to be able to reduce the 
number of aborts while providing much of the 
optimization gain of reduced ATT checking and 
updating. 

6.2. Earlier Transaction Timestamps 

The earlier a transaction’s timestamp, the fewer 
other transactions need be aborted to preserve 
consistency between timestamp and serialization 
orders.  To reduce aborts we need to maintain an 
explicit lower bound for transaction timestamps in 
addition to an upper bound.  We then can choose a 
transaction’s timestamp that is at the lower bound of its 
timestamp range. And if we want it to be able to have a 
timestamp that can be earlier than the time at which we 
begin checking, we need to start maintaining the ATT 
even earlier. 

We do not know whether a transaction timestamp 
earlier than tcur at commit is legitimate unless we 
maintain the ATT and check a transaction’s lock 



request against up-to-date ATT entries. Because no 
transaction that committed earlier than tcheck, the time at 
which we begin checking and maintaining the ATT, 
can have a timestamp later than tcheck, we can begin 
checking at any time, and use tcheck as the initial lower 
bound for currently active checking transactions.  

So if we are incurring too many aborts, we begin 
updating and checking the ATT. This can be done at 
our convenience!  We call this the Adaptive Strategy.  
When we want a transaction with a timestamp earlier 
than tcur at commit, we make it a checking transaction. 
The initial lower bound for any transaction is then the 
maximum of its start time and tcheck. We maintain upper 
bound as before. 

We can provide a lower bound selectively, 
exploiting our prior optimizations. That is, not all 
transactions need to be checking transactions, and such 
non-checking transactions do not need to maintain a 
lower bound. But once the transaction is a checking 
transaction, we maintain a lower bound as well as an 
upper bound for transaction timestamps; and we 
choose our timestamp to be at the lower bound of this 
range.  

Should we continue to have too many aborts, we 
can make all transactions checking transactions.  

7. Lockless Timeslice Queries 

We timestamp data to support transaction-time 
database functionality, an important part of which is 
timeslice queries.  A timeslice query requests the state 
of part of the database as of the query’s read time.  A 
transaction with snapshot isolation typically queries the 
database with a read time equal to the transaction’s 
start time.  With full transaction-time database support, 
a transaction can query the database as of any past 
time.  The result should be a transaction-consistent 
view of the database with versions of data items read 
that have the largest timestamps less than or equal to 
the read time. 

Our desire is to execute timeslice queries, which 
may be only parts of larger transactions, without 
locking the data that is read.  An important aspect of 
snapshot queries in several commercial databases is 
that they are executed without locking.  Indeed, the 
point of snapshot isolation is to enable snapshot reads 
without locking, so that readers are never blocked by 
updaters, and updaters are never blocked by snapshots.  
So this is important for compatibility. 

7.1. Impact of Timeslice Queries 

What happens when a timeslice query in 
transaction B reads data updated by a transaction A that 
is active during the same time that B does its read?  Let 
A’s bounds on its timestamp be LBA and UBA, and B’s 
time of read (“as of” time) be RB. There isn’t a concern 
when A commits before B reads the updated data, as 
then we have access to A’s timestamped updates.  But it 
is a concern if B reads this data before A is committed. 
There are two cases, which we describe next: (i) 
timeslice reader accesses the data first and (ii) updater 
accesses it first.  

7.1.1. Timeslice Reader First. When timeslice reader 
B reads data before updater A does its update, we need 
to make A aware of RB.  Thus we need B (i) to assign 
resource identifiers to the data that it reads that are the 
same resource identifiers used for locking data and (ii) 
to have B update the appropriate ATT lock mode 
entries with RB.  The appropriate lock mode will 
usually be S or shared, the mode used had B been an 
ordinary transaction reading the data.  B’s read data 
can be accessed immediately by conflicting operations 
because a timeslice query does no locking.  Hence B 
must update the ATT immediately.  A, which will be a 
“checking” transaction, looks at entries in the ATT and 
checks whether there are timestamps for conflicting 
operations that are later than UBA.  If so, A must abort.  
Otherwise, if later than LBA, then LBA must be 
increased to this later time, just as if the timeslice query 
had been a read by a committed transaction.  
 
7.1.2. Updater First. To deal with uncommitted 
updates to the data that it reads, timeslice reader B 
checks for locks that would conflict with its read were 
it a normal reader. If it finds such a lock, then it must 
check the timestamp bounds of all transactions A 
holding the lock.  If all UBA are later than RB, then the 
read proceeds without blocking and, as in the 
“timeslice reader first” case, we update the ATT to 
inform future updaters of B’s read time.  And if RB is 
later than LBA, then LBA is increased to this later time.  
If B finds an uncommitted update from some A, where 
UBA is earlier than RB, then to avoid blocking timeslice 
query B, we must abort either B or A. Aborting updater 
A keeps the story simple for timeslice queries, i.e., they 
run safely without blocking, locking, or aborting. We 
expect this is the alternative most implementations will 
choose. 
 



7.2. Handling Timeslices with the TLM  

The preceding discussion suggests a way of 
dealing with the interactions between timeslice queries 
and updaters within the TLM. We have B’s timeslice 
query call the TLM like an ordinary query, and update 
the ATT as required.  But the TLM makes some 
adjustments for “timeslice locking”, e.g., it never 
blocks timeslice queries. 

For B’s timeslice query, instead of waiting until B 
commits to post timestamps to the ATT, the TLM 
immediately updates the S mode entry for the 
appropriate resource in the ATT with RB.  Instead of 
blocking a timeslice read when this resource is held in 
a conflicting lock mode, the TLM permits the read to 
proceed. When the conflicting lock is held by updater 
A with UBA earlier than RB, A is aborted.  Otherwise, if 
LBA is earlier than RB, we set LBA to RB, ensuring that 
A’s timestamp is later than RB.   

The locking overhead of timeslice queries can be 
minimized by exploiting “large grained” resources 
when a timeslice query checks locks and updates ATT 
entries.  A trade-off exists between this overhead and 
the number of update transactions that might be 
impacted.  As an example, let our timeslice “granule” 
be a relational table. A conflict is manifested by the 
fact that the IX table lock of updater A conflicts with 
the S table “timeslice lock” of B’s timeslice query.  If 
UBA is earlier than RB, then A is aborted. 

7.3. Optimizing Timeslice Queries 

Sometimes non-locking timeslice queries are easy 
to realize and have no impact on the timestamping of 
remaining transactions.  We can then avoid the 
checking and updating of the ATT.  This occurs when 
we know that read time is earlier than the earliest lower 
bound for any uncommitted transaction.  Such a 
timeslice query cannot be impacted by uncommitted 
transactions, as such transactions cannot provide data 
with a timestamp that is early enough to be seen by the 
query.  Further, the query has no impact on the 
timestamps of uncommitted transactions, since all these 
transactions will have timestamps later than its read 
time.  Any updater that will commit later than tcur will 
never be aborted, since timeslice read times will always 
be earlier than tcur.  Thus, if no transaction has made a 
CURRENT request, then no access to the TLM is 
required to check or update the ATT.  This is why, in a 
conventional DBMS, a snapshot query safely executes 
without locking.  Its read time is always earlier than 
the possible commit time of any active transaction. 

8. Summary 

The only prior timestamping work that supports 
CURRENT requests is the RTT approach [9]. It 
supports neither access to non-temporal data nor multi-
granularity locks. As mentioned in Section 2, we had to 
extend the RTT approach in our Berkeley DB 
prototype to support access to non-temporal data, and 
even then the page-grained locks would produce 
additional aborts. Furthermore, the RTT approach 
requires careful, ad hoc integration with the existing 
concurrency control facilities of the DBMS.  

This paper introduces a compatible extension of a 
DBMS to realize temporal functionality. The existing 
lock manager is augmented to maintain a lower and an 
upper bound for each transaction. The resulting 
Timestamping Lock Manager (TLM) utilizes an access 
timestamp table (ATT), which contains the timestamp 
of the last access to each resource class for each lock 
mode supported by the lock manager. The beauty of the 
TLM approach, and the variants presented here, is that 
if the lock manager correctly serializes transactions 
then the timestamps will agree with that order. This 
includes locking approaches to the phantom problem, 
such as key range locking.  

The basic TLM imposes runtime overhead for 
checking and maintaining the ATT for all queries, even 
when this checking is not strictly needed. Thus we 
described ways to optimize the TLM to avoid this. We 
showed that full ATT checking and updating can start 
at any time, allowing flexible and dynamic trade-offs: 
earlier checking, which increases CPU overhead, but 
decreases the number of timestamp-induced aborts 
versus later checking, which decreases overhead, but 
may increase aborts. 

We also considered timeslice queries, proposing 
ways to handle these without locking that nonetheless 
work with variants of the TLM approach. The proposed 
mechanisms check and update the ATT but do not 
require locking data read by the timeslice query, 
ensuring that a timeslice query is never blocked. Also 
discussed was to require that a timeslice query read 
time be earlier than the possible commit times of active 
transactions, which then avoids the TLM mechanisms.  

The result is a collection of approaches that 
support: (i) timestamping at commit, (ii) serialization-
consistent timestamps, (iii) CURRENT requests whose 
responses are consistent with transaction timestamps, 
(iv) accessing non-temporal data, (v) range locking and 
multi-granularity locking, and (vi) non-locking 
timeslice queries. 
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