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Abstract The conventional Internet is acquiring a
geospatial dimension. Web documents are being geo-tagged
and geo-referenced objects such as points of interest are being
associated with descriptive text documents. The resulting
fusion of geo-location and documents enables new kinds
of queries that take into account both location proximity
and text relevancy. This paper proposes a new indexing
framework for top-k spatial text retrieval. The framework
leverages the inverted file for text retrieval and the R-tree
for spatial proximity querying. Several indexing approaches
are explored within this framework. The framework encom-
passes algorithms that utilize the proposed indexes for com-
puting location-aware as well as region-aware top-k text
retrieval queries, thus taking into account both text relevancy
and spatial proximity to prune the search space. Results of
empirical studies with an implementation of the framework
demonstrate that the paper’s proposal is capable of excellent
performance.
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1 Introduction

Driven in part by the emergence of the mobile Internet, the
conventional Internet is acquiring a geo-spatial dimension.
On the one hand, many (geo-referenced) points of interest—
for example, stores, tourist attractions, hotels, entertainment
services, public transport, and public services—are being
associated with descriptive text documents. On the other
hand, web documents are increasingly being geo-tagged.

This fusion of geo-location and documents enables que-
ries that take into account both spatial proximity and text rele-
vancy. One study has found that about one fifth of web search
queries are geographical and have local intent, as determined
by the presence of geographical terms such as place names
and postal codes [31]. Indeed, commercial search engines
have started to provide location-based services, such as map
services, local search, and local advertisements. For exam-
ple, Google Maps supports location-aware text retrieval que-
ries. Additional examples of location-based services include
online yellow pages.

This paper proposes a kind of top-k query that takes
into account both spatial proximity and text relevancy for
points of interest with associated text. An example query may
request a “good micro-brewery that serves pizza” and that is
close to the user’s hotel. We call this type of query a top-k
spatial text retrieval query. It consists of a spatial component
(the user’s hotel) and a text component (good micro-brewery
that serves pizza). This kind of query is different from the
query that retrieves relevant documents within a geographi-
cal range.

More specifically, we consider two types of top-k spatial
text retrieval queries that differ in their spatial components.
The Location-aware top-k Text retrieval (LkT) query has a
point location as its spatial component. The answer to the
LkT query is a list of k objects ranked according to a ranking
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function that combines their distances to the query location
and the relevance of their textual descriptions to the query
text. The Region-aware top-k Text retrieval (RkT) query has
a region (e.g., a rectangle) as its spatial component. We con-
sider two variants of the RkT query that yield different results.
The motivation underlying the RkT queries is that the spatial
component of a query may be inaccurate and thus is better
modeled by a region rather than a point location. This inaccu-
racy may be due to several reasons. First, positioning devices
might not be accurate enough to provide point locations. Sec-
ond, in some applications, for example, Google Maps, users
enter keywords to represent their locations, for example, the
names of streets, which are regions. Third, for privacy rea-
sons, users may not want to reveal their accurate locations
by enlarging points to regions.

In the paper, we compute the text relevancy of a query
result by means of language models and a probabilistic rank-
ing function that have sound foundations in statistical theory
and that have performed well empirically in many informa-
tion retrieval tasks [28,36].

The top-k spatial text retrieval queries pose new chal-
lenges to both existing spatial database and existing infor-
mation retrieval techniques that have evolved separately.
The research in spatial databases mainly focuses on highly
structured, map-based geometric data and their attributes. In
contrast, information retrieval research often treats location
information as common keywords.

We propose a new indexing framework for processing top-
k spatial text retrieval queries. This framework integrates the
inverted file for text retrieval and the R-tree for spatial prox-
imity querying to obtain an Inverted file R-tree, called the
IR-tree, that is essentially an R-tree extended with inverted
files. Associated algorithms are proposed for the processing
of the LkT and RkT queries that are capable of pruning the
search space by simultaneously making use of both spatial
proximity and text relevancy.

Each node of the IR-tree records a summary of the loca-
tion information and the textual content of all the objects in
the subtree rooted at the node. The query processing algo-
rithms utilize the location information to estimate the spatial
distance of a query to the objects in the node’s subtree, and
they use the text information to estimate the text relevancy
scores for these objects.

We also explore a variant of the IR-tree that incorporates
document similarity when computing Minimum Bounding
Rectangles (MBRs), yielding a new index called the DIR-
tree. While the IR-tree considers only location information
when generating its MBRs, the DIR-tree takes into account
both location information and document similarity. The IR-
tree can be seen as a special case of the DIR-tree. To further
improve the performance of the IR-tree and the DIR-tree,
we cluster the documents attached to spatial objects. In an
index node, tighter text relevancy scores can be estimated for

a group of similar documents than for diverse documents that
belong to different categories. This cluster-enhanced method
can be applied to both the IR-tree and the DIR-tree, yielding
the CIR-tree and the CDIR-tree.

To further optimize the IR-tree, we propose two tech-
niques to derive tighter MBRs. The first technique constructs
an MBR for each term (word) in the inverted files of each
node, which we call a TermMBR. This technique can be
applied to all the above-mentioned four indexes. The second
technique constructs an MBR for each cluster of each node
in the CIR-tree and the CDIR-tree, which we call a Cluster-
MBR.

The paper extends a previously published conference
paper [8]. Beyond a recent paper [22] that proposes a varia-
tion of the IR-tree presented in the conference paper, we are
not aware of any techniques in the literature that efficiently
support the computation of the top-k spatial text retrieval que-
ries considered in this paper. In Sect. 8, we cover the exten-
sions over these papers in detail. Some techniques [24,34,38]
use an ad hoc combination of nearest neighbor (NN) and key-
word search techniques for spatial text retrieval. For exam-
ple, an R-tree is used to find the nearest neighbors, and then
for each neighbor, an inverted file is used to rank the objects
according to text relevancy. This ad hoc combination cannot
easily be applied to process top-k spatial text retrieval queries
because it is difficult to determine in advance the number of
nearest neighbors needed to obtain the top-k results ranked
by a combination of spatial proximity and text relevancy.
A recent proposal [10] integrates the R-tree with signature
files. However, this proposal is inapplicable to top-k spatial
text retrieval (which involves ranking, not just the check-
ing of Boolean predicates) mainly due to the use of signa-
ture files, which cannot sensibly handle ranked text retrieval
[39].

In summary, the paper’s contribution is threefold. First,
we introduce two types of top-k spatial text retrieval que-
ries, called LkT and RkT queries, that return objects ranked
according to a linear interpolation function that combines
normalized spatial proximity and text relevancy.

Second, to efficiently process these queries, we pro-
pose a new indexing framework that integrates location
indexing and text indexing. Specifically, we develop the
IR-tree and associated algorithms for the processing of
LkT and RkT queries. A variant of the IR-tree, the DIR-
tree, is proposed to incorporate document similarity when
computing MBRs. We also exploit document clustering to
improve the indexing framework. Additionally, we propose
so-called ClusterMBRs and TermMBRs to compute tighter
MBRs with the aim of improving query processing perfor-
mance.

Third, we evaluate the paper’s proposals. Results of empir-
ical studies with implementations of the proposed techniques
demonstrate that the paper’s proposals offer scalability and
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are capable of excellent performance. An analytical study
offers insight into the query performance of the IR-tree and
suggests that it outperforms the recent variant [22] quite sig-
nificantly in realistic settings.

The rest of this paper is organized as follows. Section 2 for-
mally defines the Location-aware top-k Text retrieval prob-
lem and the Region-aware top-k Text retrieval problem.
Two baseline algorithms are proposed in Sect. 3. Section 4
presents the index framework for processing the LkT query.
Section 5 proposes four methods for enhancing the frame-
work. Algorithms for RkT queries are presented in Sect. 6.
We cover the empirical performance study in Sect. 7. Finally,
we cover related work in Sect. 8 and offer conclusions and
research directions in Sect. 9.

2 Problem statement

Let D be a database. Each spatial web object O in D
is defined as a pair (O.λ, O.ψ), where O.λ is a location
descriptor in multidimensional space and O.ψ is a docu-
ment (e.g., a dining menu) that describes the object (e.g., an
Italian restaurant). We assume a two-dimensional geographi-
cal space composed of latitude and longitude, but the paper’s
proposals generalize to other multidimensional spaces of low
dimensionality.

Intuitively, a Location-aware top-k Text retrieval (LkT)
query retrieves k objects in database D for a given query
Q such that their locations are the closest to the location
specified in Q and their textual descriptions are the most
relevant to the keywords in Q. Formally, given a query
Q, defined as a pair (Q.λ, Q.ψ), where Q.λ is a loca-
tion descriptor and Q.ψ is a set of keywords, the objects
returned are ranked according to a ranking function given by:
f (Dε(Q.λ, O.λ), P(Q.ψ | O.ψ)), where Dε(Q.λ, O.λ) is
the Euclidian distance between Q and O and P(Q.ψ |O.ψ)
is the text relevancy of O.ψ with regard to Q.ψ . The text
relevancy can be computed as the probability of generating
query Q.ψ from the language models of the documents or
other text models.

We tackle the problem of efficiently answering LkT que-
ries. Thus, given a query Q, we retrieve a ranked list of k
objects according to their ranking scores as computed by the
ranking function f (·, ·) introduced above. The paper’s pro-
posals are applicable to a wide range of ranking functions,
namely all functions that are monotone with respect to dis-
tance proximity and text relevancy.

In this paper, we follow existing work and use linear com-
binations [24]. Specifically, we derive a ranking function as
a weighted sum of normalized terms for ranking an object O
with regard to a query Q, called spatial-textual distance and
denoted by DST (Q, O).

DST (Q, O) = α Dε(Q.λ, O.λ)

maxD

+(1− α)
(

1− P(Q.ψ |O.ψ)
maxP

)
, (1)

where α ∈ [0, 1] is a parameter used to balance spatial prox-
imity and text relevancy; the Euclidian distance between Q
and O , Dε(Q.λ, O.λ), is normalized by maxD, which can
be, for example, the maximum distance between two objects
in D ; and maxP is used to normalize the text relevancy score
into the range from 0 to 1. Note that the lower the score
computed by ranking function, the better.

The parameter α in Eq. 1 allows users to set their prefer-
ences between text relevancy and location proximity at query
time. Note that this study focuses on efficient solutions, not
on new effective ranking functions.

The query location Q.λ in an LkT query is a point. In some
applications, as stated in Sect. 1, users may give a region
rather than an accurate point location. A Region-aware top-k
Text retrieval (RkT) query Q, defined as a pair (Q.Ω, Q.ψ)
covers this scenario, where Q.Ω is a region, for example, a
rectangle. We propose two specializations of the RkT query:
RkTe and RkTu .

The RkTe query Q returns exactly k objects and uses the
same ranking function as does the LkT query. The only dif-
ference is that if O.λ ∈ Q.Ω then Dε(Q.Ω, O.λ) = 0; oth-
erwise, the Euclidean distance Dε(Q.Ω, O.λ) is defined as
the minimum Euclidian distance between Q and O , denoted
by mindist(Q.Ω, O.λ).

The result of the RkTu query Q is not a ranked list, but
the union of the LkT(q,Q.ψ) result sets, where q is every
possible point in region Q.Ω . Formally,

RkTu(Q.Ω, Q.ψ) =
⋃

q∈Q.Ω

{LkT (q, Q.ψ)}. (2)

In the definition, we use set notation (“{· · · }”) to emphasize
that the LkT query results are viewed as sets. Thus, the result
of the RkTu query is a union of sets, which is a set.

The RkTe and the RkTu queries differ in how distances
between objects and queries are measured. In general, the
RkT query targets application scenarios where users cannot
provide accurate point locations, for example, due to inac-
curate positioning or the service provider not having access
to the users’ locations due to privacy concerns. If we assume
that the query point location is hidden inside the spatial region
given in the query and the real result is known, the RkTe and
the RkTu queries both return approximate results. The RkTe

query considers the minimum Euclidean distance between
the query region and the objects, so its result may contain
some false hits and may miss some true result objects. The
result of the RkTu query is a superset of the real result, since it
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Fig. 1 Objects and their bounding rectangles

Table 1 Document-by-term matrix

Chinese Spanish Restaurant Food

O1.ψ 0.5 – 0.5 –

O2.ψ – 0.5 0.5 –

O3.ψ 0.7 – – 0.1

O4.ψ – – 0.7 0.1

O5.ψ 0.4 – 0.4 –

O6.ψ – 0.4 0.3 –

O7.ψ 0.1 0.1 0.4 0.1

O8.ψ – 0.3 0.3 –

Table 2 Distances between queries and objects

Dε(Q.λ, ) mindist(Q′.Ω, ) maxdist(Q′.Ω, )

O1.λ 0.2 0.1 0.3

O2.λ 0.5 0.2 0.4

O3.λ 0.6 0 0.2

O4.λ 0.7 0.1 0.3

O5.λ 0.3 0.3 0.5

O6.λ 0.9 0.8 0.9

O7.λ 0.8 0.6 0.8

O8.λ 0.8 0.1 0.2

unions the results of all possible query point locations inside
the query region.

Example 1 Figure 1 shows 8 spatial web objects O1, . . ., O8,
and Table 1 shows a document-by-term matrix of their doc-
uments. For example, the matrix shows that the weight of
term Chinese in document O1.ψ is 0.5. The weight of a term
that does not appear in a document is set to a small value, for
example, 0.001. Given an LkT (k = 1) query Q with loca-
tion Q.λ as shown in Fig. 1 and Q.ψ = (Chinese restaurant),
object O1 is the result with ranking score 0.475 according to
Tables 1 and 2 (α = 0.5). Given an RkTe (k = 1) query Q′
with region Q′.Ω , shown as a dashed rectangle in Fig. 1, and
Q′.ψ = (Spanish food), object O3 is the result with ranking
score 0.49995 according to Tables 1 and 2 (α = 0.5). If Q′ is
an RkTu (k = 1) query, the results are O2, O3, O4, O8.

3 Baselines

We next discuss how to exploit existing techniques for pro-
cessing LkT queries. While no baseline algorithm exists for
LkT queries, a straightforward baseline is to adapt an exist-
ing approach [24], thus computing the text relevancy using
an inverted file and computing location proximity using an
R-tree separately for all objects and then combining them
to obtain the top-k objects. This is not efficient. The main
difficulty is in benefitting from both the inverted file and the
R-tree.

The two new baseline algorithms presented next: Inverted
File Only (IFO) and R-tree plus Inverted File (RIF) are
inspired by the Threshold algorithm [12].

Baseline 1: IFO. The idea is to utilize the inverted file to
compute the text relevancy scores of all objects (correspond-
ing to the right operand of the operator “+” in Eq. 1), thus
obtaining a list IRRanking that ranks objects in ascending
order of their scores. The list is then scanned to compute the
spatial proximity to the query until further scanning will not
generate top-k results. Only the inverted file is used.

During a scan, the algorithm keeps track of the combined
ranking score (defined in Eq. 1; the lower the score, the bet-
ter) of the current k’th object, denoted by threshold. If the
IRRanking score of a new object T exceeds threshold, the
algorithm stops since all objects after T in IRRanking also
have a score that exceeds threshold; otherwise, we retrieve
its location, compute its combined ranking score, and com-
pare with threshold to determine whether threshold needs to
be updated.

Example 2 Table 3 illustrate the use of IFO. Consider an LkT
(k = 3) query on a dataset of 9 objects. Initially (Step 1), the
IRRanking list is computed using the inverted file and the
threshold is set to ∞. Next (Step 2), the first object O9 in
the IRRanking list is removed and added to the Candidates
list with its combined ranking score. Then, we repeatedly
remove the first object in the IRRanking list and add it to the
Candidates list with its combined score. The objects in the
Candidates list occur in ascending order of their combined
scores, and threshold always points to the third object in the
list. When the score of the first object in IRRanking eventu-
ally exceeds threshold, the algorithm stops, and the top three
objects O7, O2, O9 in Candidates are returned (Step 6).

Baseline 2: RIF. This algorithm uses an R-tree and an
inverted file in two stages. The inverted file is used for com-
puting the list IRRanking as for IFO. The algorithm then
incrementally finds nearest neighbors [18] using the R-tree
and checks the text relevancy scores of objects in IRRanking.

In the process, the algorithm keeps track of the minimum
text relevancy score in IRRanking, denoted by MinTR, that
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Table 3 Example of IFO

Step 1 Step 2 Step 3 . . . Step 6

IR ranking Candidates IR ranking Candidates IR ranking Candidates . . . IR ranking Candidates

O9, 0.25 ∞ O7, 0.31 O9, 0.5 O2, 0.42 O7, 0.4 . . . O6, 0.51 O7, 0.4

O7, 0.31 ∞ O2, 0.42 ∞ O3, 0.44 O9, 0.5 . . . O4, 0.53 O2, 0.48

O2, 0.42 ∞ O3, 0.44 ∞ O1, 0.48 ∞ . . . O8, 0.56 O9, 0.5

O3, 0.44 O1, 0.48 O6, 0.51 . . . O5, 0.62 O1, 0.51

O1, 0.48 O6, 0.51 O4, 0.53 . . . O3, 0.52

O6, 0.51 O4, 0.53 O8, 0.56 . . .

O4, 0.53 O8, 0.56 O5, 0.62 . . .

O8, 0.56 O5, 0.62 . . .

O5, 0.62 . . .

Boxed: threshold

Table 4 Example of RIF

Step 1 Step 2 Step 3 . . . Step 6

IR ranking Candidates IR ranking Candidates IR ranking Candidates . . . IR ranking Candidates

O9, 0.25 ∞ O9, 0.25 O1, 0.51 O9, 0.25 O2, 0.48 . . . O6, 0.51 O7, 0.4

O7, 0.31 ∞ O7, 0.31 ∞ O7, 0.31 O1, 0.51 . . . O4, 0.53 O2, 0.48

O2, 0.42 ∞ O2, 0.42 ∞ O3, 0.44 ∞ . . . O8, 0.56 O9, 0.5

O3, 0.44 O3, 0.44 O6, 0.51 . . . O5, 0.62 O1, 0.51

O1, 0.48 O6, 0.51 O4, 0.53 . . . O3, 0.52

O6, 0.51 O4, 0.53 O8, 0.56 . . .

O4, 0.53 O8, 0.56 O5, 0.62 . . .

O8, 0.56 O5, 0.62 . . .

O5, 0.62 . . .

Boxed: threshold; underlined: MinTR

has not been “seen” so far, and the combined ranking score
of the current kth object, denoted by threshold.

For a newly “seen” object with spatial distance dist, if
the combined score computed from dist and MinTR exceeds
threshold, the algorithm stops since it is guaranteed that all
“unseen” objects will not have lower scores than the current
kth object (and thus cannot be in the result).

Example 3 Table 4 illustrates the RIF algorithm. Consider
an LkT (k = 3) query on the 9 objects from Example 2.
Initially (Step 1), the IRRanking list is computed using the
inverted file, the threshold is set to ∞, and MinTR is set
to 0.25. Next (Step 2), the R-tree reports the nearest object
O1 with dist = 0.03. Since the combined score computed
from dist and the current MinTR is smaller than threshold,
object O1 is removed from the IRRanking list and added to
the Candidates list with its combined score computed from
dist = 0.03 and its text relevancy score (i.e., 0.48) in the
IRRanking list. Then, the R-tree continuously reports the next
nearest object, and the processing in Step 2 is repeated. The
objects in the Candidates list are ordered ascendingly on their

combined scores, and threshold always points to the third
object in the list. Also, MinTR always points to the first object
in the IRRanking list. After several steps, when the R-tree
reports an object (e.g., O4) such that the combined score com-
puted from its dist and the current MinTR exceeds threshold,
the algorithm stops, and the top three objects O7, O2, O9 in
Candidates are returned (Step 6).

4 Hybrid indexing for location-aware text retrieval

We present a framework that integrates the R-tree and
the inverted file into a new index, the Inverted file R-tree
(IR-tree), and that includes an algorithm for processing LkT
queries using the IR-tree.

4.1 Hybrid index framework: the IR-tree

The R-tree [16] is arguably the dominant index for spatial
queries, and the inverted file is the most efficient index for
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information retrieval [39]. These were developed separately
and for different kinds of queries.

We aim to develop an approach that is able to leverage
both techniques for the efficient processing of LkT queries.
To achieve this goal, a simple approach is to use the inverted
file (resp. the R-tree) to generate a number of top candidate
objects based on text relevancy (resp. spatial proximity) and
then compute the spatial distances (resp. text relevancy) of
the candidate objects using the other index. However, this
approach is not efficient since there is no sensible way to
determine the number of candidate objects needed from the
first step in order to ensure that the top-k objects are found in
the end. Instead, we propose a hybrid indexing structure, the
IR-tree, that utilizes both indexing structures in a combined
fashion.

The IR-tree is essentially an R-tree, each node of which
is enriched with a reference to an inverted file for the objects
contained in the subtree rooted at the node.

In the IR-tree, a leaf node contains a number of entries of
the form (O, O.r), where O refers to an object in database
D and O.r is the bounding rectangle of object O . A leaf
node also contains a pointer to an inverted file for the text
documents of the objects being indexed. The inverted file
is stored separately from the R-tree, for two reasons: First,
it is more efficient to store each inverted file contiguously,
rather than as a sequence of blocks or pages that are scattered
across a disk [39]. Second, the inverted file can be distributed
across several machines, while this is not easily possible for
the R-tree [32].

An inverted file consists of the following two main com-
ponents.

– A vocabulary of all distinct terms in a collection of doc-
uments.

– A set of posting lists, each of which relates to a term t .
Each posting list is a sequence of pairs 〈O, w〉, where O
refers to an object whose document O.ψ contains term
t , and w is the weight of term t in document O.ψ .

A non-leaf node N contains a number of entries of the form
(e, e.r) where e points to a child node of N and e.r is the
Minimum Bounding Rectangle (MBR) of all rectangles in
entries of the child node. A pseudo document is constructed
for each non-leaf entry in the IR-tree.

The pseudo document is an important concept in the
IR-tree. It represents all documents in the entries of the child
node, enabling us to estimate a bound on the text relevancy to
a query of all documents contained in the subtree rooted at e.
The weight of a term t in the pseudo document referenced by
e is the maximum weight of t in the documents contained in
the subtree rooted at node e. A non-leaf node N also contains
a pointer to an inverted file for the pseudo documents of the
entries stored in N .

Fig. 2 Hybrid index IR-tree

Table 5 Contents of inverted files

Chinese Spanish Restaurant Food

InvFile-R1 〈O1, 0.5〉 〈O2, 0.5〉 〈O1, 0.5〉
〈O2, 0.5〉

InvFile-R2 〈O3, 0.7〉 〈O8, 0.3〉 〈O4, 0.7〉 〈O3, 0.1〉
〈O8, 0.3〉 〈O4, 0.1〉

InvFile-R3 〈O5, 0.4〉 〈O5, 0.4〉
InvFile-R4 〈O7, 0.1〉 〈O6, 0.4〉 〈O6, 0.3〉 〈O7, 0.1〉

〈O7, 0.1〉 〈O7, 0.4〉
InvFile-R5 〈R1, 0.5〉 〈R1, 0.5〉 〈R1, 0.5〉 〈R2, 0.1〉

〈R2, 0.7〉 〈R2, 0.3〉 〈R2, 0.7〉
InvFile-R6 〈R3, 0.4〉 〈R4, 0.4〉 〈R3, 0.4〉 〈R4, 0.1〉

〈R4, 0.1〉 〈R4, 0.4〉
InvFile-root 〈R5, 0.7〉 〈R5, 0.5〉 〈R5, 0.7〉 〈R5, 0.1〉

〈R6, 0.4〉 〈R6, 0.4〉 〈R6, 0.4〉 〈R6, 0.1〉

Example 4 Figure 2 illustrates the IR-tree for the 8 objects
in Fig. 1. Table 5 shows the inverted files of the nodes in the
IR-tree (Fig. 2). As a specific example, the weight of the term
restaurant in entry R2 in InvFile-R5 is 0.7, which is the max-
imum weight of the term in the three documents O3, O4, O8

in node R2. Term t has the same weight in all the documents
that do not contain t , which is determined by the maximum
likelihood estimate of t in the whole dataset. These values
are stored separately.

We proceed to present an important metric, the minimum
spatial-textual distance, denoted by MINDST (·, ·), which will
be used in the query processing. Given a query Q and a node
N in the IR-tree, the metric MINDST (Q, N ) offers a lower
bound on the actual spatial-textual distance DST (·, ·) between
query Q and the objects enclosed in the rectangle of node N .
This bound can be used to order and efficiently prune the
search space in the hybrid index.

Definition 1 The minimum spatial-textual distance of a
query Q from a node N in the hybrid index, denoted as
MINDST (Q, N ), is defined as follows:
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MINDST (Q, N ) = αmindist(Q.λ, N .r)

maxD

+(1− α)
(

1− P(Q.ψ |N .ψ)
maxP

)
, (3)

where α, maxD, and maxP are the same as in Eq. 1;
P(Q.ψ |N .ψ) is the text relevancy of the pseudo document
of node N ; and mindist(Q.λ, N .r) is the minimum Euclidian
distance between Q.λ and N .r (the MBR of N ).

A salient feature of the proposed hybrid indexing structure
is that it inherits the nice properties of the R-tree for query
processing.

Theorem 1 Given a query Q and a node N whose rectangle
encloses a set of objects SO = {Oi , 1 ≤ i ≤ m}, the follow-
ing is true: ∀Oi ∈ SO (MINDST (Q, N ) ≤ DST (Q, Oi )).

Proof Since object Oi is enclosed in the rectangle of node
N , the minimum Euclidian distance between Q.λ and N .r is
no larger than the Euclidian distance between Q.λ and Oi .λ,
that is, mindist(Q.λ, N .r) ≤ Dε(Q.λ, Oi .λ).

For each term t , its weight in N .ψ (the pseudo document
of node N ) is the maximum weight of t in all the documents
in node N . Thus, P(Q.ψ |N .ψ) ≥ P(Q.ψ |Oi .ψ).

According to Eqs. 1 and 3, we have MINDST (Q, N ) ≤
DST (Q, Oi ), thus completing the proof. 
�
When searching the hybrid index for the top-k objects given
a query Q, one must decide at each visited node of the hybrid
index which entry to search first. Metric MINDST offers an
approximation of the spatial-textual distance to every entry
in the node and, therefore, can be used to direct the search.
Note that only the posting lists of keywords in query Q, but
not all posting lists, are loaded into memory at a node to
compute MINDST .

We next present an algorithm for building the IR-tree.
The IR-tree is constructed by means of an insert operation
that is adapted from the corresponding R-tree operation [16].
Algorithm 1 shows the Insert algorithm. It takes two argu-
ments, the MBR and the document of an object. It uses a
standard implementation of the R-tree [16] with operations
ChooseLeaf and Split.

We may characterize the additional disk storage required
by the IR-tree by comparing with the original R-tree and the
inverted file. The number of nodes in the IR-tree is the same
as that of the original R-tree, and the size of the inverted files
contained in all leaf nodes of the IR-tree is comparable with
that of the original inverted file. The IR-tree needs additional
space to store the inverted files in its non-leaf nodes, the sizes
of which depend on the number of non-leaf nodes and the
storage utilization of nodes. If the capacity of each node is
100 entries, the length of the posting list for one word is at
most 100 in a non-leaf node, which is independent of the
number of objects contained in the subtree rooted at the non-
lead node. The size of the inverted file at a non-leaf node is

Algorithm 1 Insert(MBR, document)
1: N ← ChooseLeaf(MBR);
2: Add MBR to node N , add document to the inverted file of N ;
3: if N needs to be split then;
4: {N1, N2} ← N .Split();
5: if N is root node then
6: Initialize a new node M ;
7: Add N1 and N2 to node M and update the inverted file of

N1, N2 and M ;
8: Set M to the root node;
9: else
10: Ascend from N to the root, adjusting covering rectangles,

updating the inverted file and propagating node splits as necessary;
11: else if N is not root then
12: Update the covering rectangles and inverted files of the ancestor

nodes of N ;

thus much smaller than that of the original inverted file. The
paper’s experimental study covers storage space.

In our implementation, we use a single dictionary for the
inverted files of all nodes. Posting lists are indexed in B+-
trees. Each word is mapped to an ID and is used as the key
of the B+-trees.

4.2 Processing of LkT queries

To process LkT queries with the hybrid index framework,
we exploit the best-first traversal algorithm (e.g., [18]) for
retrieving the top-k objects. With the best-first traversal algo-
rithm, a priority queue is used to keep track of the nodes and
objects that have yet to be visited. The values of DST (·, ·)
and MINDST (·, ·) are used as the keys of objects and nodes,
respectively.

When deciding which node to visit next, the algorithm
picks the node N with the smallest MINDST (Q, N ) value in
the set of all nodes that have yet to be visited. The algorithm
terminates when k objects (ranked according to Eq. 1) have
been found. Algorithm 2 shows the pseudo-code.

We proceed to explain the algorithm and the use of the
priority queue in the algorithm with an example.

Example 5 Consider the query Q (Q.ψ = (Chinese restau-
rant) in Fig. 1. We want to find the top-1 object. We give
the spatial-textual distances DST (·, ·) (Eq. 1) between query
Q and all objects, as well as MINDST (·, ·) (Eq. 3) and the
minimum Euclidian distances between Q and all bounding
rectangles in Table 6 (α = 0.5). Note that Algorithm LkT
only computes the distances between Q and the objects or
rectangles traversed by the algorithm, not all the distance in
Table 6.

The algorithm uses a priority queue that contains the
objects and bounding rectangles listed together with their
DST and MINDST scores, in increasing order of the scores,
with ties broken by the alphabetical ordering. The algorithm

123



D. Wu et al.

Algorithm 2 LkT(Query, Index, k)
1: Queue←NewPriorityQueue();
2: Queue.Enqueue(Index.RootNode, 0);
3: while not Queue.IsEmpty() do
4: Element← Queue.Dequeue();
5: if Element is an object then
6: if not Queue.IsEmpty() and
7: DST (Query,Object) > Queue.First().Key then
8: Queue.Enqueue(Object,DST (Query,Object));
9: else
10: Report Element as the next result object;
11: if top-k objects have been found then
12: break;
13: else if Element is a leaf node then
14: for each entry(Object) in leaf node Element do
15: Queue.Enqueue(Object,DST (Query,Object));
16: else
17: for each entry(Node) in node Element do
18: Queue.Enqueue(Node,MINDST (Query,Node));

Table 6 Spatial-textual distances

DST (Q, Oi ) mindist(Q.λ, Ri .r) MINDST (Q, Ri )

O1 0.475 R1 0.2 0.475

O2 0.74975 R2 0.2 0.355

O3 0.79965 R3 0.4 0.62

O4 0.84965 R4 0.5 0.73

O5 0.57 R5 0.05 0.28

O6 0.94985 R6 0.15 0.495

O7 0.88

O8 0.89985

starts by enqueueing the entries in the root and then executes
the following steps:

(1) Queue:{(R5,0.28),(R6,0.495)}
Dequeue R5, enqueue R1 and R2.

(2) Queue:{(R2,0.355),(R1,0.475),(R6,0.495)}
Dequeue R2, enqueue O3, O4, and O8.

(3) Queue:{(R1,0.475),(R6,0.495),(O3,0.79965),
(O4,0.84965),(O8,0.89985)}
Dequeue R1, enqueue O1 and O2.

(4) Queue:{(O1,0.475),(R6,0.495),(O3,0.79965),
(O2,0.74975),(O4,0.84965),(O8,0.89985)}
Dequeue O1. Report O1 as the top-1 object. Terminate.

Observe that in the example, the algorithm does not tra-
verse the entire tree in Fig. 2 since the search space is being
pruned. However, the algorithm still visits some nodes that
contain no results. Before reporting O1, nodes root, R5, R2,
and R1 are visited. Since O1 is the top-1 object, ideally we
would visit root, R5, and R1, but not R2. The reason why
R2 is visited is that the value MINDST of R2 is less than that
of R1.

In Table 5, we can see that objects O3 and O4 are very
different. The weight of term Chinese is 0.7 in O3.ψ , but
O4.ψ does not contain it. On the other hand, the weight of
term restaurant is 0.7 in O4.ψ , but O3.ψ does not contain

it. Since R2 contains the two objects, the weights of Chinese
and restaurant in R2.ψ are both 0.7. The reason for R2 being
highly relevant to the query is that it mixes objects of differ-
ent types such that the weights of many terms are high in the
pseudo document for R2.

Based on this observation, we proceed to discuss how to
enhance the query processing performance offered by the
framework.

5 Enhanced hybrid indexing

We extend the hybrid indexing framework by incorporat-
ing document similarity, yielding an index called the DIR-
tree (Document similarity enhanced Inverted file R-tree) in
Sect. 5.1. The IR-tree can be viewed as a special case of
the DIR-tree. Section 5.2 presents a clustering enhanced
method for improving the indexing framework. We present
the ClusterMBR enhancement in Sect. 5.3 and the Term-
MBR enhancement in Sect. 5.4. We briefly discuss updates
in Sect. 5.5.

5.1 Incorporating document similarity

Like the R-tree, the IR-tree is built based on the heuristic of
minimizing the area of each enclosing rectangle in the inner
nodes. Thus, the tree aims to place nodes that are spatially
close in the same higher-level node. However, the spatial
objects considered in this paper also have associated docu-
ments, and the LkT query takes into account both location
proximity and text relevancy.

Unlike the IR-tree, the DIR-tree aims to take both location
and text information into account during tree construction,
by optimizing for a combination of minimizing the areas of
the enclosing rectangles and maximizing the text similarities
between the documents of the enclosing rectangles.

We present an algorithm for building the DIR-tree in
Sect. 5.1.1, and we cover query processing in Sect. 5.1.2.

5.1.1 The DIR-tree

The structure of nodes in a DIR-tree is similar to that of
nodes in an IR-tree. The only difference is that each non-leaf
entry e additionally has a centroid document e.φ of all the
documents enclosed in the subtree rooted at e.

Formally, let φ = 〈w1, . . . , wm〉 be the centroid docu-
ment of a set of documents {ψ1, . . . , ψn}. Then, φ.wi =
max(ψ1.wi , . . . , ψn .wi ). To choose an appropriate insertion
path for an object, the DIR-tree takes into account both the
spatial area parameter and the similarity between the docu-
ment of the object and the centroid document of the entry in
a node. We next describe how to incorporate the document
similarity.
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Let e1, . . . , ep be the entries in the current node, and let
O be the object to be inserted. In the R-tree, the spatial
area cost of inserting O into ek , 1 ≤ k ≤ p, is defined
as AreaCost(ek) = area(e′k .r) − area(ek .r), where e′k .r is
the (possibly enlarged) version of rectangle ek after inclusion
of O .

Definition 2 The spatial area cost extended with document
similarity is defined as follows:

SimAreaCost(ek, O) = (1− β)AreaCost(ek)

maxArea
+β(1− DocSim(ek .φ, O.ψ))

(4)

In this definition, the document similarity DocSim(·, ·) can
be any measure (e.g., cosine similarity and Hamming dis-
tance) of the distance between document vectors,1 maxArea,
the area of the minimum bounding rectangle enclosing all
objects, is used for normalization, and β is a parameter.
Observe that if we set β = 0, the DIR-tree reduces to the
IR-tree. In the other extreme, setting β = 1 means that we
consider only document similarity when building a DIR-tree.

The insertion algorithm of the DIR-tree follows that of
the IR-tree, with the exception of the specifics of functions
ChooseSubtree and Split. Function ChooseSubtree is
given in Algorithm 3. Beginning at the root, the function
finds at every level the most suitable subtree to accommo-
date the new entry until a leaf node is reached. Specifically,
it repeatedly chooses subtrees that minimize Eq. 4, that is,
the value of SimAreaCost(·, ·). If ChooseSubtree reaches a
leaf node with the maximum number of entries M , function
Split distributes the M+1 rectangles between two nodes. We
incorporate document similarity into the standard Quadratic
Split algorithm [16]. Function Split is given in Algorithm 4.

5.1.2 Query processing in the DIR-tree

We use Algorithm 1 for the processing of LkT queries on the
DIR-tree. An example illustrates its benefits.

Example 6 We build a DIR-tree on the 8 objects in Fig. 1.
The result is shown in Figs. 3 and 4. Consider the query Q in
Fig. 3, where Q.ψ = (Chinese restaurant). If we apply Algo-
rithm 1 to retrieve the top-2 most relevant objects, the result
is 〈O1, O5〉, and the nodes root, R5, and R1 are visited in
the DIR-tree. If we use instead the corresponding IR-tree in
Fig. 2, nodes root, R5, R6, R1, and R3 are visited. The DIR-
tree thus yields better performance than does the IR-tree for
query Q.

1 Unlike in query processing, we do not use language models here since
this would introduce asymmetry.

Algorithm 3 ChooseSubtree
1: N ← the root;
2: loop
3: if N is a leaf node then
4: Return N ;
5: else
6: Choose the entry in N with the minimum value for

SimAreaCost(ek , O), resolving ties by choosing the entry with the
minimum value for AreaCost(ek);

7: N← the child node pointed by the child pointer of the chosen
entry;

Algorithm 4 Split(N )
1: for each pair of entries ei and e j in node N do
2: Ri j ← compose a rectangle including ei and e j ;
3: di j ← area(Ri j )− area(ei )− area(e j );
4: DocSimij ← similarity between documents of ei and e j ;
5: ineffi← (1− β)d + β(1− DocSim);
6: Choose the pair with the largest ineffi value to be the first elements

of the two groups;
7: loop  assign all entries in N to the two groups
8: if all entries in N have been assigned to the two groups then
9: break;
10: if one group needs to include all remaining entries then
11: Assign all remaining entries to it;
12: break;
13: Choose the next entry and add it to the group with the smaller

SimAreaCost(·, ·), resolving ties by adding the entry to the group
with the smaller AreaCost();

Fig. 3 Objects and bounding rectangles

Fig. 4 Example of the DIR-tree

5.2 Cluster-enhanced method

We propose to enhance the hybrid indexing framework with
clustering, which makes it possible to estimate tighter bounds
at each tree node, thus improving query performance.

Spatial web objects often belong to different catego-
ries. For example, the geo-referenced points of interest may
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belong to specific categories, such as retail, accommodations,
restaurants, and tourist attractions. Points of interest from dif-
ferent such categories may appear in the same node of the
hybrid index, and thus two objects in the same node can con-
tain very dissimilar document.

The idea is to cluster objects into groups according to their
documents. Each index node may then contain objects from
different clusters. Instead of constructing a single pseudo
document for each node, we construct a pseudo document
for each cluster in each node. Since objects within the same
group are more similar than objects in different groups, the
bounds estimated using clusters in a node will be tighter
than those estimated for whole nodes. Therefore, we may
expect the use of clustering to improve the query performance
of both the IR-tree and the DIR-tree. We name the cluster-
enhanced IR-tree the CIR-tree and the cluster-enhanced DIR-
tree the CDIR-tree.

5.2.1 The CIR-tree

For convenience of presentation, we describe the proposed
cluster-enhanced method in the context of the IR-tree; the
method is equally applicable to the DIR-tree. Given any
clustering of objects into n groups C1, . . . ,Cn , we form an
inverted file incorporating the cluster information. We next
present how to incorporate the cluster information into the
nodes in the hybrid index.

The structure of a leaf node in the CIR-tree is similar to
that of leaf nodes in the IR-tree. The only difference is that
we add a cluster label to each entry (object) in the leaf node.
The cluster label indicates the cluster the object belongs to.

Next, for each non-leaf entry e, we construct a set of
pseudo documents. Each such document corresponds to one
cluster. The number of pseudo documents of e depends on the
number of clusters that objects in the subtree of e belong to.
The inverted file of a non-leaf node indexes all these pseudo
documents.

The pseudo document of a cluster at a node is constructed
in a bottom-up manner similarly to how we generate the
pseudo documents in the IR-tree. Specifically, for each clus-
ter Ci in a leaf node pointed to by a non-leaf entry e, we first
construct a pseudo document denoted by e.Ci .ψ . For each
term t , we choose the maximum weight of t in all the docu-
ments in each cluster Ci in the leaf node as the weight of t
in e.Ci .ψ .

Having constructed the pseudo documents of the clusters
of the leaf nodes, we can construct pseudo documents of clus-
ters of nodes at the upper levels from bottom to top. When we
use pseudo documents at a lower level to construct pseudo
documents at a higher level, identical clusters from different
child nodes should be combined.

For instance, assume that a non-leaf entry e has two child
entries ea and eb (i.e., child nodes), where ea includes two

Fig. 5 Example of the CIR-tree

clusters {ea .C1, ea .C2}, and where {eb.C2, eb.C3} are the two
clusters in eb. The entry e should include three, not four,
clusters, namely {e.C1, e.C2, e.C3}. We combine ea .C2 and
eb.C2 to obtain e.C2. For each term t , its weight is the max-
imum value of the weight of t in ea .C2.ψ and the weight of
t in eb.C2.ψ .

Example 7 Consider again the 8 objects in Fig. 1. We clus-
ter these documents into four clusters: C1 = {O1, O5, O7},
C2 = {O2, O6, O8}, C3 = {O3}, C4 = {O4}. Figure 5 shows
the CIR-tree for the 8 objects. The contents of InvFile-R1,
InvFile-R2, InvFile-R3, and InvFile-R4 are the same as in
Table 5. The contents of InvFile-R5, InvFile-R6, and Inv-
File-root are given in Table 7.

5.2.2 Query processing in the CIR-tree

The algorithm for processing LkT queries on the CIR-tree
is almost the same as Algorithm 2, the exception being that
line 18 in Algorithm 2 is replaced by the code in Fig. 6. The
key of an entry in the priority queue is the minimum value
of MINDST (Query,Node.Ci ) among all clusters.

Example 8 Consider the query in Example 5. The algorithm
for processing the query using the CIR-tree starts by en-
queueing the entries in the root and then executes the follow-
ing steps:
(1) Queue:{(R5,0.4),(R6,0.495)}

Dequeue R5, enqueue R1 and R2.
(2) Queue:{(R1,0.475),(R6,0.495),(R2,0.59965)}

Dequeue R1, enqueue O1 and O2.
(3) Queue:{(O1,0.475),(R6,0.495),(R2,0.59965),

(O2,0.74975)}
Dequeue O1. Report O1 as the top-1 object. Terminate.

Observe that before reporting O1, nodes root, R5, and R1

are visited. Compared with the algorithm using the IR-tree,
fewer nodes are visited (recall that the algorithm using the
IR-tree also visited R2) because the CIR-tree provides tight
bounds.

5.2.3 Clustering objects

Ideally, we would find clusters that are optimal for the run-
ning time of Algorithm 2. Consider a query Q for the top-k
objects on dataset D and a set of clusters {C1, . . . ,Cn} on the
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Table 7 Contents of inverted
files in the CIR-tree Chinese Spanish Restaurant Food

InvFile-R5 〈R1.C1, 0.5〉 〈R1.C2, 0.5〉 〈R1.C1, 0.5〉 〈R2.C3, 0.1〉
〈R2.C3, 0.7〉 〈R2.C2, 0.3〉 〈R1.C2, 0.5〉 〈R2.C4, 0.1〉

〈R2.C2, 0.3〉
〈R2.C4, 0.7〉

InvFile-R6 〈R3.C1, 0.4〉 〈R4.C1, 0.1〉 〈R3.C1, 0.4〉 〈R4.C1, 0.1〉
〈R4.C1, 0.1〉 〈R4.C2, 0.4〉 〈R4.C1, 0.4〉

〈R4.C2, 0.3〉
InvFile-root 〈R5.C1, 0.5〉 〈R5.C2, 0.5〉 〈R5.C1, 0.5〉 〈R5.C3, 0.1〉

〈R5.C3, 0.7〉 〈R6.C1, 0.1〉 〈R5.C2, 0.5〉 〈R5.C4, 0.1〉
〈R6.C1, 0.4〉 〈R6.C2, 0.4〉 〈R5.C4, 0.7〉 〈R6.C1, 0.1〉

〈R6.C1, 0.4〉
〈R6.C2, 0.3〉

Fig. 6 Replacement to line 18 in Algorithm 2

documents in D . Let ScanTime(C1, . . . ,Cn , D , k, Q) be the
number of objects checked by Algorithm 2 before returning
the top-k objects. Given (D , k, Q), one would like to find n
clusters C1, . . . ,Cn such that ScanTime(C1, . . . ,Cn , D , k,
Q) is minimized.

It is well known that finding clusters of points that min-
imize the diameter within a metric space is NP-hard [15].
Although minimizing the diameter of a cluster in our prob-
lem usually results in a tight upper bound of each cluster for a
query, this does not immediately imply that finding a cluster-
ing solution that minimizes ScanTime() is NP-hard, since
ScanTime() does not directly correspond to the diameters
of clusters.

Theorem 2 The problem of finding a clustering solution that
minimizes ScanTime(C1, . . . ,Cn, D , k, Q) is NP-hard.

Proof The proof is by reduction from the bin packing prob-
lem, which is NP-hard [15]. Consider k = 1 and let objects
have the same location information. If the IRScore computed
based on pseudo documents (i.e., upper bounds) is smaller
than the IRScore of the top-1 document, Algorithm 2 first
scans the clusters containing the top-1 document to find the
top-1 document, and it then prunes the clusters whose upper
bound IRScore is lower than the IRScore of the top-1 docu-
ment.

Assume that a parameter B is the sum of the logarithmic
value of the term language model of the top-1 result. Mini-
mizing the scan time corresponds to the decision problem of

assigning all objects to k clusters, such that for each cluster,
Score(C) ≤ B. Given an instance of the bin packing prob-
lem, each item corresponds to one object whose document
contains a distinct term, each bin corresponds to a cluster, and
the size of each item corresponds to the logarithmic value of
the term language model. The query Q will contain all terms
in documents in D . There is then a solution for the bin pack-
ing problem that packs all the items in k bins of size B if and
only if there is a solution for our problem. 
�

Given the above result, we must use a heuristic method
for the clustering. One natural and simple approach is to use
the k-means clustering algorithm [23].

5.3 ClusterMBR enhancement

The cluster-enhanced method proposed in Sect. 5.2 provides
tighter bounds on document similarities in each node. How-
ever, each cluster in the same node has the same MBR, which
is the MBR of the node itself. We propose to refine the MBR
of each cluster by constructing an MBR for each cluster at
a node. This enables us to estimate a tighter bound on the
distance from the query to the node. This technique can be
applied to both the CIR-tree and the CDIR-tree.

For convenience of presentation, we introduce the Cluster-
MBR technique in the context of the CIR-tree. We construct
cluster MBRs only in non-leaf nodes of the CIR-tree while
the structure of leaf nodes remains the same. The MBR of
a cluster in a non-leaf node is constructed in a bottom-up
manner as we generate the MBRs in the R-tree. Specifically,
for each non-leaf entry e that includes n clusters, we con-
struct n MBRs, one for each cluster. The MBR of cluster Ci

encloses the rectangles of the child entries that belong to the
same cluster Ci . In order not to affect the tree structure of the
CIR-tree, the cluster MBRs for each non-leaf node are stored
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Fig. 7 Example of cluster
MBRs

separately and are connected to the corresponding non-leaf
node by a pointer.

Example 9 Consider the right branch of the CIR-tree shown
in Fig. 5. Figure 7 shows the cluster MBRs of non-leaf entries
R3, R4, and R6. As an example, the MBR of cluster C1 for
entry R6 encloses the MBR of R3.C1 and R4.C1. Comparing
Figs. 1 and 7, the cluster MBRs are smaller than the original
MBRs, and they thus provide tighter bounds.

When applying the ClusterMBR technique on the CIR-
tree, the algorithm for processing LkT queries is almost the
same as the algorithm used on the CIR-tree. The only differ-
ence is that when computing MINDST (Query,Node.Ci ), we
use the MBR of Ci instead of the MBR of the entire Node.

5.4 TermMBR enhancement

We proceed to propose the TermMBR Enhancement to opti-
mize our framework. Each term in an inverted file has mul-
tiple locations in an MBR of a node, that is, a term locates
at the locations of objects that have documents that include
the term. Consider R5 in Fig. 1: documents O1.ψ and O3.ψ

include the term Chinese, so in rectangle R5, term Chinese
has the two locations of O1 and O3. In our framework,
given a query Q, when computing MINDST of one entry
e in a node, the minimum distance between Q.λ and e.r ,
mindist(Q.λ, e.r), serves as the lower bound on distance
between Q and all objects in the rectangle e.r . However,
this lower bound is loose because each term in Q.λ has its
own locations. We only need to consider these locations, and
other places in the rectangle do not contribute to the query.
Hence, for each non-leaf entry in the index structure, we draw
an MBR for each term that encloses all the locations of that
term. Figure 8 shows the MBRs of the four terms in R5 as
given in Fig. 1.

Fig. 8 Example of term MBRs

Given a query Q, when computing MINDST of a non-leaf
entry e, we fetch the MBRs of all terms in Q.ψ . The min-
imum distance between Q.λ and those MBRs is then used
to replace mindist(Q.λ, e.r). By doing so, the lower bound
is expected to be tighter and to lead to better query perfor-
mance. The term MBRs are added in the posting lists of the
inverted files.

5.5 Update of the IR-tree

Since the proposed index structures are based on the R-tree,
the update in the framework, including insertion and deletion
of an object, is similar to the corresponding operations in the
R-tree. For the IR-tree based indexes, insertion and deletion
of an object in the tree structure is exactly as in the R-tree.
In addition, corresponding information in the inverted files,
cluster MBRs, or term MBRs can be updated easily. For DIR-
tree based indexes, Algorithm 3 and 4 are used for inserting
or deleting an object. Additional information related to an
inserted or deleted object can be updated as in the IR-tree
based indexes.

6 Processing of RkT queries

The RkTe query can be processed by the proposed algo-
rithms for the LkT query. We thus proceed to focus on the
RkTu query. Section 6.1 proposes an in-memory algorithm
for the processing of the RkTu query. Section 6.2 proposes to
use a disk resident index, that is, IR-tree, to find candidates
first, And then those candidates are passed to the algorithm
described in Sect. 6.1 to compute the final result.

6.1 The RkTu Algorithm

Given an RkTu query Q, since Q.Ω is a spatial extent, the
whole dataset D is partitioned into two sets. One set Din

contains objects that locate inside Q.Ω . The other set Dout

contains objects that locate outside Q.Ω . The result of Q
may contain some objects that belong to Din (internal top-k
objects) and some objects that belong to Dout (external top-k
objects).

An RkTu query Q can be represented by a set of LkT
queries Q = {Q1, Q2, . . .}, where the union of the spatial
components of all the LkT queries in Q equals to the spatial
component of the RkTu query, that is,

⋃
Qi∈Q{Qi .λ} = Q.Ω

and all the LkT queries in Q have the same keywords as does
the RkTu query, that is, ∀Qi ∈ Q(Qi .ψ = Q.ψ). We first
consider the case k = 1. We propose two lemmas that indi-
cate the necessary and sufficient conditions for an object to
be an internal or an external top-1 object.

Lemma 1, below, is exploited when computing internal
results of RkTu queries.
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Lemma 1 An object O is an internal top-1 object of the RkTu

query Q if and only if O is located inside the query region
Q.Ω and it is the top-1 object of an LkT query Qi (∈ Q),
where Qi has the same location as does the object O. For-
mally, object O is an internal top-1 object of the RkTu query
Q ⇐⇒ O.λ ∈ Q.Ω and O is the top-1 object of one LkT
query Qi (∈ Q) where Qi .λ = O.λ and Qi .ψ = Q.ψ .

Proof The proof of the implication ⇐� is inherent in the
definition of the RkTu query. The proof of the implication
�⇒ is done by contradiction. Assume that an object O ′
other than O is the top-1 object of Qi , as shown in Fig. 9a.
According to the definition of the LkT query, we have:

α
Dε(Qi .λ, O.λ)

maxD
+ (1− α)

(
1− P(Qi .ψ |O.ψ)

maxP

)

> α
Dε(Qi .λ, O ′.λ)

maxD
+ (1− α)

(
1− P(Qi .ψ |O ′.ψ)

maxP

)
.

(5)

Since Qi .λ = O.λ, that is, Dε(Qi .λ, O.λ) = 0, Eq. 5
becomes:

(1− α)
(

1− P(Qi .ψ |O.ψ)
maxP

)

> α
Dε(Qi .λ, O ′.λ)

maxD
+ (1− α)

(
1− P(Qi .ψ |O ′.ψ)

maxP

)
.

(6)

Since O is an internal top-1 object of Q, it must be the top-1
object of another LkT query Q j (∈ Q). Then we have:

DST (Q j , O) = α Dε(Q j .λ, O.λ)

maxD

+ (1− α)
(

1− P(Q j .ψ |O.ψ)
maxP

)
. (7)

Since Qi .ψ = Q.ψ and Q j .ψ = Q.ψ , combining Eq. 6
and 7, we have:

DST (Q j , O) > α
Dε(Q j .λ, O.λ)+ Dε(Qi .λ, O ′.λ)

maxD

+(1− α)
(

1− P(Q j .ψ |O ′.ψ)
maxP

)
(8)

Since Qi .λ = O.λ and according to the triangle inequality,
that is, Dε(Q j .λ, O.λ)+Dε(O.λ, O ′.λ)>Dε(Q j .λ, O ′.λ),

(a) (b)

Fig. 9 Proof of Lemmas 1 and 2

Eq. 8 becomes:

DST (Q j , O) > α
Dε(Q j .λ, O ′.λ)

maxD

+(1− α)
(

1− P(Q j .ψ |O ′.ψ)
maxP

)

= DST (Q j , O ′).

Hence, object O is not the top-1 object of the LkT query Q j .
This contradicts the assumption that object O is the top-1
object of the LkT query Q j and completes the proof. 
�

Lemma 2, below, is used when computing external results
of RkTu queries.

Lemma 2 An object O is an external top-1 object of the
RkTu query Q if it is located outside Q’s region and is the
top-1 object of at least one LkT query that has the same
keywords and is located on the boundary of Q’s region. For-
mally, object O is an external top-1 object of the RkTu query
Q ⇐⇒ O.λ /∈ Q.Ω and O is the top-1 object of at least one
LkT query Qi (∈ Q) such that Qi .λ belongs to the boundary
of Q.Ω and Qi .ψ = Q.ψ .

Proof The proof of the implication ⇐� is inherent in the
definition of the RkTu query. We prove the implication �⇒
by contradiction. Assume object O is not the top-1 object of
any LkT query in Q that locates on the boundary of Q.Ω .
Since object O is an external top-1 object of the RkTu query
Q, object O must be the top-1 object of at least one LkT
query Q j (∈ Q) inside Q.Ω . As shown in Fig. 9b, let Qi be
the LkT query in Q that locates at the intersection of segment
O.λQ j .λ and the boundary of Q.Ω . Since O is not the top-1
object of the LkT query Qi , there must be an object O ′ that
is the top-1 object of Qi , that is,

α
Dε(Qi .λ, O.λ)

maxD
+ (1− α)

(
1− P(Qi .ψ |O.ψ)

maxP

)

> α
Dε(Qi .λ, O ′.λ)

maxD
+ (1− α)

(
1− P(Qi .ψ |O ′.ψ)

maxP

)
.

(9)

Adding α
Dε(Qi .λ,Q j .λ)

maxD on both sides of Eq. 9, since

Dε(Qi .λ, O ′.λ)+ Dε(Qi .λ, Q j .λ) > Dε(Q j .λ, O ′.λ),

and Qi .ψ = Q j .ψ , we have

α
Dε(Q j .λ, O.λ)

maxD
+ (1− α)

(
1− P(Q j .ψ |O.ψ)

maxP

)

> α
Dε(Q j .λ, O ′.λ)

maxD
+ (1− α)

(
1− P(Q j .ψ |O ′.ψ)

maxP

)
,

that is, DST (Q j , O) > DST (Q j , O ′). Hence, object O is not
the top-1 object of Q j , which contradicts the assumption that
O is the top-1 object of Q j . 
�
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Lemma 2 shows that finding external top-1 objects of an
RkTu query Q is equivalent to finding the top-1 object for
LkT queries in Q that locate on the boundary of Q.Ω . We
assume the boundary of Q.Ω comprises four line segments.
The problem is converted into finding top-1 objects for an
RkTu query Q where Q.Ω degenerates to four line segments,
where each line segment Q.L is represented by two pairs of
coordinates: [Q.L.minx,Q.L.miny : Q.L.maxx,Q.L.maxy].

Before describing how to find external top-1 objects for
LkT queries in Q that locate on the boundary of Q.Ω , we
first study the ranking function of the RkTu query. Contrary
to the LkT query, an object O does not have only one con-
stant ranking score, but has multiple ranking scores described
by a function f (q, O) for a given RkTu query Q. Lemma 3
explains this function and its properties.

Lemma 3 Given an RkTu query Q, each object O has a
ranking score function f (q, O) for each line segment Q.L
of the boundary of Q.Ω that models its ranking scores, where
q is a point location on Q.L.

Proof According to Eq. 2, given an RkTu query Q, for each
object O , the value of function P(Q.ψ |O.ψ) is a constant,
while DST (Q,O) is a function of q (q ∈ Q.L), that is,

f (q, O) = α
√
(q.x − O.x)2 + (q.y − O.y)2

maxD
+ T (O.ψ),

(10)

where T (O.ψ) = (1 − α)(1 − P(Q.ψ |O.ψ)
maxP ). Since the line

segment Q.L is either horizontal or vertical, either q.y or
q.x is fixed. Without loss of generality, we assume Q.L is
horizontal and q.y is a constant L .y. Then Eq. 10 becomes:

f (q, O) = B
√
(q.x − O.x)2 + A(O.y)+ T (O.ψ), (11)

where A(O.y) = (L .y − O.y)2 and B = α
maxD .

The ranking score function f (q, O) is one arm of a hyper-
bola. Taking the first derivative and setting it equal to 0, we
get:

B
(q.x − O.x)√

(q.x − O.x)2 + A(O.y)
= 0.

Solving for q.x gives q.x = O.x . The second derivative is

B
A(O.y)√

((q.x − O.x)2 + A(O.y))3
.

Since it is positive, q.x = O.x is a minimum. Hence, func-
tion f (q, O) is monotone decreasing on (−∞, O.x] and
monotone increasing on [O.x,+∞]. 
�

Figure 10 shows the curves of ranking score functions
of four objects with respect to a line segment [0.2, 0.5 :
0.3, 0.5].

Given an RkTu query Q, for each line segmant Q.L of Q,
let Q = {Q1, Q2, . . .} be the set of LkT queries such that
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Fig. 10 DST (Q,O) as a function of points on Q.L

the union of the spatial components of all the LkT queries in
Q equals to the line segment Q.L , that is,

⋃
Qi∈Q{Qi .λ} =

Q.L and all the LkT queries in Q have the same keywords as
does the RkTu query, that is, ∀Qi ∈ Q(Qi .ψ = Q.ψ). For
each object O , we derive its ranking score function by follow-
ing Eq. 11. Let E = {e1, e2, . . .} denote the set of intersection
points of the ranking functions of any pair of objects in D . We
arrange the intersections in E in the order of their projected
values on Q.L , and we then divide the line segment Q.L into
a finite number of subsegments Q.L = {L1, L2, . . .} accord-
ing to E . In Fig. 10, four intersections e1, . . . , e4 divide Q.L
into five subsegments. We next present Lemmas 4 and 5,
showing that the top-1 objects of LkT queries, which belong
Q and locate on the same subsegment, are the same, and the
union of the results of all subsegments are the result of LkT
queries on Q.L .

Lemma 4 The LkT queries in Q that are located on the same
subsegment have the same top-1 object, that is,

∀Lm(Qi .λ ∈ Lm ∧ Q j .λ ∈ Lm ∧ Qi ∈ Q ∧ Q j ∈ Q

�⇒ LkT(Qi .λ, Qi .ψ) = LkT(Q j .λ, Q j .ψ)) (12)

Proof Given any two objects O1 and O2 in D , in order to
find the intersections between their ranking functions, equa-
tion f (q.x, O1) = f (q.x, O2) needs to be solved, that is,

B
√
(q.x − O1.x)2 + A(O1.y)+ T (O1.ψ)

= B
√
(q.x − O2.x)2 + A(O2.y)+ T (O2.ψ) (13)

Let (q.x − O1.x)2 + A(O1.y) = z2, where z > 0. Equa-
tion 13 becomes:

4(O1.x − O2.x)
2z2 − 2Bz + C = 0, (14)

where C=(O1.x−O2.x)2(B2−4A(O1.y))+B2(A(O1.y)−
A(O2.y))− (T (O1.ψ)− T (O2.ψ))

2.
Since Eq. 14 has two roots at most, there are at most four

different values of q.x , that is, there are at most four intersec-
tions between any two ranking functions. Since D is a finite
set, intersection set E is also finite. Hence, line segment Q.L
is divided into a finite number of subsegments by E .
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We prove Eq. 12 by contradiction. Given any subsegment
Lm , suppose LkT queries Q1 and Q2 locate on Lm and have
object O1 and object O2 as their top-1 object, respectively.
Without loss of generality, assume Q1.x < Q2.x . Then
we have f (Q1.x, O1) < f (Q1.x, O2) and f (Q2.x, O2) <

f (Q2.x, O1). Since function f (·, ·) is continuous, there must
be an intersection between f (q.x, O1) and f (q.x, O2)when
q.x ∈ (Q1.x, Q2.x). That contradicts to the definition of
subsegment Lm . 
�

As an example in Fig. 10, subsegment [Q.L .minx, e1.x]
takes O1 as the top-1 object. The top-1 object of subsegment
[e1.x, e2.x] is O2.

Definition 3 An intersection ei (ei ∈ E) is called a change
point if the top-1 object of LkT queries located on subseg-
ment [ei−1.x, ei .x) is different from the top-1 object of LkT
queries located on subsegment (ei .x, ei+1.x].
Lemma 5 Let O be the top-1 object of LkT queries located
on subsegment [ei−1.x, ei .x). If ei is an intersection between
the ranking functions of two different objects O and O ′ then
ei is a change point, and object O ′ is the top-1 object of LkT
queries located on subsegment (ei .x, ei+1.x].
Proof Let f (q.x, O) be the ranking function of O and let
f (q.x, O ′) be the ranking function of O ′. Consider function
g(x) = f (q.x, O) − f (q.x, O ′). Since ei is the intersec-
tion between f (q.x, O) and f (q.x, O ′), we have g(ei .x) =
0. For a small value h, g(ei .x − h) = f (ei .x − h, O) −
f (ei .x − h, O ′) < 0, since O is the top-1 object of subseg-
ment [ei−1.x, ei .x). Thus, we have g′(ei .x) > 0. Therefore,
we know g(ei .x+h) > 0, that is, f (ei .x+h, O) > f (ei .x+
h, O ′) because g(x) is a continuous function. Hence, object
O is not the top-1 object of subsegment (ei .x, ei+1.x], and
ei is a change point.

Let O ′′ be the top-1 object of subsegment (ei .x, ei+1.x]
instead of O ′, and let f (q.x, O ′′) be the ranking function of
O ′′. Since f (x, O) < f (x, O ′′) when x ∈ [ei−1.x, ei .x),
f (x, O) > f (x, O ′′) when x ∈ (ei .x, ei+1.x], and both
f (x, O) and f (x, O ′′) are continuous, there must be at
least one intersection between f (x, O) and f (x, O ′′) on
[ei−1.x, ei+1.x]. That contradicts the premise that ei is the
only intersection on subsegment [ei−1.x, ei+1.x]. Hence,
object O ′ is the top-1 object of subsegment (ei .x, ei+1.x].


�
Based on Lemmas 2, 4, and 5, we proceed to describe how

to find the top-1 objects for RkTu queries. Starting from the
left-hand side endpoint of Q.L , for each object Oi in D , we
compute its value of f (Q.L.minx,Oi). The object that has
the smallest value is added to the result and taken as the cur-
rent top-1 object O . Next, we find the subsegment on which
the LkT queries have the same top-1 object O . We compute
the intersections between the ranking function of O and all

the other objects. The intersection e that falls into the range
[Q.L.minx,Q.L.maxx] and has the smallest x value is the
change point, and thus LkT queries located on subsegment
[Q.L.minx, e.x] take O as the top-1 object. The correspond-
ing object O ′ of e (the ranking functions of O and O ′ intersect
at e) is taken as the current top-1 object. Then, the same pro-
cess is repeated to find the next subsegment starting from e.x
on which the LkT queries have the same current top-1 object.
The algorithm stops when no new change point is found. The
set of all found top-1 objects are returned as the result.

Example 10 As shown in Fig. 10, Q.L.minx = 0.2, and
f (Q.L.minx,O1) is the smallest. Object O1 is the current top-
1 object. Since intersection e1 (between the ranking functions
of O1 and O2) is a change point, object O1 is the top-1 object
of subsegment [Q.L.minx, e1.x). Next, we find the subseg-
ment (e1.x, e3.x) that takes O2 as the top-1 object, since
intersection e3 (between the ranking functions of O2 and
O3) is a change point. Finally, object O3 is the top-1 object
of subsegment (e3.x,Q.L.maxx].

Extension to k Lemmas 2, 4, and 5 hold when k > 1. Algo-
rithm 5 shows the pseudocode for retrieving external top-k
objects of one of the line segments of the boundary of an
RkTu query Q. The union of the results of four line seg-
ments is the final result of the RkTu query Q. Assume the
line segment is horizontal. It is easy to apply the algorithm
to vertical line segments. Line 1 computes the ranking score
of each object by using the Euclidean distance between the
leftmost point Q.L .minx of the line segment and objects.
The k objects, denoted by TOPK , with the smallest rank-
ing score are added to the result set. The change point cp is
set to Q.L .minx (Line 2). Next, it computes the intersections
between the ranking function of each object in TOPK and the
ranking function of each object in D \ TOPK (Lines 4–6).
The intersections that fall between the change point and the
rightmost point of the line segment are kept in E (Lines
7–9). If E is empty, the top-k objects of the line segment
have been found, and the algorithm stops. Otherwise, we
select the leftmost intersection e in E . Suppose e is the inter-
section between ranking functions of object O(∈ TOPK)
and O ′(∈ D \TOPK). Object O is removed from the current
top-k set TOPK . Object O ′ is added to TOPK and the result
set. The change point is updated to e.x (Lines 12–16).

6.2 Using the IR-tree for pruning

Using the RkTu algorithm, it is computational expensive to
find change points when the dataset is large, since it needs
to compute the intersections between the ranking function of
the current top-k object and that of all the other objects. We
propose to use the IR-tree to find candidates that are a small
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Algorithm 5 RkTu(Q, k)
1: Select k objects (denoted by TOPK) and add them to RESULT ,

such that ∀Oi ∈ D \ TOPK ∀O j ∈ TOPK( f (Q.L .minx, O j ) <

f (Q.L .minx, Oi ))

2: cp← Q.L .minx;
3: while true do
4: for each object Oi in D \ TOPK do
5: for each object O j in TOPK do
6: Compute intersections between f (q.x, O j ) and

f (q.x, Oi );
7: for each intersection e do
8: if cp ≤ e.x ≤ Q.L .maxx then
9: Add e to E ;
10: if E is empty then
11: break;
12: Select the intersection e in E that has the smallest x coordinate;
 e is the intersection between ranking functions of O and O ′

13: Remove O from TOPK ;
14: Add O ′ to TOPK ;
15: Add O ′ to RESULT ;
16: cp← e.x ;
17: return RESULT ;

portion of the whole dataset. Then, the RkTu algorithm is
applied on the small set of candidates to find the true results.

According to Eq. 11, each object has a minimum rank-
ing value and a maximum ranking value, resulting in a score
interval [τmin, τmax]. All objects are sorted in ascending order
of τmin (recall that the smaller the score is, the better). Then,
the top-k objects are put into a candidate set CS, and a
threshold is defined as the kth smallest τmax in CS. Next,
we check the (k + i)th object, where 1 ≤ i ≤ n and n is the
total number of objects in the dataset. If the τmin of an object
O does not exceed the threshold, object O is put into the can-
didate set, and threshold is updated accordingly. Otherwise,
the candidate set is returned.

Example 11 In Fig. 11, there are 4 objects O1, O2, O3, and
O4. Each object has a score interval with respect to an RkTu

query Q (k = 2 and Q.L is a line segment), computed
from Eq. 11. The sorted list of objects is (O2, O4, O3, O1).
We put the top-2 objects O2 and O4 into the candidate set
and threshold = O4.τmax . Then, we check O3 and find that
O3.τmin < threshold. Hence, O3 is also put into the candi-
date set, and threshold is updated to O3.τmax . We next check
object O1 and find that O1.τmin > threshold, so that the
candidate set {O2, O4, O3} is returned.

To find candidates with the IR-tree or its enhanced ver-
sions, we exploit the best-first traversal algorithm. A priority
queue is used to keep track of the nodes and objects that
have yet to be visited. The values of τmin and MINDST are
used as the keys of objects and nodes, respectively. A candi-
date set and a threshold are maintained. When processing
an object, its score interval [τmin, τmax] is computed and
if τmin ≤ threshold it is added to the candidate set. The

Fig. 11 An example of score intervals

threshold is updated accordingly. When processing a node,
we apply the following pruning strategy.

Pruning Strategy. Given an RkTu query Q, let N be a node
in the hybrid index. If MINDST (Q,N) > threshold, then no
object in node N can be the result of Q, and thus N is pruned.

Proof Knowing that MINDST (Q,N) is a lower bound of the
ranking values of objects enclosed by node N and threshold
is the kth minimal τmax in candidate set CS, if MINDST (Q,N)
> threshold, there are already k objects in candidate set CS
with smaller ranking values than all the objects in N . Hence,
node N can be pruned. 
�

If a node is not pruned, all the entries in the node are added
to the priority queue. The termination condition is that the
key of the first element in the priority queue is bigger than
threshold. When this happens, the algorithm stops, and the
candidate set is returned. Algorithm 6 shows the pseudo-code
of FindCandidates.

6.3 Discussion

No algorithms exist for the processing of RkTu queries. Hu et
al. [19] consider the k range-nearest-neighbor (kRNN) query
that requests the union of the k nearest neighbors (kNNs)
for every point in a given query range Ω . The result of the
kRNN query consists of two kinds of objects, internal kRNN
objects that are inside Ω and external kRNN objects that
are kNNs for all points on Ω’s boundary. They assume the
boundary comprises four line segments and propose an algo-
rithm (LNN-Search) to find kNNs for all points on a line
segment. The basic idea is to divide the line segment into
several subsegments, such that every point in a subsegment
has the same kNNs. Those subsegments are determined by
the intersections of the line segment and perpendicular bisec-
tors of some pairs of objects.

There are two major differences between the RkTu query
and the kRNN query. One is that the objects inside the query
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Algorithm 6 FindCandidates(Query, Index, k)
1: CS← NewList();
2: threshold ←∞;
3: Queue← NewPriorityQueue();
4: Queue.Enqueue(Index.RootNode, 0);
5: while not Queue.IsEmpty() do
6: Element← Queue.Dequeue();
7: if Element.Key > threshold then
8: Return CS;
9: if Element is an object then
10: Compute its score interval [τmin, τmax];
11: if τmin ≤ threshold then
12: Add Element to CS;
13: if |CS| ≥ k then
14: threshold ← kth minOi∈CS{Oi .τmax};
15: else if Element is a leaf node then
16: for each entry(Object) in leaf node Element do
17: Queue.Enqueue(Object, τmin);
18: else
19: for each entry(Node) in node Element do
20: if MINDST (Query,Node) ≤ threshold then
21: Queue.Enqueue(Node,MINDST (Query,Node));
22: return CS;

region Q.Ω are not always results. That is because the rank-
ing function DST (·, ·) takes both text relevance and distance
into account. An object inside Q.Ω might have a low text
relevance so that it can have a higher value of DST (·, ·) than
do some objects outside Q.Ω . The other is that the existing
LNN-Search [19] is not applicable to the RkTu query, since
the property of perpendicular bisectors does not hold when
using DST (·, ·) as the distance metric.

7 Experimental study

We proceed to evaluate the performance of the algorithms
for the processing of the LkT and RkTu queries using the
proposed hybrid indexes and enhancements, including the
IR-tree, the DIR-tree, the cluster-enhanced method, the Clus-
terMBR enhancement, and the TermMBR enhancement, and
a recently proposed IR-tree variant.

7.1 Algorithms

In addition to the proposed algorithms, we implemented the
two baseline algorithms presented in Sect. 3 as competitors.
Since compression techniques for inverted files may reduce
the I/O cost of IFO and RIF (while may incur extra com-
putational cost), we favor the IFO and the RIF by exclud-
ing the data transfer time from disk to main memory from
the reported elapsed time of IFO and RIF reported in all
experiments. Note that both baseline algorithms need to
compute the text relevancy score for all the objects whose
documents contain at least one of the query keywords. In

Table 8 Dataset properties

Property DATA

Total # of objects 2,249,727

Average # of unique words per object 429

Total # of unique words in dataset 2,899,175

Total # of words in dataset 965,132,883

our implementation, we use an accumulator for each object
document, and all accumulators are memory resident. How-
ever, the hybrid approaches only need accumulators for the
objects in a tree node (100 at most in our experiments, to
be explained). This means that the baseline algorithms need
more memory than the hybrid algorithms.

We also consider an IR-tree variant presented in a recent
paper [22]. To differentiate it from our IR-tree, we name it
the IRLi-tree, thus combining the name of the index and the
first author’s name. The ideas underlying the IR-tree and the
IRLi-tree are the same: that is, integrating an R-tree with
inverted files to prune the search space according to spatial
proximity and text relevancy simultaneously. The proposed
pseudo document [8] and document summary [22] of a non-
leaf node serve to offer an estimate of the text relevancy
between the query and the objects in the subtree rooted at the
non-leaf node. The two indexes differ only in terms of the
storage scheme for the pseudo documents/document sum-
maries of non-leaf nodes: Cong et al. [8] index the pseudo
documents in each non-leaf node using a separate inverted
file, while Li et al. [22] store the document summaries of all
non-leaf nodes in one single inverted file.

7.2 Data and queries

We use a real spatial dataset modeling the roads in California2

and documents from WEBSPAM-UK20073 that consists of
a large number of real web documents to generate a dataset
DATA by randomly selecting a document for a spatial object.
Table 8 lists properties of the dataset.

We generate 4 query sets, in which the number of key-
words is 1, 2, 3, and 4, respectively, in the space of DATA.
Each set comprises 200 queries. Queries are generated from
objects, and we guarantee that no query has an empty result.
Specifically, to generate a query, we randomly pick an object
in the dataset, and take the location of the object as the query
location and randomly choose words from the document of
the object as the query keywords.

2 http://www.rtreeportal.org.
3 http://barcelona.research.yahoo.net/webspam/datasets/uk2007.
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7.3 Setup

All index structures (IR-tree, DIR-tree, enhancements, base-
lines, IRLi-tree) are disk resident, and the page size is 4 KB.
The number of children of a node in the R-tree is computed
given the fact that each node occupies a page. This translates
to 100 children per node in our implementation.

All algorithms were implemented in Java, and an Intel(R)
Xeon(R) CPU E5320@1.86 GHz with 16 GB main mem-
ory was used for the experiments. The Java Virtual Machine
Heap is set to 10GB. We report the average elapsed time cost
of the queries in each query set. Many layers of cache (e.g.,
disk driver cache, operating system cache, application cache)
exist between a Java application and the physical disk. Rather
than measuring physical I/Os from the disk using Java, we
report the simulated I/O cost using a simulated LRU buffer
that contains 5 % of the index.

We study the effect of different parameters and set param-
eter default values as follows: the number k of requested
results is 10; the number of query keywords is 2; parameter
α in the ranking function (Eq. 1) is 0.3.

7.4 Tuning experiment

This experiment tunes the number of clusters in the cluster-
enhanced method and the parameter β used in the DIR-tree
to find good values for the two methods.

Varying the number of clusters

CIR-trees with 5, 10, 15, 20, 30, and 50 clusters are built.
We use the k-means algorithm for clustering. The sizes of
the resulting CIR-trees are shown in Table 9. The storage
increases slightly with the number of clusters.

Figures 12a, b show the performance of top-10 queries.
The I/O cost of the CIR-tree comes from the R-tree and the
inverted file. As shown in Fig. 12b, the total I/O cost is dom-
inated by the I/O cost of using the inverted file. As the num-
ber of clusters increases, the total I/O cost increases since
the posting lists in the inverted file become longer. In con-
trast, the I/O cost from the R-tree decreases when the number
of clusters increases. This is because more clusters provide
tighter bounds on the text relevancies so that more nodes are
pruned in the R-tree. The elapsed time shown in Fig. 12a has
the same trend as does the I/O cost from the R-tree, that is,
decreasing as the number of clusters increases. This behavior

Table 9 Sizes of different CIR-trees (GB)

# Clusters 5 10 15 20 30 50

Size 77.53 78.56 79.28 80.05 80.35 81.6
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Fig. 12 Varying the number of clusters. a Elapsed time. b Simulated
I/O

occurs because the time needed for loading longer posting
lists in the inverted file is less than the time needed for the
processing of the nodes pruned by tighter bounds provided
by more clusters in the CIR-tree.

However, it is not true that the more clusters, the better the
performance always. With too many clusters, for example,
50 clusters, and the time needed for the processing of clusters
in non-leaf nodes counteracts the time saved by fewer node
visits due to more clusters, and the elapsed time gets worse.
In the following experiments, we set the number of clusters
to 30.

Varying the importance of document similarity when building
DIR-trees

We use the Hamming distance to compute the DocSim(·, ·)
that occurs in Eq. 4. In order to make the construction of
the DIR-tree efficient, when computing Eq. 4, we only con-
sider the top-100 words according to the word frequencies
in the whole dataset. We vary the parameter β to build dif-
ferent DIR-trees. Figure 13a, b show the performance of the
different DIR-trees. In the extreme case of β = 0, the tree
is actually an IR-tree. In the other extreme case of β = 1,
only document similarity is considered when building the
DIR-tree. The performance is best at β = 0.7. For a specific
application, we can find a good parameter value empirically.
The value of β is set to 0.7 in subsequent experiments.
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Fig. 13 Varying β. a Elapsed time. b Simulated I/O
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Fig. 14 Varying k in LkT
queries. a Elapsed time.
b Simulated I/O. c Simulated
I/O of the R-tree. d Simulated
I/O of the inverted files
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7.5 Performance evaluation of LkT queries

We apply the cluster-enhanced method to the IR-tree and
the DIR-tree, resulting in the CIR-tree and the CDIR-tree.
The ClusterMBR and TermMBR enhancements are applied
to the CDIR-tree, denoted as the CM-CDIR-tree and TM-
CDIR-tree, respectively. Four sets of experiments are car-
ried out. The first evaluates the performance when varying
the number k of requested results. The second evaluates the
effect of the number of query keywords on performance. The
third evaluates the effect of the parameter α in the ranking
function. The fourth evaluates the effect of the buffer size.
We also report the index size for each approach and study the
performance in main memory.

Varying k in LkT queries

Figure 14a, b show the average elapsed time and the average
simulated I/O cost. All the hybrid indexes significantly out-
perform the baseline approaches for all values of k in terms
of both metrics.

All the hybrid indexes are based on the R-tree and the
inverted files. Figure 14c, d show the average simulated I/O
cost of the R-tree and the inverted files, respectively. The
I/O costs of the R-trees in the IRLi-tree and the IR-tree are
the same, while the I/O cost of the inverted file in the IRLi-
tree is notably higher than that of the IR-tree. To see why,
recall that both trees construct pseudo documents (document
summaries) for non-leaf entries in the R-tree. The IRLi-tree
uses a single inverted file to index all pseudo documents and
attaches an inverted file to each leaf node in the R-tree, while

the IR-tree maintains an inverted file for each node in the
R-tree. When processing queries, the posting lists of query
keywords to be loaded in the IRLi-tree are longer than those
in the IR-tree.

We find that for hybrid indexes, the elapsed time is corre-
lated to the I/O cost of the R-tree. The I/O cost of the R-tree
indicates how much the search space is pruned. The higher
the I/O cost of the R-tree, the less the searching space is
pruned, and vice versa. We also find that the total I/O cost
is dominated by the I/O cost of the inverted files. That is
because processing one node in the R-tree costs one I/O, but
incurring multiple I/Os from the inverted file due to multiple
query keywords and long posting lists.

The DIR-tree performs slightly better than the IR-tree, and
the cluster enhancement (CIR-tree and CDIR-tree) improves
the performance of both the IR-tree and the DIR-tree. This
is expected since the DIR-tree accounts for the similarity
among documents of objects, while the IR-tree does not.
Because the cluster enhancement provides tighter bounds on
the text relevancy, the CIR-tree and the CDIR-tree enable
more effective pruning of the search space than do the
IR-tree and the DIR-tree, as shown in Fig. 14c. The I/O costs
of the inverted files in the CIR-tree and the CDIR-tree are
higher than those in the IR-tree and the DIR-tree, as shown in
Fig. 14d. That is because in the CIR-tree and the CDIR-tree,
each non-leaf entry has multiple pseudo documents, which
makes posting lists longer. However, the extra I/Os from the
inverted files caused by the cluster enhancement do not nega-
tively affect the time saved by its effective pruning. The CM-
CDIR-tree improves the performance of the CDIR-tree. The
I/O cost of the inverted files in the CM-CDIR-tree is higher
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Fig. 15 Varying the number of
keywords in LkT queries.
a Elapsed time. b Simulated I/O.
c Simulated I/O of the R-tree.
d Simulated I/O of the inverted
files
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than that of the CDIR-tree, since accessing the MBRs of
clusters incurs additional I/Os. However, the tighter bounds
provided by cluster MBRs save some I/Os and computa-
tion in the tree structure and inverted files, and those savings
are not negatively affected by the additional I/Os from clus-
ter MBRs. Hence, the elapsed time of the CM-CDIR-tree is
less than that of the CDIR-tree. Although the term MBRs in
the TM-CDIR-tree provide more accurate estimate and save
some I/O in the tree structure compared with the CDIR-tree
(Fig. 14c), accessing the MBRs of terms incurs additional I/O
(Fig. 14d) and counteracts the savings provided by accurate
estimations. The tradeoff is between the saved time offered
by accurate estimate and the additional I/O caused by the
data that provides accurate estimate. In this experiment, the
CM-CDIR-tree is better than the TM-CDIR-tree.

Varying the number of keywords in LkT queries

Figure 15a, b show that the hybrid indexes outperform the
baseline approaches. As the number of keywords increases,
the cost of processing queries increases, since more posting
lists are loaded from the inverted file as shown in Fig. 15d.

The IR-tree outperforms the IRLi-tree when the number
of keywords are 1, 2, and 3. However, the IRLi-tree performs
better when the number of keywords is 4, since the I/O cost
of the inverted file in the IRLi-tree is lower than that in the
IR-tree as shown in Fig. 15d.

This experiment also shows that the DIR-tree performs
slightly better than does the IR-tree. We note that when the
number of keywords is 1, the cluster enhancement does not

improve the IR-tree and the DIR-tree. That is expected since
the bound on the text relevancy based on a single keyword
is always accurate. In other words, Fig. 15c shows that the
IR-tree (DIR-tree) and the CIR-tree (CDIR-tree) do the same
amount of search when the number of keywords is 1. How-
ever, the I/O costs of the inverted files of the cluster enhance-
ments are higher due to the long posting lists. When the num-
ber of keywords is greater than 1, the cluster enhancement
can improve the query performance of both the IR-tree and
the DIR-tree.

The results for the CM-CDIR-tree and the TM-CDIR-tree
are consistent with the results from the previous experiments.

Varying α in LkT queries

Parameter α in Eq. 1 allows users to set their preferences
between text relevancy and spatial proximity. Figure 16
shows the results when varying α. A large α means that the
spatial distance is more important, while a small α means
that the keywords are more important. It is consistent with
the previous experiments that the hybrid indexes beat IFO
and RIF. The performance of the RIF is improved while the
performance of the IFO is getting worse as α increases, since
the R-tree in the RIF helps while no spatial index involved
in the IFO. As expected, the IR-tree performs better for large
α while the DIR-tree performs better for small α. The DIR-
tree takes into account document similarity, and the benefit
increases when the text relevancy is given higher weight. As
in the previous experiment, the cluster enhancement is effec-
tive, and the CM-CDIR-tree achieves the best performance.
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Fig. 16 Varying α in LkT
Queries. a Elapsed time.
b Simulated I/O. c Simulated
I/O of the R-tree. d Simulated
I/O of the inverted files
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Fig. 17 Varying the buffer size

Effect of buffering

We use a simulated LRU buffer, and we vary the buffer size
from 0 to 20 % of the index size. As shown in Fig. 17, extra
buffer space improves the simulated I/O performance of all
approaches. As expected, the improvement decreases as the
buffer size increases.

Evaluation in main memory

This experiment studies the performance of different
approaches in main memory, that is, the whole index struc-
ture can fit into main memory. We use a small dataset that
combines of a real spatial dataset containing 131,461 objects
located in LA streets4 with five categories of the docu-
ment dataset 20 Newsgroups.5 The average elapsed time is

4 http://www.rtreeportal.org.
5 http://people.csail.mit.edu/jrennie/20Newsgroups.
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Fig. 18 Evaluation in main memory

reported in Fig. 18. In the main memory setting where no I/O
is involved, the hybrid indexes again beat RIF since the hybrid
indexes explore a smaller search space. The IR-tree slightly
outperforms the IRLi-tree since the IRLi-tree computes the
text relevancies of all objects that contain at least one query
keyword, while the IR-tree only computes part of them. This
experiment also shows that the enhancements improve the
performance of the IR-tree with the CM-CDIR-tree being
best.

Space requirements

Table 10 shows the total sizes of each index structure. The dif-
ferences between the RIF and the hybrid indexes in the table
show the overhead introduced by the hybrid indexes. As dis-
cussed in Sect. 4.1, the inverted file built in RIF is roughly
equal to the inverted files in the leaf nodes of the hybrid
indexes. The overhead occurs because in the hybrid indexes,
each non-leaf node also has an inverted file. The size of the
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Table 10 Index structure sizes
(GB)

RIF IRLi-tree IR-tree CIR-tree DIR-tree CDIR-tree CM-CDIR-tree TM-CDIR-tree

12.77 74.67 75.13 80.35 75.54 80.90 80.94 102.23

IR-tree is slightly bigger than that of the IRLi-tree, since the
IR-tree stores an inverted file for each non-leaf node while
the IRLi-tree has a single inverted file for all non-leaf nodes.
The difference between the IR-tree (resp. DIR-tree) and the
CIR-tree (resp. CDIR-tree) shows the storage overhead due
to the cluster refined inverted files in the non-leaf nodes in
the CIR-tree. Note that the sizes of the inverted files in their
leaf nodes are the same. The size of the DIR-tree is similar
to that of the IR-tree. Cluster MBRs are stored separately.
They only add slightly (0.04 GB) to the storage of the CDIR-
tree. The TM-CDIR-tree occupies more space than does the
CDIR-tree due to the space occupied by the MBR of each
term in the inverted files.

7.6 Performance evaluation of RkTu queries

There exists no baseline algorithm for RkTu queries. Thus,
we extend the proposed baseline algorithm RIF for LkT quer-
ies to process RkTu queries. The term MBR and the cluster
MBR techniques are applied to the CDIR-tree, and the results
are compared with the original CDIR-tree and the IR-tree.

Four sets of experiments are carried out. The first evalu-
ates the performance when varying the number k of requested
results. The second evaluates the effect of the number of
query keywords. The third evaluates the effect of the param-
eter α in the ranking function. The fourth evaluates the per-
formance when varying the size of the query region. As for
LkT queries, parameter β is set to 0.7, and the number of
clusters is set to 30. By default, parameter α is set to 0.3, the
number of keywords is 2, the size of the query region is set
to 0.01 % of the whole space, and k = 10.

Varying k in RkTu queries

Figure 19a, b show the elapsed time and I/O costs of the
FindCandidates algorithm with different indexes when
varying k. All the four hybrid indexes significantly out-
perform the baseline approach for all values of k in terms
of both elapsed time and I/O cost. Figure 19c, d show the
average simulated I/O cost of the R-tree and the inverted
files, respectively. This experiment also demonstrates that
for hybrid indexes, the elapsed time is correlated with the I/O
cost of the R-tree. It is consistent with the study of the LkT
query that the CDIR-tree performs better than the IR-tree and
that the ClusterMBR technique improves the performance of
the CDIR-tree. Figure 19e shows the total elapsed time of
processing RkTu queries. The performance is dominated by
the FindCandidates step. The elapsed time increases as k

increases. Since the Filtering step incurs no I/O, the total I/O
cost is the same as shown in Fig. 19b.

Varying the number of keywords in RkTu queries

Figure 19f–i show the elapsed time and I/O costs of the
FindCandidates algorithm on different indexes when vary-
ing the number of keywords. This experiment also illustrates
that the hybrid indexes outperform RIF. When the number of
keywords is 1, the IR-tree outperforms the CDIR-tree and its
variants. The reason is the same as what is explained before.
For the other cases, the ClusterMBR technique applied to
the CDIR-tree performs the best. Figure 19j shows the total
elapsed time of processing RkTu queries, indicating that the
cost of the Filtering step is trivial.

Varying α in RkTu queries

Figure 19k–o show the performance on different indexes
when varying α. The hybrid indexes outperform RIF. It is
again found that the CM-CDIR-tree is best.

Varying the size of the query region

Figure 19p–t show the performance on different indexes
when varying the size of the query region. Again, this exper-
iment demonstrates that the hybrid indexes outperform RIF
significantly and that the enhanced techniques improve per-
formance.

7.7 Summary

The experimental study shows that the proposed hybrid
indexes significantly and quite consistently outperform the
baseline. It also shows that the proposed enhancements
indeed improve the performance of the hybrid indexes. We
conclude that applying the ClusterMBR to the CDIR-tree has
the best performance for the processing of both LkT and RkT
queries in most of cases.

8 Related work

8.1 Nearest neighbor and top-k queries

The processing of k-nearest neighbor queries (kNNs) in spa-
tial databases is a classical subject. Most proposals use index
structures to assist in the kNN processing. Perhaps the most
influential kNN algorithm is due to Roussopoulos et al. [30].
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Varying k Varying the Number of Keywords Varying α Varying the Size of Query Region
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Fig. 19 Evaluating RkT queries

In this solution, an R-tree [16] indexes the data points, poten-
tial nearest neighbors are maintained in a priority queue, and
the tree is traversed according to a number of heuristics. Other
methods modify the index structures to better suit the partic-
ular problem addressed [20,35]. Hjaltason and Samet [18]

propose an incremental nearest neighbor algorithm based on
an R*-tree [4].

Our work is also related to top-k query processing [5,12].
Fagin et al. [12] propose a class of algorithms known as
threshold algorithms. These algorithms, like the ones pro-
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posed for information retrieval [2,27], enable efficient com-
putation of aggregate functions over multiple sorted lists.
These algorithms can be easily integrated into the leaf nodes
in our framework (we need to process all entries in non-
leaf nodes, so the threshold algorithm does not apply there);
however, using them does not improve performance in our
framework. The possible reason is that the posting lists in a
leaf node are short (limited by the capacity of a node).

8.2 Text retrieval queries

A variety of retrieval models have been proposed to meet
different information retrieval needs, such as probabilistic
models, the vector space model, the probabilistic similar-
ity measure often referred to as the Okapi measure (BM25)
[29], and language models. The latter represent a relatively
new approach, and they offer either the best or competitive
performance in many settings [9,28].

Many different types of text indexes have been proposed.
The most efficient index structure for text retrieval is the
inverted file [39], and many state-of-the-art, large-scale IR
systems such as web search engines employ inverted files for
ranking-query evaluation. Alternative indexing techniques
for text documents also exist, including suffix arrays [3] and
signature files [13]. Zobel et al. [40] empirically show that
signature files are not competitive with the inverted file for
information retrieval queries.

To improve efficiency, a host of works develop effective
heuristics for reducing query evaluation costs by reorder-
ing the inverted file according to frequency or contribution
[2,27]. Other techniques also exist (e.g., [33]) aim to increase
query efficiency, and compression techniques exist that aim
to reduce storage costs (e.g., [14,26]). These techniques can
be applied to our framework; however, they are beyond the
scope of this study.

8.3 Location-aware text retrieval queries

Commercial search engines such as Google and Yahoo! have
introduced local search services that appear to focus on the
retrieval of local content, for example, related to stores and
restaurants. However, the algorithms used are not publicized.

Much attention has been given to the problem of extract-
ing geographic information from web pages (e.g., [1,11,25]).
The extracted information can be used by search engines.
McCurley [25] covers the notion of geo-coding and describes
geographic indicators found in web pages, such as zip codes
and location names.

A recent study by Zhou et al. [38] tackles the problem
of retrieving web documents relevant to a keyword query
within a pre-specified spatial region. They propose three
approaches based on a loose combination of an inverted file

and an R*-tree. The best approach according to their experi-
ments is to build an R*-tree for each distinct keyword on the
web pages containing the keyword. As a result, queries with
multiple keywords need to access multiple R*-trees, and the
results must be intersected. Building a separate R*-tree for
each keyword also requires substantial storage.

Our hybrid indexing framework differs substantially from
this approach, although both use inverted files and R-trees.
Our approach incorporates the inverted file at each node of
an R-tree such that both location and text information can
be utilized simultaneously to prune the search space at query
time, while the approaches of Zhou et al. [38] adopt combi-
nations that require query processing to occur in two stages:
One type of indexing is used to filter web document in the
first stage, and then another type is employed in the second
stage. This is similar in spirit to the baseline approach used
in our experiments.

Next, our approach and their approaches target different
kinds of queries: while we focus on top-k queries, Zhou et al.
aim to retrieve relevant documents within a given geographic
region. We know of no way of adapting these approaches to
process the top-k queries considered in this paper (without
scanning all objects). In contrast, our framework can easily
be extended to process the queries considered by Zhou et al.

Another study [7] considers a different type of query
that retrieves web pages that contain the query keywords
and whose page footprint intersects with the query footprint,
where a footprint is an arbitrary, possibly noncontiguous area.
They apply spatial filling curve to the inverted index. Vaid
et al. [34] also present techniques to combine the output of
a text and a spatial index to answer a spatial keyword query
in two stages. The aforementioned two differences between
our approach and that of Zhou et al. also apply here.

Next, Hariharan et al. [17] address the problem of find-
ing objects containing query keywords within a region. They
present a hybrid indexing structure called the KR∗-tree that
consists of an R∗-tree and an inverted file for the nodes of the
R∗-tree. The nodes of the KR∗-tree are virtually augmented
with the sets of keywords that appear in the subtrees rooted at
the nodes. At query time, the KR∗-tree based algorithm finds
the nodes that contain the query keywords and then uses these
as candidates for subsequent search. This approach suffers
from unnecessary overhead when there are many candidates.

Felipe et al. [10] integrate signature files and the R-tree to
enable keyword search on spatial data objects that each have
a limited number of keywords. This approach needs to load
the signature files of all words into memory when a node is
visited, which incurs substantial I/O. Signature files are gen-
erally inferior to inverted files for general text retrieval [39].
The fact that there is no practical way of using signature files
for handling ranked queries [39] renders it infeasible for this
approach to support LkT queries that need to compute text
relevancy scores (using language models).
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Another hybrid indexing structure [37] combines the R*-
tree and bitmap indexing to process the m-closest keyword
query that returns the spatially closest objects matching m
keywords. This approach exhibits the same problems as do
signature-file based indexing [10].

Martins et al. [24] compute text relevancy and location
proximity independently and then combine the two ranking
scores. The baseline algorithms we investigate in this paper
appear to be better than this approach.

Khodaei et al. [21] propose the Spatial Keyword Inverted
File to handle location-based web searches. They develop a
new distance measure called spatial tf-idf to rank relevant
documents.

Cao et al. [6] propose the concept of prestige-based rel-
evance to capture both the textual relevance of an object to
a query and the effects of nearby objects. The top-k spatial
web objects are ranked according to both prestige-based rel-
evance and location proximity.

In a previously published conference paper [8], we intro-
duce LkT queries, and we propose the IR-tree, the DIR-tree,
and the cluster-enhanced method. This paper in addition pro-
poses an efficient solution for the processing of a new type of
query, called the RkT query, and it proposes and studies two
new enhanced techniques for the framework proposed in [8],
namely the ClusterMBR, which constructs an MBR for each
cluster of each node, and the TermMBR, which constructs
an MBR for each word in the inverted files of each node.
Section 7.1 compares in depth with the IR-tree proposed by
Li et al. [22]. All extensions in this paper to the conference
paper [8] go beyond Li et al.’s proposal.

9 Conclusions and future work

This paper proposes a new indexing framework for loca-
tion-aware top-k text retrieval and region-aware top-k text
retrieval. The framework tightly integrates the inverted file
for text retrieval and the R-tree for spatial proximity query-
ing in a novel manner. Several hybrid indexing approaches
are explored within the framework. The framework encom-
passes algorithms that utilize the proposed indexes for com-
puting the top-k query, and it is capable of simultaneously
taking into account text relevancy and spatial proximity to
prune the search space during query processing. Results of
empirical studies with an implementation of the framework
demonstrate that the paper’s proposal is capable of excellent
performance.

This work opens to a number of promising directions for
future work. First, it is worth adapting existing optimization
techniques developed for inverted files (e.g., compression)
and R-trees to the paper’s setting. Second, the performance
of the DIR-tree may be affected by the choice of the doc-
ument similarity function DocSim(·, ·) in Eq. 4. Moreover,

the document space has high dimensionality (our dataset has
2+ million distinct words), which makes the construction of
the DIR-tree slow. When inserting an object into the DIR-
tree, we need to compute the document similarity between
the object and some entries in the tree. After finding the node
in which to insert the object, we have to update the pseudo
documents of its predecessor nodes. When a node overflows,
the splitting is also computationally expensive due to the
high dimensional document space. We can reduce the docu-
ment space dimensionality, for example, by considering the
top-100 words according to word frequencies. However, it
may adversely affect the performance of the DIR-tree. It is
worth developing an approach that is able to make the con-
struction of the DIR-tree efficient without hurting its perfor-
mance. Third, it is of interest to understand how the top-k
queries considered can best be processed if the objects are
constrained to a spatial network.
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