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Abstract

Much research has been conducted on the management of outdoor moving objects. In contrast, rel-
atively little research has been conducted on indoor moving objects. The indoor setting differs from
outdoor settings in important ways, including the following two. First, indoor spaces exhibit complex
topologies. They are composed of entities that are unique to indoor settings, e.g., rooms and hallways
that are connected by doors. As a result, conventional Euclidean distance and spatial network distance
are inapplicable in indoor spaces. Second, accurate, GPS-like positioning is typically unavailable in in-
door spaces. Rather, positioning is achieved through the use of technologies such as Bluetooth, Infrared,
RFID, or Wi-Fi. This typically results in much less reliable and accurate positioning.

This paper covers some preliminary research that explicitly targets an indoor setting. Specifically,
we describe a graph-based model that enables the effective and efficient tracking of indoor objects
using proximity-based positioning technologies like RFID and Bluetooth. Furthermore, we categorize
objects according to their position-related states, present an on-line hash-based object indexing scheme,
and conduct an uncertainty analysis for indoor objects. We end by identifying several interesting and
important directions for future research.

1 Introduction

During primarily the past decade, an increasingly large body of research results on moving objects has come into
existence (e.g., [1, 6, 10–12]). Some of these results serve as a technology foundation for the growing location-
based services (LBSs) industry. However, most moving-object research to date assumes an outdoor setting with
GPS, or GPS-like, positioning. This research, unfortunately, falls short in another very important setting, namely
indoor spaces.

Indoor spaces may accommodate very large populations of moving individuals. In fact, people spend large
parts of their lives in indoor spaces such as private homes, office buildings, shopping malls, conference facilities,
airports, and subway stations. With positioning being available in indoor spaces, it is easy to imagine that we are
able to provide a wide range of indoor location-based services akin to those enabled by GPS-based positioning
in outdoor settings. Example indoor services include navigation, personal security, a variety of location-based
information services, and services providing insight into how and how much an indoor space is being used.
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Much of the research on outdoor moving objects is not easily applicable in indoor settings. This can be
attributed in part to two differences between indoor and outdoor settings.

First, indoor spaces are composed of entities that are unique to indoor settings: often rooms and hallways
connected by doors, as exemplified in Figure 1.
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Figure 1: Example Indoor Space

These entities enable and constrain movement. In the ex-
ample, a user who wishes to move from location p1 to location
p3 must to go through door d32; the wall between room 32 and
room 30 blocks the direct movement.

Such constraints render the conventional Euclidean dis-
tance inapplicable in indoor settings. If disregarding the in-
door topology, location p1’s (Euclidean) nearest neighbor is
p3. However, taking the indoor topology into consideration,
p1’s true nearest neighbor is p2.

In addition, indoor movement is less constrained than out-
door spatial-network constrained movement, where the posi-
tion of an object is constrained to a position on a polyline.
Consequently, symbolic models rather than geometric mod-
els are often used for modeling indoor spaces [3].

Second, GPS-like positioning is typically unavailable in
indoor spaces. Rather, other positioning technologies are de-

ployed in indoor settings that differ fundamentally from GPS-like positioning. Specifically, technologies that
have been proposed for short-range communication, such as RFID [13], Bluetooth [4], and Infrared, can be ex-
ploited for indoor positioning. However, unlike GPS that is able to report continuously positions and velocities
of moving objects with varying accuracies, such technologies often rely on proximity analysis [7] and are unable
to report velocities or accurate locations.

In particular, an indoor object is detected only when it enters the activation range of a positioning device,
e.g., an RFID reader or a Bluetooth base station. Depending on the deployment of devices, such detections occur
more or less frequently. As a result, the indoor positioning technologies create much more uncertain tracking
data in indoor spaces when compared to outdoor settings.

The differences between the outdoor and indoor settings call for new research on indoor moving objects.
This paper covers some of the background and results of such ongoing research. The paper presents a graph-
based model for the effective and efficient tracking of indoor moving objects with proximity-based positioning
technologies like RFID and Bluetooth. It presents an indexing scheme for on-line indoor moving objects. It
also conducts a brief analysis on the inherent uncertainty of indoor moving objects. Finally, it suggests several
interesting and important research directions.

The rest of this paper is organized as follows. Section 2 presents a graph-based model for indoor tracking.
Section 3 presents foundations for the management of indoor objects, presenting a hashing-based indexing
scheme and covering also object location uncertainty. Section 4 concludes and offers research directions.

2 Tracking Indoor Moving Objects

2.1 Symbolic Indoor Positioning

In our setting, each deployed positioning device detects and reports the objects that enter its range at a relatively
high sampling rate. For example, in an RFID-based positioning system, an RFID reader can detect objects
with passive tags attached. Or in a Bluetooth-based system, a base station can detect objects equipped with
a Bluetooth-enabled device. A raw reading of the form 〈deviceID , objectID , t〉 states that device deviceID
detected object objectID at time t.
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Figure 2: Device Deployment

Figure 2 shows a possible positioning device deployment,
where the numbered circles indicate the positioning devices
and their activation ranges. For positioning devices with over-
lapping ranges, we treat the intersections activation ranges
of new, virtual positioning devices. Thus, the intersection of
device1 and device1′ is assigned to a virtual device device1′1.
An object seen by device1, but not device1′ , is then in the
non-intersecting part of the range of device1.

We also accommodate so-called paired devices (covered
in Section 2.2) that detect movement direction, e.g., the entry
into or exit from a room.

We apply pre-processing to the raw readings in order to
support subsequent on-line and off-line applications. An on-
line record is of form 〈deviceID , objectID , t, flag〉, where
flag = ENTER indicates that the object is entering the de-

vice’s activation range, and flag = LEAVE indicates the object is leaving the range. Note that such records
cam be emitted when an object enters or leaves the range of a device with a delay not exceeding the sam-
pling frequency. In contrast, an off-line record is of the form 〈deviceID , objectID , ts, te〉, which indicates the
presence of the object within the device’s activation range during the time interval [ts, te]. The details of this
pre-processing can be found elsewhere [8].

2.2 Positioning Device Deployment Graph
In a deployment, a subset of the devices, the so-called partitioning devices, partition the indoor space into cells
in the sense that an object cannot move from one cell to another without being observed. An example is a
device deployed by the single door of a room. Undirected partitioning devices (UP) cannot detect movement
directions between cells. In Figure 2, device21 cannot tell whether an observed object enters or leaves cell c21.
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Figure 3: Deployment Graph

Note that device1, device1′ , and device1′1 are also undirected. In
contrast, directed partitioning devices (DP) consist of entry/exit
pairs of sensor that enables the movement direction of an object to
be inferred by the reading sequence, e.g., device11 and device11′

in Figure 2. Finally, presence devices (PR) simply sense the pres-
ences of objects in their ranges, but do not contribute to the space
partitioning. Device device10 in Figure 2 is a presence device.

To facilitate tracking and querying moving objects, a deploy-
ment graph is created based on the topological relationship of the
floor plan and the device deployment [8]. Formally, a deployment
graph is a labeled graph G = 〈C, E,Σdevices, `E〉, where:

(1) C is a set of vertices corresponding to cells.
(2) E is a set of edges. Each edge is an unordered pair of vertices, indicating that the two cells are connected.
(3) `E : E → 2Σdevices assigns a set of devices to an edge. A non-loop edge is labeled by the partitioning

device(s) that partition its two cells, and a loop edge captures the presence device(s) in the edge’s cell.

Figure 3 shows the deployment graph corresponding to Figure 2; label Di indicates a positioning device devicei.

2.3 Graph Model Based Indoor Tracking
The goal of indoor tracking is to capture the position of an object at any point in time. We propose techniques
for both on-line and off-line tracking. By exploiting the indoor floor plan, the deployment graph, and maximum
speeds of objects, we try to minimize the possible region(s) an object can be in at a particular time [8]. In doing
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so, we exploit the deployment graph, which captures the indoor topology that constrains the movements of
indoor objects. For example, an object can only move from a graph vertex (a cell) to an adjacent vertex (another
cell connected with some partitioning devices).

Given a set of off-line records in the form of 〈deviceID , objectID , ts, te〉, off-line tracking of an indoor
moving object is conducted in three steps. Step one augments each reading record with corresponding de-
ployment graph elements (vertices or edges) during the time interval [ts, te]. Pre-defined mappings between
positioning devices and relevant graph vertices (cells) are also used in this step.

Step two identifies cells that an object can possibly be in during its vacant time intervals, which are the
intervals during which no tracking record exists for the object. Specifically, step one tells where (graph elements)
the object is before and after a vacant time interval; its position during the vacant time interval is constrained to
the graph elements that connect the before and the after parts. So, by intersecting the graph elements before and
after the vacant time interval, we identify the cells the object can be in during the vacant time interval.

Step three makes use of the maximum speeds of the objects and reduces the possible cells obtained in step
two to smaller regions. If the object moves at its maximum speed Vmax from any point inside the activation
range of a device and its trajectory is a straight line, its position at time tx will be bounded by circles centered
at all possible start points in the activation range and with radius Vmax · ∆t1. Applying this constraint to two
consecutive tracking records, the possible region of the object during a vacant time interval can be simplified to
an speed-constrained ellipse.

Given a set of records of the form 〈deviceID , objectID , t, flag〉, on-line tracking treats the cases where
flag is either ENTER or LEAVE differently. Details can be found elsewhere [8].

3 Management of Indoor Moving Objects with Inherent Uncertainty
3.1 Indexing of Indoor Moving Objects

Active

Deterministic Nondeterministic

Leave a PR device 

or a DP device
Enter a 

positioning device

Leave a UP device

Inactive

Figure 4: Object State Transition Diagram

An object may be active or inactive. An active object is
currently seen by at least one positioning device, while an
inactive object is currently not seen by any positioning de-
vice. The latter are further divided into deterministic ob-
jects that must be in one specific cell and nondeterministic
objects that may be in more than one cell. An object can
change state according to the diagram shown in Figure 4.

The consequent partitioning of objects can be exploited
in a hashing-based object-location indexing technique. Let

Oindoor be the set of all the moving objects in the indoor space of interest. A Device Hash Table (DHT) maps
each positioning device, identified by deviceID , to the set of active objects in its range:

DHT [deviceID ] = OA; deviceID ∈ Σdevices, OA ⊆ Oindoor

Next, a Cell Deterministic Hash Table (CDHT) maps each cell, identified by cellID , to the set of determin-
istic objects in it:

CDHT [cellID ] = OD ; cellID ∈ C, OD ⊆ Oindoor

Similarly, a Cell Nondeterministic Hash Table (CNHT) maps a cell to the set of nondeterministic objects in it:
CNHT [cellID ] = ON ; cellID ∈ C, ON ⊆ Oindoor

Finally, an Object Hash Table (OHT) captures the states of all objects:
OHT [objectID ] = (STATE , t, IDSet); objectID ∈ Oindoor

Here STATE denotes the object’s current state and t is the start time of the state. If the object’s state is active,
IDSet is a singleton set of a device identifier. If the state is deterministic, IDSet is a singleton set of a cell
identifier. If the state is nondeterministic, IDSet is a set of cell identifiers.

The update of these hash tables and their use in query processing are covered elsewhere [14]. Also, it is
possible to extend the R-tree to index large volumes of historical indoor tracking data [9].
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3.2 Uncertainty Analysis for Indoor Moving Objects
As for outdoor moving objects [5], the uncertainty region of an indoor object o at time t, denoted by UR(o, t),
is a region such that o must be in this region at time t. The uncertainty region of an active object is the activation
range of the corresponding device, while the uncertainty region of an inactive object is the cell or cells that the
object can belong to.

If the object’s maximum speed Vmax is given, its uncertainty region can be captured at a finer granularity.
The uncertainty region of a deterministic object is refined as the intersection between the object’s cell and its
maximum-speed constrained circle. For a nondeterministic object, the region is the union of the intersections
between each cell and the circle.

Let the last LEAVE observation of object o be from device dev at time t and let the duration from t to
the current time be ∆t = tnow−t. The longest possible distance o can move away from the boundary of dev’s
activation range is o.Vmax ·∆t. Formally, the maximum-speed constrained circle CMSC (o, dev, t) of o is defined
as the circle centered at dev’s deployment location and with radius o.Vmax ·∆t plus the radius of dev’s activation
range. We also exclude the activation range of dev from the circle.

Consider Figure 5 and assume that object o left device16 at time t. Its maximum-speed constrained circle
CMSC (o, device16, t) is then indicated by R1 in the figure. Since device16 is a presence device, after leaving
device16 the inactive object o must be in the cell c11 (according to G.`−1

E (device16)). Due to the two constraints,
object o’s uncertainty region is the intersection of cell c11 and circle R1, i.e., the shaded region in the top-left
part of Figure 5.
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Figure 5: Uncertainty Regions

If the cell where the deterministic object resides has
more than one room, e.g., cell c10 contains rooms 10
and 14, the determination of the uncertainty region is more
complicated. Suppose object o left device10 at time t. Ac-
cording to G.`−1

E (device10), o should be in cell c10 after
leaving device10. From predefined mappings that capture
the deployments of devices [15], it follows that device10

resides in room 10 and that the distance from device10

to door d14 is l. If the maximum speed constraint guar-
antees that o cannot have gone through door d14, i.e.,
o.Vmax · (tnow − t) < l, the object o must remain in
room 10. Thus, the uncertainty region is the intersection

between room 10 and CMSC (o, device10, t), which is indicated by R2 to the left in Figure 5.
On the other hand, referring to the right part of Figure 5, if o.Vmax · (tnow − t) ≥ l, object o may have

entered room 14. Its uncertainty region therefore contains two parts: the intersection between room 10 and
CMSC (o, device10, t) (indicated by R3); and the intersection between room 14 and the circle with door d14 as
the center and R4 = o.Vmax · (tnow − t− l/o.Vmax) as the radius.

The uncertainty region of an active object can also be refined in the similar way [14, 15].
The online indexing scheme and the uncertainty analysis have been used for processing queries on indoor

moving objects, e.g., indoor range monitoring [14] and indoor k nearest neighbor queries [15].

4 Conclusion and Future Work
Indoor spaces differ substantially from outdoor spaces and are not modeled well by Euclidean spaces or spatial
networks. Further, indoor positioning may be accomplished by presence-sensing technologies rather than the
GPS-like positioning that is often assumed in research targeting outdoor settings. Due to these and other factors,
“indoor” offers new research challenges.

This paper offers a glimpse of selected aspects of the foundations for ongoing research on data management
for indoor moving objects. It touches upon graph model based indoor tracking, indoor moving-object indexing,
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and the capture of the uncertainty of indoor moving objects.
There are many research opportunities in data management for indoor spaces. Here, we mention but a few.
• It is of interest to integrate different types of positioning technologies in order to improve tracking accu-

racy. For example, we may combine proximity analysis based on RFID and Bluetooth with fingerprinting-
based technologies like Wi-Fi [2]. This may yield an augmented graph model [8] of indoor space.

• In addition to relying on symbolic locations for co-location queries, it is of interest to accommodate
distances in indoor models. This may enable distance-aware queries. For example, it becomes possible
to monitor closest pairs of indoor moving objects. As another example, given a distance value e, an e-
distance join returns those pairs of objects whose distance is smaller than e. Distance-aware queries may
have security and social-network applications.

• Given large volumes of real tracking data, it is interesting to mine patterns or association rules. This
may enable on-line prediction of aggregate and individual movements, which in turn may improve on-line
tracking accuracy. It may also serve to improve query processing efficiency.

• While initial research has assumed that objects move independently, it is of relevance to consider more
advanced models of object movement. For example, it is relevant to conduct probabilistic analyses that
assume Gaussian distributions.

• It is worth developing benchmarks for indoor moving object data management that enable the comparison
of competing techniques. Relevant aspects include, but are not limited to, indoor space and positioning
device configuration, object movement workload generation, and query workload generation.
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