

Using the Lock Manager to Choose Timestamps

David Lomet
Microsoft Research
Redmond, WA, USA

lomet@microsoft.com

Richard T. Snodgrass
University of Arizona

Tucson, AZ, USA
rts@cs.arizona.edu

Christian S. Jensen
Aalborg University
Aalborg, Denmark
csj@cs.auc.dk

Abstract

Our goal is to support transaction-time
functionality that enables the coexistence of ordinary,
non-temporal tables with transaction-time tables. In
such a system, each transaction updating a
transaction-time or snapshot table must include a
timestamp for its updated data that correctly reflects
the serialization order of the transactions, including
transactions on ordinary tables. A serious issue is
coping with SQL CURRENT_TIME functions, which
should return a time consistent with a transaction’s
timestamp and serialization order. Prior timestamping
techniques cannot support such functions with this
desired semantics. We show how to compatibly extend
conventional database functionality for transaction-
time support by exploiting the database system lock
manager and by utilizing a spectrum of optimizations.

1. Introduction

For applications in, e.g., financial and medical
domains, accountability and trace-ability are serious
concerns. As a reflection of this, it is standard in
accounting to post a compensating transaction, rather
than performing an in-place update, when an error is
discovered. This way, all past states of the accounting
records can be reproduced. Transaction-time databases
[8, 15] aim to support this type of application. Such a
database retains all prior states as well as its current
state. It offers a transaction-consistent view of these
states, meaning that exactly the states of the database as
of any past time are reproducible by means of “as of”
queries that take a past time as parameter. It also
supports queries that return the sequence of states of
some record over some time interval.

Given the enormous investments in existing
database applications, it is highly desirable to gradually
adopt new transaction-time support [2]. This implies
that existing and new transaction-time applications
should coexist harmoniously. Thus transaction-time
support should be introduced into a DBMS without
impacting pre-existing applications. The extended
DBMS should not change the semantics of non-
temporal queries and updates and existing applications
should not experience degraded performance.

We propose to support transaction time
functionality at the granularity of a relational table.
Those tables for which transaction-time support is
needed are specified as transaction-time tables when
they are created; conventional and transaction-time
tables may coexist. When a transaction-time table is
modified, the DBMS timestamps its data. As with
concurrency control mechanisms generally, the
implementation of transaction-time support may use
aborts to ensure correctness. At worst, the user
perceives aborts as suboptimal performance.

Support for transaction time is delegated entirely
to the DBMS. A transaction-time database maintains
the time at which a data item, e.g., relational record, is
updated. This is called timestamping. Each data item d
has two timestamps: that of the transaction whose
modification produced d, denoted d.TT├ and called the
start time, and of the transaction whose modification
supplanted it, denoted d.TT ┤ and called the stop time.
Item d is in the state of the database as of time t when
d.TT├ ≤ t < d.TT┤. An insert statement creates a data
item with start time that is the timestamp of the
inserting transaction and a stop time of “until-
changed,” which logically denotes the changing current
time [6, 19]; a delete statement will change the stop
time from until-changed to the timestamp of the

Administrator
©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

deleting transaction; and an update statement is like a
delete followed by an insert.

The choice of the time used in these modification
statements is subject to two semantic constraints.
1. The ordering of transaction timestamps must agree

with transaction serialization order. If transaction
A is earlier in a serialization order than transaction
B then TA < TB, where TX denotes the timestamp
for transaction X.

2. The CURRENT_DATE or CURRENT_TIME
(SQL nullary functions [13, 17]) within a
transaction must return a result consistent with the
timestamp of that transaction. While the
transaction time has fixed granularity [4, 5], e.g.,
microseconds, a CURRENT request is at a user-
specified granularity, such as DAY or SECOND.
Consistency means that the timestamp when CAST
to the user-specified granularity is identical to the
CURRENT result.

These constraints are challenging to ensure
simultaneously, with good performance. Let us briefly
consider some of the difficulties.

A transaction is atomic; conceptually all actions of
a transaction take place instantaneously. Concurrency
control within the DBMS provides this very convenient
semantics in the presence of multiple users who
simultaneously access and modify the database. Since
all actions of a transaction conceptually take place at
the same time, this requires the use of the same
CURRENT_TIME value for all statements of a
transaction. However, the SQL standard allows
different statements in the same transaction to use
separate CURRENT_TIME values, and which specific
values to use are left to the implementation of the
database management system.1

If a DBMS does not ensure both that a single
CURRENT transaction time is used for an entire
transaction and that the time chosen is consistent with a
valid serialization order, then it is possible that the
answer to an “as of” query was never a valid, current
state. With SQL-92 [12], a query or modification can

1 The standard fixes the value only within a statement, and

which fixed value to use is implementation defined.
General Rule 3 of Subclause 6.8 <datetime value function>
of the SQL-92 standard states “If an SQL-statement
generally contains more than one reference to one or more
<datetime value function>s, then all such references are
effectively evaluated simultaneously. The time of
evaluation of the <datetime value function> during the
execution of the SQL-statement is implementation-
dependent.” [12, p. 110].

reference CURRENT_TIME, and this time can be
stored as an attribute in the database or used to query
the database, e.g., retrieving the database state current
as of this time. This exposes the risk that a query using
a transaction’s time will not include the results of the
transaction whose CURRENT time is used to specify
the “as of” time for the query. And if transaction time
and serialization order do not agree, the result of such a
query may not include all transactions that serialized
earlier, and may perhaps include transactions that
serialized later.

In this paper, we present techniques to enhance a
conventional (non-temporal) DBMS to correctly and
efficiently choose transaction timestamps in support of
transaction time databases with CURRENT
functionality. These techniques extend only the lock
manager of the DBMS. Given the complexity of
DBMS engines, limiting the impact on DBMS code is
important. We believe our incremental approach is
essential to enabling adoption of temporal
functionality.

2. Related Work and Contribution

2.1. Earlier Work

Data replication and log analysis tools exist that
are capable of extracting data from DBMS logs, thus
supporting queries such as a transaction timeslice
query, a query of a past state of a database [1, 11] that
provides an answer based on that past state, as if the
past state were the current state. However, tools such as
these do not address the core problem of supporting
transaction-consistent timestamping. Oracle's recent
flashback query facility [20] appears to be better
integrated into the DBMS, but it also accesses log data
and, again, transaction-consistent timestamping seems
not to be part of this facility.

The classic approach to choosing timestamps [14,
18] is to delay the timestamp choice until commit time.
Then one can use the transaction’s time of commit as
its timestamp. In such an approach, termed late
timestamping, the transaction id is stored in the start or
stop time of each data item modified by the transaction.
Once the transaction commits, its timestamp is known,
and the transaction id within data items is replaced with
this time. With strict two phase locking, which we
assume, commit order is consistent with transaction
serialization order. Hence timestamp order will
likewise then be consistent with transaction
serialization order, thereby satisfying the first
constraint.

The second constraint is still problematic, because
requests for CURRENT TIME can return a value
substantially earlier than the commit time, especially
for long transactions. A previous approach [9] is
summarized in Section 3 and referred to as the RTT
approach. It satisfied the second constraint, of
consistency between the result of CURRENT requests
and the transaction’s timestamp when only accessing
transaction-time data, though with some restrictions
which we now point out, and elaborate in Section 3.2.

2.2. A New Approach Is Needed

There are two major limitations with the RTT
approach, as well as an important aspect was not
considered.

2.2.1. Non-Temporal Data. Unlike transaction-time
data, ordinary data is not timestamped. The problem
then is to keep the timestamps that we assign to our
temporal data consistent with transaction serialization
order when some transactions only access ordinary
data, some access temporal data, and some access both
kinds of data. The RTT approach did not solve this
problem, as it applies only to transactions that access
transaction timestamped data. Compatible extension to
existing database systems requires a timestamping
solution that works when ordinary data may be
accessed with transaction-time data in the same
transaction. We don’t want to restrict applications to
accessing only transaction-time tables or only
conventional tables.

2.2.2. Multi-Granularity Locking. Range queries
were not considered in the RTT approach. Support for
range queries with correct serialization semantics
requires that conflicts be detected not just at records,
but also between records in ranges that are read by a
query. Only then can “phantom” inserts into the range
be prevented until the range query completes. The RTT
approach did not address these conflicts when ordering
timestamps.

With locking-based concurrency control, phantom
prevention is usually solved through multi-granularity
locking with the range as a large granule containing the
record as a smaller granule [10]. The range lock blocks
the insertion of new records that are not yet in the range
and for which it is not possible to hold a record lock.
Database systems exploit multi-granularity locking to
solve both the phantom problem and to prevent an
explosion in the number of locks that need to be
maintained. It is not clear how to reconcile the RTT
approach with multi-granularity locking.

2.2.3. Timeslice Queries. A timeslice query requests
the state of part of the database as of some particular
time that we call the read time. To correctly support
timeslice queries, we must schedule transactions
executing timeslice queries correctly in the transaction
serialization order. These requirements do not differ
from the requirements we normally place on
transactions.

What makes this task different from what we have
discussed to this point is our desire to execute timeslice
queries, which may be only part of a larger transaction,
without locking the data that they read. This
requirement stems once again from our goal of
compatibly extending existing database systems, some
of which currently execute snapshot transactions
without locking. How to do so in the presence of
CURRENT requests has not been considered before,
including in the RTT approach.

2.3. Our Contribution

Compatible extension to existing database systems
applies not just to functionality as discussed above. It
also involves a desire to evolve current database
implementations to provide that functionality. For this
it is surely convenient if we can localize the code
responsible for timestamp functionality within the
database system code base. It turns out that this is
possible. We enhance the lock manager present in
almost all the database systems and already correctly
serializing transactions. We term this augmented lock
manager a timestamping lock manager (TLM). The
TLM provides bounds on a transaction’s timestamp
that constrain it to agree with the serialization order
that it already provides. Logically, the TLM assigns a
timestamp to all transactions, independently of whether
or not they access transaction-time data.

Performance is always an important issue. We
focus on exactly when it is necessary to check
timestamp bounds. In particular, we identify several
situations in which checks are avoidable. We also
identify when we do not have to maintain the
information needed for checking timestamps. For
example, if no transaction has asked for
CURRENT_TIME, we do not need to check timestamp
information, and, at least in one strategy, do not even
have to maintain this information. In summary, our
timestamping lock manager enables more sophisticated
locking strategies, such as multi-granularity locking,
along with important refinements that offer better
performance.

In Section 3, we describe the previously proposed
RTT approach, as a basis for the approach proposed
here. Section 4 presents our timestamping lock
manager in its basic form. Section 5 describes our
strategies to reduce the overhead added to the TLM for
timestamping, by identifying when checking is not
needed, and when maintaining auxiliary information is
not needed. Section 6 shows how we can gracefully
move from a strategy that minimizes overhead to one
that minimizes the frequency of aborts. Section 7
discusses time-slice queries and snapshot
serializability, and shows how the TLM can provide
this without locking. A final section provides a short
summary and discussion.

3. The RTT Approach

The RTT approach [9] orders transaction
timestamps so as to agree with the serialization order of
the transactions when only transaction-time tables are
supported.

3.1. Bounds on Timestamps

To minimize aborts, the RTT approach supports a
flexible choice of the timestamp TA of a transaction A.
The approach maintains a lower bound LBA and an
upper bound UBA for the timestamp values that can be
assigned to A. As long as this open-closed interval is
non-empty (LBA < UBA), a legal timestamp assignment
exists. At commit, a transaction is assigned a timestamp
that is one chronon larger than its lower bound. If the
interval becomes empty, transaction A cannot commit,
and it is aborted.

When transaction A starts, LBA is set to the current
time and UBA is set to the largest possible time value.
Lists that record the data items read, inserted, and
deleted by the transaction are initialized as being
empty. These lists are used for post processing at
commit time. For each data item d, a variable d.TR is
introduced that records the largest timestamp among
transactions that have read d.

The RTT approach maintains LBA to ensure that
d.TT├ of any item d read by A and that d.TR and d.TT├
of any item d written by A will be earlier than TA, the
timestamp we will assign to A. When A reads a data
item d, LBA is set to d.TT├ if this increases the bound.
When it writes an item d, LBA is set to the maximum of
its current value, d.TR, and d.TT├. At commit, the
read, insert, and delete lists are processed. We set d.TR
to TA for all data items d read by A when this increases

the value of d.TR. Each d inserted or deleted in A is
timestamped with TA.

The RTT objective was to ensure that a
transaction’s timestamp is consistent with the value of
“now” that the transaction sees in its requests for
CURRENT_DATE, CURRENT_TIME, and
CURRENT_TIMESTAMP (in standard SQL; other
time granularities are supported in non-standard ways
in specific DBMSs [17]). The RTT approach
constrains the upper bound UBA and lower bound LBA
of A as a result of these requests. For example, if
CURRENT_DATE is requested, LBA is set to the
maximum of its current value and the first chronon
during the date returned and UBA is set to the minimum
of the last chronon of the date returned and its current
value. This procedure exploits that CURRENT results
have coarser granularities than transaction timestamps.
For example, a transaction’s request of
CURRENT_DATE yields an interval for the timestamp
of possibly the entire day; a subsequent
CURRENT_TIME request reduces that interval to at
most one second. Requests for “now” at any
granularity are thus supported.

The RTT approach uses start and stop times of
each data item to ensure that write-write (WW) and
write-read (WR) conflicts are handled correctly. For
read-write (RW) conflicts, it remembers d.TR for each
data item d, which records the last time the item is read.
Conservative approximations of these values are kept
in a read-timestamp table (RTT, hence the name of the
approach) that does not retain information about each
item, but rather identifies item classes by means of a
hash function used to index the table. We apply a hash
function to data items that distributes them among
some number, e.g., 512, of classes. For each such class,
the RTT then records a time that is no smaller than the
largest d.TR for the data items d that hash to that class.
This arrangement preserves correctness and enables
efficient management of read timestamps.

The advantage of this approach is that the size of
the RTT can be limited without requiring a garbage
collection scheme were this information to be retained
(at least initially) for each data item. The drawback of
associating times with data record classes rather than
with the records individually is that this approach may
result in additional aborts. However, by adjusting the
range of the hash function (and hence the size of the
table), one can control the trade-off between these two
costs (memory costs and increased aborts).

3.2. Limitations

The RTT approach falls short in three respects.
First, it fails to accommodate non-temporal data. It
simply assumes that all data contain the timestamp
d.TT├. Second, it assumes record granularity locking; it
is not clear how to generalize RTT to multi-granularity
locking, which is required to prevent phantoms. Third,
it is not clear how to accommodate timeslice queries
exploiting snapshot isolation that avoid locking.

We tested the RTT approach in a prototype based
on Berkeley DB [16], which provides (uni-granularity)
page locking in its B-tree access method. We needed to
extend the RTT approach for this to work.
1. We had to introduce a write-timestamp table

(WTT) that is only used for non-temporal data.
This table is analogous to the RTT and stores the
write times of non-temporal data items. The table
enabled us to deal with WW and WR conflicts for
the non-temporal data.

2. We had to change the entries in the RTT from data
items to data pages. Berkeley DB solves the
phantom problem by page locking (a form of range
locking). By remembering times associated with
pages, we are able to correctly compute transaction
times that are consistent with serialization order.

This did have some negative consequences, however.

1. Both RTT and WTT record timestamps at the
granularity of pages. Thus, the conflict induced
timestamp order is very conservative, and that can
lead to excessive aborts.

2. The solution is very specific to Berkeley DB. It is
not clear how to apply this approach to other
locking protocols, in particular to systems that
exploit multi-granularity locking to reduce locking
conflicts. Small granularities reduce timestamp
ordering constraints and lead to fewer timestamp
induced aborts.
What we want is an approach that can apply to a

wide class of database systems, where it is obvious that
the serialization order and timestamp order agree,
where execution cost is low, and where sophisticated
conflict reduction techniques such as multi-granularity
locking can be applied. We consequently pursued an
architecture that localizes the timestamp management
code and integrates it with the lock manager.

4. Timestamping Lock Manager

The timestamping lock manager (TLM) fully
supports multi-granularity locking while also enabling
CURRENT requests and accesses to both temporal and
non-temporal data. Just as important, this approach in

many situations avoids some or all of the checking
when it can be determined a priori that such checking is
not needed. We present the fundamentals of this
approach and examine a spectrum of refinements.
Selecting the refinements most appropriate for an
actual DBMS depends strongly on the specifics of that
DBMS’s lock manager, which is an intricate and highly
optimized piece of code. Similarly, the detailed
performance improvements possible with each
refinement also depend strongly on those specifics.

Fundamentally, the TLM needs to ensure that each
transaction has a time later than the times of all earlier
conflicting transactions. That is, our current transaction
must be later in time than the transactions that have
made earlier accesses in conflicting lock modes to its
accessed resources. Enforcing this within the lock
manager can immediately be seen to guarantee that
serialization and timestamp orders agree. Thus, the
latest timestamp of any earlier conflicting transaction
(the conflict modes are specified by the lock manager)
becomes a lower bound for a transaction timestamp,
i.e., earlier times are not acceptable because then
timestamp order would not be consistent with conflict
order. CURRENT requests are handled the same way
as with the RTT approach.

Our TLM, in addition to the normal functions of a
classical lock manager, maintains lower and upper
bounds for each transaction. It checks these bounds
and aborts transactions for which it is not possible to
assign a correct timestamp, i.e., when a timestamp
range is empty. We describe here how we determine
the bounds, and how these are maintained and checked
during TLM execution.

4.1. The Access Timestamp Table

The TLM inspects conflicts to determine LBA for
each transaction A. The TLM extends a conventional
lock manager with information on timestamps for
preceding conflicting accesses. We define an access
timestamp table (ATT). An ATT entry, like an RTT
entry, contains the timestamp of the last access to any
of a set of resources (assigned via a hash function).
Unlike the RTT, it does this for each lock mode
supported by the lock manager. Thus, the ATT
supports the normal intention locks used to provide
multi-granularity locking. Further, the ATT maintains
this information for each resource locked by the lock
manager. Thus, the ATT includes the same range
resources that are used by the lock manager to prevent
phantoms. Like the RTT, the ATT needn’t persist
across crashes since transactions after a crash will have
timestamps later than the time of the crash.

The ATT stores, for each lock mode and for each
entry i, the largest timestamp of any earlier committed
transaction accessing a resource that hashes to i (i.e.,
h(R) = i) with an access in that lock mode. We then
define our lower timestamp bound for transaction A as
follows.

LBA = max{ATT(h(R). m) | transaction A accesses
 resource R in mode mA and mA conflicts with m}

The TLM computes the lower bound
incrementally. When a transaction accesses a resource,
it first acquires a lock in a mode mA appropriate for the
access. When the lock is granted, the TLM updates LBA
by examining the entry for the resource for each mode
that conflicts with mA. The TLM then checks whether
LBA < UBA. If not, then the TLM aborts the transaction.
The TLM is illustrated in Figure 1. Note that it is
possible to implement most of the TLM as a wrapper
around the usual database lock manager.

 Figure 1. Timestamping Lock Manager

4.2. Using d.TT├ Instead of the ATT

In a transaction-time database, the current version
of record d contains the timestamp of the record’s last
writer as d.TT├. So we can avoid storing a transaction
time for d in the ATT and derive it instead from d itself
when d is a transaction-time item. The item d is the
precise resource, while the ATT entry identifies a
resource class. So using d.TT├ provides a more refined
result. We then avoid updating the ATT when dealing
with write locks on d.

But we do have to check the timestamps in the
records that we write, instead of checking the ATT
entries. This is like the RTT checking, where we only
stored read lock information in the RTT. Whether we
choose to use d.TT├ or the ATT is a matter of
implementation convenience. We might proceed as if d
did not have a d.TT├, treating all data the same. This
convenience comes at a price, however, because the
coarser resource classes represented by the ATT may
result in a greater number of aborts.

4.3. Commit Time Actions

At transaction commit, the system assigns a
timestamp to the transaction in the open-closed interval
(LB, UB]. This permits the transaction to successfully
commit. If each transaction always checks the times for
conflicting earlier accesses in the ATT at the time of
each access, and all transactions update the ATT when
committing, we minimize the time that we can assign as
a transaction’s timestamp. ATT entries are
monotonically increasing. Early checking means that
the ATT entry seen will be less than or equal to any
later value. Not updating the ATT until commit delays
the time at which an ATT entry increases.

Choosing the timestamp to be as early as possible
means that a transaction B, reading or writing a
resource previously locked by A, is less likely to have
an empty timestamp range. An empty range means that
B has to abort to maintain consistency between
serialization order and timestamp order.

We need to maintain the ATT so that it continues
to contain the latest timestamps of earlier committed
transactions that accessed data using the various lock
modes. Since we assume strict two-phase locking for
transaction isolation, a transaction cannot gain access
to a resource until prior conflicting transactions release
their locks. Thus, at commit of transaction A, for every
resource R locked by A in a mode m, we post TA in
ATT(h(R).m) if that time exceeds the current value in
that entry.

5. Reducing Overhead

A big attraction of deferring timestamp choice
until transaction commit is that it is very inexpensive,
requiring
• no accessing of extra information while the

transaction is accessing data, and

• no extra updating at commit of auxiliary
information used solely to correctly maintain
timestamp order.

However, a second data access to post timestamps to
each updated data item is required.

Unfortunately, this classical technique in its pure
form cannot deal with CURRENT requests.
Nonetheless, we want to drive our costs closer to
commit time timestamp choice.

There are three costs incurred by the TLM
approach for dealing with CURRENT requests.
1. The TLM needs to maintain a lower bound LBA

and an upper bound UBA for each transaction A,
independently of whether or not A accesses
transaction-time data.

2. The TLM needs to check, whenever a lock is
granted to transaction A, that LBA < UBA.

3. The TLM maintains the ATT to compute the lower
bound on every lock acquisition. This is needed to
permit us to choose a timestamp for the transaction
to be as early as possible.

If we can accept a slightly higher risk of aborting
by choosing a transaction’s timestamp to be later, some
large efficiency improvements are possible. The key
assumptions are as follows.
A1. We choose TA = min{tAcom, UBA}, where tAcom is

the time when transaction A commits. (Recall that
the RTT and prior TLM approaches both set TA to
LBA + one chronon.)

A2. If A’s CURRENT request occurs before UBA, then
UBA can be moved earlier, but not earlier than
when the request was made. If A’s CURRENT
request occurs after UBA, then UBA is unchanged.
Thus UBA is never moved earlier than tcur, the
“current time”.

In concert, these assumptions reduce the need both to
check and to update the ATT. Indeed, we can exploit
them to avoid maintaining an explicit lower bound.
Implicitly, the lower bound becomes the earlier of tcur
or UB.

5.1. Reducing ATT Checking

Transaction A checks the ATT to ensure that there
is a feasible timestamp consistent with the access
conflicts. We can bypass this check of the ATT when
tcur < UBA.
1. No earlier committed transaction can have a time

later than tcur by A1, which requires that earlier
committed transactions have earlier times.

2. Any transaction that commits later and conflicts
with A will have a timestamp later than tAcom.

a. A non-checking transaction, that is, one whose
upper bound is later than tcur, will have a later
timestamp by A1, which requires that its
timestamp be the time that it commits.

b. A checking transaction (with UB ≤ tcur) will,
by checking, be later than prior conflicting
transactions. By A2, UB is never moved
earlier than the commit times of transactions
whose conflicts are already checked.

Hence, a transaction A does not have to check that
LBA < UBA and that A needs to abort until tcur is later
than UBA. Checking transactions check that conflicting
entries in the ATT have timestamps less than UB, and
abort when the check fails. Thus, no transactions need
maintain LB.

In this modification of the TLM approach, some
transactions have UB < tcur and are checking the ATT,
some transactions have UB > tcur and are not checking,
and some transactions have not yet made a CURRENT
request, and so are not checking either, because their
UB is at “forever.”

5.2. Reducing ATT Maintenance

If no active transaction is checking the ATT, a
further optimization is possible: committing
transactions do not have to update the ATT. The reason
is that all committed transactions (and hence all earlier,
conflicting transactions) have timestamps earlier than
tcur. Hence, conflicts with these earlier transactions will
not violate the required agreement between
serialization order and timestamp order, since non-
checking transactions always commit at tcur. Further, if
we start maintaining the ATT when we start checking,
all transactions that commit after we start checking will
have timestamps later than the value of tcur at the time
we started to check. But these timestamps will be in the
ATT, and our checking will discover the conflicts and
order the timestamps correctly.

We describe below two ways of exploiting these
observations.

5.2.1. “Current Request” Strategy. In the Current
Request (CR) approach, a transaction starts checking
the ATT when it makes a CURRENT request. Before
that, it has no upper bound, and hence the upper bound
is not earlier than tcur. When transaction A makes a
CURRENT request, the value of LBA is set to the
maximum of tcur and first chronon (say the first
microsecond) of the requested granularity (e.g., day for
CURRENT_DATE, second for CURRENT_TIME),
and the upper bound UBA is set to the last chronon of
the requested granularity.

Additionally, we do not maintain the ATT unless
there is an active transaction that has made a
CURRENT request and hence is checking the ATT.
This is clearly sufficient as we begin checking even
before we reach the upper bound. If no active
transaction has requested CURRENT, then committing
transactions do not have to update the ATT.

The bookkeeping required is very simple. When
transaction A first makes a CURRENT request, it
becomes a checking transaction. It then increments a
“checking transactions” counter CN. When A commits
or aborts, it decrements CN. A committing transaction
checks CN, and only posts its timestamp to the ATT
when CN > 0. A checking transaction decrements CN
during its commit prior to checking the counter. Thus,
if it is the only current checking transaction, it need not
update the ATT.

5.2.2. “Upper Bound Checking” Strategy. The
Upper Bound Checking (UBC) approach checks the
ATT even less frequently than in the CR approach, by
only starting to check precisely when UB ≤ tcur.
Checking is less frequent than in the CR approach
because a CURRENT request that would trigger
checking in CR might have an upper bound not yet
exceeded by tcur and so this CURRENT request would
not invoke checking.

As before, there is no need to maintain the ATT
until there is a transaction that will check it. Thus, we
delay updating the ATT until at least one transaction A
exists with UBA ≤ tcur. However, because transactions
may become checking transactions via the mere
passage of time as opposed to performing some action
themselves, transactions cannot register themselves as
checking transactions. The ATT must be immediately
maintained once this condition is satisfied.

To “register” transactions as checking transactions,
based on their upper bounds, the system maintains a
check list CL of the transactions that have made
CURRENT requests. Each CL element is a pair
<IA, UBA >, where IA is the transaction id for
transaction A. We add this pair to CL as soon as A has

an upper bound, i.e., as part of its first CURRENT
request. CL is ordered by the transactions’ upper
bounds (this can be done efficiently by maintaining CL
as a priority queue). We remove A’s CL entry when A
commits. Because we enter a transaction on CL as soon
as it makes a CURRENT request, CL exists prior to our
needing to maintain the ATT.

We don’t begin updating the ATT until the earliest
upper bound on CL is reached. However, note that the
transaction with the earliest upper bound, i.e., the one
that triggers the updating, does not itself need to update
the ATT with its commit time. No subsequent
transaction can commit with an earlier time and so no
timestamp ordering violation is possible. We stop
maintaining the ATT when no checking transaction is
active, as with the CR approach, but with fewer
checking transactions.

5.3. Performance

In this section, we examine the performance of the
TLM. First, note that database concurrency is
unaffected by the timestamping, as locking conflicts are
unchanged. Also concurrency can be substantially less
constrained than in Berkeley DB with its page
granularity. The TLM exploits the granularity
supported by the original DBMS. We characterize the
locking overhead involved in the completely
unoptimized case, and then consider the impact that our
optimizations have on reducing overhead. We argue
that the overheads involved for expected system
behavior are not large, especially when our
optimizations are exploited.

The performance improvements possible with each
refinement are very specific to the lock manager being
extended and to system workload: such things as
number of locks, conflict rate, lock manager path
length, etc. Hence, we make only general observations.

First, what is the impact of the lock manager on
execution path length seen by transactions in a database
system? There is no one specific figure, of course, but
the concurrency control and recovery subsystem in a
transaction processing application is typically 5–10%
of the path. TP applications typically do more locking
than most applications, so this is a high figure. The
lock manager is less than half of that. Thus, at most 5%
of the path is in the lock manager. So timestamping will
impact total application path by at most a few percent.

According to Gray and Reuter [7], lock manager
instruction path for a non-blocking lock request is a
few hundreds to one thousand instructions. This
includes call overhead, searching lock lists, and testing

their resource ids and lock modes. Releasing locks is
usually done en masse at transaction end, incurring call
overhead only once for all of a transaction’s locks.

The incremental impact of timestamping is surely
less than 20% to 30% of the path length of a lock
manager without timestamping (equivalent to 1% to
1.5% of the full execution path length). Checking
timestamps in the ATT involves no list searching.
Rather, a hash is computed (a few instructions) and
ATT entries are checked or updated. Checking and
updating together examine each lock mode of a locked
resource. This may be as many as five or six
comparisons and/or updates. The extra instructions are
not more than a hundred. Further, as explained above,
checking or updating the ATT is often unnecessary.

The above overheads are not trivial, but given the
modest contribution of the lock manager to transaction
execution path, the impact on system performance will
not be more than 2–3%. And our optimizations
frequently eliminate the great bulk of this extra
overhead. When all temporal transaction timestamps
can be at their commit times, ATT checking during
lock requests and ATT updating at commit are avoided,
as is true when no temporal transactions are executing.
In those cases, the extra lock manager overhead to
check is minimal.

We have only discussed the extra TLM cost for
calculating the time used in a timestamp. We have not
discussed storing timestamps in versions, which is
more costly. We believe that this timestamping should
be done after commit, as recommended by Salzberg
[14]. Then the timestamping is outside of the response
time for the transaction, and can be combined with
page accesses that are already required for other
reasons, greatly reducing this overhead.

6. Controlling the Abort Rate

The optimizations of Section 5 require that the
timestamp we assign be either the upper bound for a
transaction or tcur at the time of commit, whichever is
earlier. This assignment is correct and also minimizes
the TLM checking. However, it can increase the aborts
required to keep timestamps consistent with
serialization order. This might be a problem if database
systems reply to CURRENT requests with a very
precise time (e.g., a request for
CURRENT_TIMESTAMP at a precision of micro-
second). Here, we explore both the nature of the
problem and how we can extend our approach to
minimize this problem.

6.1. Increased Aborts

Suppose transaction A starts executing at 1 P.M.
and asks for CURRENT_DATE at 11 P.M. A will
have a timestamp, assigned by either Current Request
or Upper Bound Checking approach, not earlier than
11 P.M. Another method might have been able to give
A a timestamp as early as 1 P.M. While A may itself be
able to commit, another transaction B, which reads data
written by A, may have an upper bound of, say, 2:15
P.M., by virtue of requesting CURRENT_TIME at that
minute. B could have committed had A gotten the
earlier timestamp. But with a timestamp after 11 P.M.
for A, B must now abort.

While abort frequency can increase, it may still be
small.
1. The number of distinct resource classes, i.e., the

range of the hash function, can be made large,
reducing the chance that a subsequent transaction
encounters the effects of a long-running
transaction as in our example.

2. Most requests for CURRENT_TIME result in
much smaller intervals between the earliest
possible correct timestamp assignment and our
technique of assigning the latest possible
timestamp. CURRENT_TIME results in at most
one second between the lower and the upper
bound. Thus the flexibility of the more
conservative approaches to keeping track of
bounds for timestamps will be less than the
example suggests.

Regardless of the absolute number of additional
aborts, we would still like to be able to reduce the
number of aborts while providing much of the
optimization gain of reduced ATT checking and
updating.

6.2. Earlier Transaction Timestamps

The earlier a transaction’s timestamp, the fewer
other transactions need be aborted to preserve
consistency between timestamp and serialization
orders. To reduce aborts we need to maintain an
explicit lower bound for transaction timestamps in
addition to an upper bound. We then can choose a
transaction’s timestamp that is at the lower bound of its
timestamp range. And if we want it to be able to have a
timestamp that can be earlier than the time at which we
begin checking, we need to start maintaining the ATT
even earlier.

We do not know whether a transaction timestamp
earlier than tcur at commit is legitimate unless we
maintain the ATT and check a transaction’s lock

request against up-to-date ATT entries. Because no
transaction that committed earlier than tcheck, the time at
which we begin checking and maintaining the ATT,
can have a timestamp later than tcheck, we can begin
checking at any time, and use tcheck as the initial lower
bound for currently active checking transactions.

So if we are incurring too many aborts, we begin
updating and checking the ATT. This can be done at
our convenience! We call this the Adaptive Strategy.
When we want a transaction with a timestamp earlier
than tcur at commit, we make it a checking transaction.
The initial lower bound for any transaction is then the
maximum of its start time and tcheck. We maintain upper
bound as before.

We can provide a lower bound selectively,
exploiting our prior optimizations. That is, not all
transactions need to be checking transactions, and such
non-checking transactions do not need to maintain a
lower bound. But once the transaction is a checking
transaction, we maintain a lower bound as well as an
upper bound for transaction timestamps; and we
choose our timestamp to be at the lower bound of this
range.

Should we continue to have too many aborts, we
can make all transactions checking transactions.

7. Lockless Timeslice Queries

We timestamp data to support transaction-time
database functionality, an important part of which is
timeslice queries. A timeslice query requests the state
of part of the database as of the query’s read time. A
transaction with snapshot isolation typically queries the
database with a read time equal to the transaction’s
start time. With full transaction-time database support,
a transaction can query the database as of any past
time. The result should be a transaction-consistent
view of the database with versions of data items read
that have the largest timestamps less than or equal to
the read time.

Our desire is to execute timeslice queries, which
may be only parts of larger transactions, without
locking the data that is read. An important aspect of
snapshot queries in several commercial databases is
that they are executed without locking. Indeed, the
point of snapshot isolation is to enable snapshot reads
without locking, so that readers are never blocked by
updaters, and updaters are never blocked by snapshots.
So this is important for compatibility.

7.1. Impact of Timeslice Queries

What happens when a timeslice query in
transaction B reads data updated by a transaction A that
is active during the same time that B does its read? Let
A’s bounds on its timestamp be LBA and UBA, and B’s
time of read (“as of” time) be RB. There isn’t a concern
when A commits before B reads the updated data, as
then we have access to A’s timestamped updates. But it
is a concern if B reads this data before A is committed.
There are two cases, which we describe next: (i)
timeslice reader accesses the data first and (ii) updater
accesses it first.

7.1.1. Timeslice Reader First. When timeslice reader
B reads data before updater A does its update, we need
to make A aware of RB. Thus we need B (i) to assign
resource identifiers to the data that it reads that are the
same resource identifiers used for locking data and (ii)
to have B update the appropriate ATT lock mode
entries with RB. The appropriate lock mode will
usually be S or shared, the mode used had B been an
ordinary transaction reading the data. B’s read data
can be accessed immediately by conflicting operations
because a timeslice query does no locking. Hence B
must update the ATT immediately. A, which will be a
“checking” transaction, looks at entries in the ATT and
checks whether there are timestamps for conflicting
operations that are later than UBA. If so, A must abort.
Otherwise, if later than LBA, then LBA must be
increased to this later time, just as if the timeslice query
had been a read by a committed transaction.

7.1.2. Updater First. To deal with uncommitted
updates to the data that it reads, timeslice reader B
checks for locks that would conflict with its read were
it a normal reader. If it finds such a lock, then it must
check the timestamp bounds of all transactions A
holding the lock. If all UBA are later than RB, then the
read proceeds without blocking and, as in the
“timeslice reader first” case, we update the ATT to
inform future updaters of B’s read time. And if RB is
later than LBA, then LBA is increased to this later time.
If B finds an uncommitted update from some A, where
UBA is earlier than RB, then to avoid blocking timeslice
query B, we must abort either B or A. Aborting updater
A keeps the story simple for timeslice queries, i.e., they
run safely without blocking, locking, or aborting. We
expect this is the alternative most implementations will
choose.

7.2. Handling Timeslices with the TLM

The preceding discussion suggests a way of
dealing with the interactions between timeslice queries
and updaters within the TLM. We have B’s timeslice
query call the TLM like an ordinary query, and update
the ATT as required. But the TLM makes some
adjustments for “timeslice locking”, e.g., it never
blocks timeslice queries.

For B’s timeslice query, instead of waiting until B
commits to post timestamps to the ATT, the TLM
immediately updates the S mode entry for the
appropriate resource in the ATT with RB. Instead of
blocking a timeslice read when this resource is held in
a conflicting lock mode, the TLM permits the read to
proceed. When the conflicting lock is held by updater
A with UBA earlier than RB, A is aborted. Otherwise, if
LBA is earlier than RB, we set LBA to RB, ensuring that
A’s timestamp is later than RB.

The locking overhead of timeslice queries can be
minimized by exploiting “large grained” resources
when a timeslice query checks locks and updates ATT
entries. A trade-off exists between this overhead and
the number of update transactions that might be
impacted. As an example, let our timeslice “granule”
be a relational table. A conflict is manifested by the
fact that the IX table lock of updater A conflicts with
the S table “timeslice lock” of B’s timeslice query. If
UBA is earlier than RB, then A is aborted.

7.3. Optimizing Timeslice Queries

Sometimes non-locking timeslice queries are easy
to realize and have no impact on the timestamping of
remaining transactions. We can then avoid the
checking and updating of the ATT. This occurs when
we know that read time is earlier than the earliest lower
bound for any uncommitted transaction. Such a
timeslice query cannot be impacted by uncommitted
transactions, as such transactions cannot provide data
with a timestamp that is early enough to be seen by the
query. Further, the query has no impact on the
timestamps of uncommitted transactions, since all these
transactions will have timestamps later than its read
time. Any updater that will commit later than tcur will
never be aborted, since timeslice read times will always
be earlier than tcur. Thus, if no transaction has made a
CURRENT request, then no access to the TLM is
required to check or update the ATT. This is why, in a
conventional DBMS, a snapshot query safely executes
without locking. Its read time is always earlier than
the possible commit time of any active transaction.

8. Summary

The only prior timestamping work that supports
CURRENT requests is the RTT approach [9]. It
supports neither access to non-temporal data nor multi-
granularity locks. As mentioned in Section 2, we had to
extend the RTT approach in our Berkeley DB
prototype to support access to non-temporal data, and
even then the page-grained locks would produce
additional aborts. Furthermore, the RTT approach
requires careful, ad hoc integration with the existing
concurrency control facilities of the DBMS.

This paper introduces a compatible extension of a
DBMS to realize temporal functionality. The existing
lock manager is augmented to maintain a lower and an
upper bound for each transaction. The resulting
Timestamping Lock Manager (TLM) utilizes an access
timestamp table (ATT), which contains the timestamp
of the last access to each resource class for each lock
mode supported by the lock manager. The beauty of the
TLM approach, and the variants presented here, is that
if the lock manager correctly serializes transactions
then the timestamps will agree with that order. This
includes locking approaches to the phantom problem,
such as key range locking.

The basic TLM imposes runtime overhead for
checking and maintaining the ATT for all queries, even
when this checking is not strictly needed. Thus we
described ways to optimize the TLM to avoid this. We
showed that full ATT checking and updating can start
at any time, allowing flexible and dynamic trade-offs:
earlier checking, which increases CPU overhead, but
decreases the number of timestamp-induced aborts
versus later checking, which decreases overhead, but
may increase aborts.

We also considered timeslice queries, proposing
ways to handle these without locking that nonetheless
work with variants of the TLM approach. The proposed
mechanisms check and update the ATT but do not
require locking data read by the timeslice query,
ensuring that a timeslice query is never blocked. Also
discussed was to require that a timeslice query read
time be earlier than the possible commit times of active
transactions, which then avoids the TLM mechanisms.

The result is a collection of approaches that
support: (i) timestamping at commit, (ii) serialization-
consistent timestamps, (iii) CURRENT requests whose
responses are consistent with transaction timestamps,
(iv) accessing non-temporal data, (v) range locking and
multi-granularity locking, and (vi) non-locking
timeslice queries.

9. References
[1] Atempo, Inc., Time Navigator, 2004.

[2] J. Bair, M. H. Böhlen, C. S. Jensen, and R. T.
Snodgrass, “Notions of Upward Compatibility of
Temporal Query Languages”, Wirtschaftinformatik
39(1), 1997, pp. 25–34.

[3] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass,
and X. S. Wang, “A Glossary of Time Granularity
Concepts,” in Temporal Databases: Research and
Practice, O. Etzion, S. Jajodia, and S. Sripada (eds),
Springer-Verlag, pp. 406–413, 1998.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison Wesley, 1987.

[5] C. Bettini, S. Jajodia, and S. X. Wang, Time
Granularities in Databases, Data Mining and Temporal
Reasoning. Berlin, Springer-Verlag, 2000.

[6] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen,
and R. T. Snodgrass, “On the Semantics of ‘Now’ in
Databases”, ACM TODS 22(2), 1997, pp. 171–214.

[7] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[8] C. S. Jensen and C. E. Dyreson (eds), “A Consensus
Glossary of Temporal Database Concepts―February
1998 Version”, in Temporal Databases: Research and
Practice, O. Etzion, S. Jajodia, and S. Sripada (eds),
Springer-Verlag, 1998, pp. 367–405.

[9] C. S. Jensen and D. B. Lomet: “Transaction
Timestamping in (Temporal) Databases”, VLDB, Rome,
2001, pp. 441–450.

[10] D. B. Lomet, “Key Range Locking Strategies for
Improved Concurrency”, VLDB, Dublin, 1993, pp. 655–
664.

[11] Lumigent Technologies, Inc., Log Explorer, 2004.

[12] J. Melton (ed), ISO/IEC 9075:1992, “Database
Language SQL,” 1992.

[13] J. Melton and A. R. Simon, Understanding the New
SQL: A Complete Guide, Morgan Kaufmann, 1993.

[14] B. Salzberg, “Timestamping After Commit”, PDIS,
Austin, 1994, pp. 160–167.

[15] B.-M. Schueler: Update Reconsidered. IFIP Working
Conference on Modelling in Data Base Management
Systems, 1977, pp. 149–164.

[16] Sleepycat Software Inc., Berkeley DB, 2001.

[17] R. T. Snodgrass: Developing Time-Oriented Database
Applications in SQL, Morgan Kaufmann, 1999.

[18] M. Stonebraker, “The Design of the POSTGRES
Storage System”, VLDB, Brighton, 1987, pp. 289–300.

[19] K. Torp, C. S. Jensen, and R. T. Snodgrass,
“Modification Semantics in Now-Relative Databases”,
Information Systems 29(78), 2004, pp. 653–683.

[20] R. Weiss, “How Oracle Database 10G Revolutionizes
Availability and Enables the Grid”, Technical Paper
40164, Oracle Corporation, 2003.

