
Building Accurate 3D Spatial Networks to Enable
Next Generation Intelligent Transportation Systems

Manohar Kaul
Aarhus University

mkaul@cs.au.dk

Bin Yang
Aarhus University

byang@cs.au.dk

Christian S. Jensen
Aarhus University

csj@cs.au.dk

Abstract—The use of accurate 3D spatial network models
can enable substantial improvements in vehicle routing. Notably,
such models enable eco-routing, which reduces the environmental
impact of transportation. We propose a novel filtering and lifting
framework that augments a standard 2D spatial network model
with elevation information extracted from massive aerial laser
scan data and thus yields an accurate 3D model. We present a
filtering technique that is capable of pruning irrelevant laser scan
points in a single pass, but assumes that the 2D network fits in
internal memory and that the points are appropriately sorted. We
also provide an external-memory filtering technique that makes
no such assumptions. During lifting, a triangulated irregular
network (TIN) surface is constructed from the remaining points.
The 2D network is projected onto the TIN, and a 3D network is
constructed by means of interpolation. We report on a large-scale
empirical study that offers insight into the accuracy, efficiency,
and scalability properties of the framework.

I. INTRODUCTION

While today’s vehicle routing services rely on 2D spatial

networks, future generations of such systems and Advanced
Driver Assistance Systems (ADAS) require 3D models that

accurately capture elevation and slope. Different applications

pose different accuracy and resolution requirements to such

3D models.

Applications that target fuel savings and reduced greenhouse

gas emissions, benefit from the availability of an accurate

3D map. A transportation study finds that eco-routing that

uses a 3D spatial network model can yield fuel cost savings

of 8–12%, when compared to standard routing based on a

2D model [2]. Another study reports that the use of a 3D

model built from aerial laser scan data for vehicle routing

will yield annual fuel savings of approximately USD 6 billion

in USA [3]. This figure stems from TomTom, a worldwide

leading manufacturer of navigation systems. A study of mod-

els of vehicular environmental impact shows how increased

accuracy of road slopes yields more accurate estimations of

fuel consumption and greenhouse gas (GHG) emissions from

vehicles [1].

ADAS applications provide critical information to the driver

about the vehicle’s surroundings. Here, a 3D map can enhance

information obtained from vehicle sensors and can also serve

as a failsafe mechanism when sensors fail [7]. For example,

adaptive headlights take into account the slopes of the road

ahead and intelligently steer the headlights in order to offer

maximum night-time visibility. Under adverse weather condi-

tions such as excessive fog or rain, the sensors that are used

under normal conditions can fail to operate optimally, and a

3D map can be used instead. ADAS specifications require a

3D road model with an accuracy of at least ±2 meters.
Three well-known and accepted methods of 3D map gener-

ation exist. First, a vehicle fitted with differential GPS and

an Inertial Navigation System (INS) is driven on roads to

capture their 3D road geometries [6]. Although this approach

is well tested, it is expensive and cumbersome because it

entails driving all existing roads to form a comprehensive

3D spatial network. Second, some major map providers use

digital elevation models (DEM) generated from aerial images

collected by interferometric synthetic aperture radar (IfSAR)

to generate 3D maps [18], [19]. The accuracy and generation

time of such models are unknown. Third, crowd-sourced data

from Personal Navigation Devices (PND)s and vehicular GPS

traces are used for extraction of elevation information in order

to generate 3D spatial networks. The accuracy of such a model

is also unknown and has not been compared to models created

using the previous two methods. Also, the method relies on the

availability of data that covers an entire transportation network,

which is problematic.
Motivated by these observations, we propose two methods

that use aerial laser scan data (LiDAR), illustrated in Figure 1,

to augment 2D maps with elevation and slope information.

External Memory Filtering (EMF) is an external memory

Fig. 1. Example Laser Scan Point Cloud (LiDAR)

algorithm that produces a 3D model of very high accuracy

and resolution, and One Pass Filtering (OPF) is a streaming

in-memory based solution that sacrifices some of the accuracy

to generate a lower-resolution model, while reducing the map

processing load.
In our experiments on a spatial network that spans North

Jutland, Denmark, covering a region of 185km × 130km, we

find that EMF can generate a 3D model with an accuracy of

2013 IEEE 14th International Conference on Mobile Data Management

978-0-7695-4973-6/13 $26.00 © 2013 IEEE

DOI 10.1109/MDM.2013.24

137

JacobN
Text Box
©2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

±20 cm in 21 hours with a memory use of just 230 MB,

while OPF can generate the same model with an accuracy of

±2 meters in approximately 2 hours, which is an order of

magnitude faster than EMF, using 2.4 GB of main memory.

The two methods can be combined such that a very large 3D

spatial network with relatively low accuracy can be generated

quickly using OPF, upon which EMF can be used to zoom
in on regions of interest, generating high-accuracy maps for

these.

A key challenge is to achieve a suitable balance between the

accuracy of a model, as dictated by the intended applications,

and the storage space required by the model. This paper

addresses that challenge by proposing techniques that are ca-

pable of using commodity computing hardware for generating

accurate and compact 3D spatial network models from massive

laser scan point clouds and a 2D spatial network.

To the best of the authors’ knowledge, this is the first work

that investigates the application of aerial laser scan data to the

lifting of a 2D spatial network in a fast and efficient manner,

to obtain a 3D spatial network. Specifically, our contributions

are four-fold.

• We propose a novel filtering and lifting framework that

uses an aerial laser scan point cloud for lifting a spatial

network.

• Two alternative filtering techniques, a one pass filter
and an external memory based filter, are proposed for

obtaining the particular points from an aerial laser scan

data set that are needed for the lifting.

• Techniques for spatial lifting, consisting of triangulation

and interpolation, are proposed to augment the 2D spatial

network with elevation information using the remaining

laser points.

• We present a comprehensive and large-scale empirical

study that offers insight into the accuracy, efficiency, and

scalability properties of the framework.

The remainder of this paper is organized as follows. In

Section II, we survey related work. Section III presents a

formal problem definition, including the proposed filtering

and lifting framework. Section IV details the filtering and

lifting phases. Section V covers the empirical analyses of the

proposed techniques. Finally, Section VI concludes the paper.

II. RELATED WORK

Currently there are three main methods for constructing 3D

road network models. First, some map vendors use vehicles

instrumented with differential GPS and INS to capture 3D road

geometries [6]. Using this method, NAVTEQ and TeleAtlas

have spent several years on covering the major roads in

nearly 50 major cities across U.S.A, Asia and Western Europe,

but not secondary and tertiary roads [7]. Second, the remote

sensing community has explored the creation of 3D models

using elevation data from IfSAR and aerial images [18], [19].

Third, Waze1 and TomTom’s MapShare2 allow users to upload

1http://www.waze.com
2http://www.tomtom.com/en gb/maps/map-share/

GPS locations with altitude information whose accuracy is ±3
meters [5].

This paper adopts a different approach and, to the best of

the authors’ knowledge, is the first to provide a method for

obtaining a 3D spatial network by lifting a 2D spatial network

using aerial laser scan data in a fast, efficient, and accurate

fashion.

Tavares et al. [2] study eco-routing based on a 3D network

and find that eco-routes are 1.8% longer than the correspond-

ing shortest routes and that fuel cost savings are in the range 8–

12%. Their 3D spatial network is developed based on contour

lines, which are of much lower resolution than is the laser scan

data we use. The EcoMark [1] framework for the evaluation

of models of vehicular environmental impact illustrates how

the use of an accurate 3D model yields better estimations of

fuel and greenhouse gas emissions from transportation.

Several methods have been proposed that use statistical or

machine learning techniques to classify aerial laser scan points

into different categories [9], [10]. We only consider a particular

category of points, namely ground points, which capture the

actual land surface, and we exclude other points representing,

e.g., vegetation, water, buildings, and noise. In the remainder

of the paper, when mentioning laser scan points, we refer only

to ground points.

III. PRELIMINARIES

We introduce definitions that underly the proposed problem,

formalize the spatial network lifting problem, and provide an

overview of the filtering and lifting framework. An overview

of the notation used in the paper is provided in Table I.

TABLE I
NOTATION

Notation Description

G2D A 2D spatial network.
G3D A 3D spatial network.
Pc A 3D laser scan point cloud.
pi A 3D laser scan point in Pc.

prj�(pi) The projection of a 3D point pi onto the
2D plane.

prj⊥(g, �) The projection of a 2D model element g onto a
TIN �.

εN(g) The ε-neighborhood of a 2D model element g.

A. Data Modeling

A spatial network captures both the topology and the em-

bedding into geographical space of a transportation network.

We define 2D and 3D spatial networks next.

Definition 1: A 2D spatial network is modeled as an

undirected graph G2D = (V, E, F2D, H2D), where V and

E is the vertex set and edge set, respectively, and F2D and

H2D are the functions recording the embedding of vertices

and edges into the 2D plane, respectively.

A vertex vi ∈ V indicates either a road intersection or the

end of a road. An edge ek ∈ E ⊂ 2V is defined as a set of

two vertices, and represents a road segment connecting the two

vertices. For example, edge ek = {vi, vj} represents a road

138

segment that connects vertex vi and vertex vj . Function F2D :
V → R

2 takes as input a vertex and returns its coordinates in

the 2D plane. Function H2D : E → R
2×. . .×R

2 takes as input

an edge e, and outputs a 2D polyline represented by a sequence

of 2D points. For example, edge H2D({vi, vj}) = (vi, a1, a2,

a3, a4, vj), as shown in Figure 2.

a3

a1

a2

vj

p2

a4

p1

p3

p4
p5 p6

vi

pi: Laser Points
: 2D Road Segment
: 𝝴 Neighborhood

Fig. 2. A 2D Road Segment With its ε-Neighborhood

Definition 2: A 3D spatial network is also modeled as

an undirected graph G3D = (V ′, E′, F3D, H3D). The

definitions of V ′ and E′ in a 3D spatial network are identical

to the counterparts in a 2D spatial network. Note that for

higher resolutions, our method introduces more vertices and

edges into V ′ and E′ respectively. Functions F3D and H3D

record the geometric information of vertices and edges in

3D space. Function F3D : V ′ → R
3 takes as input a

vertex and returns its coordinates in 3D space; and function

H3D : E′ → R
3×. . .×R

3 takes as input an edge and outputs a

3D polyline, represented as a sequence of 3D points. Figure 3

shows the 3D polyline of a road segment. Calculating slopes

of each edge E′ in G3D becomes a trivial exercise.

a4
a3

a2

a1

vi

vj

: 3D Road Segment
: 2D Road Segment
: 𝝴 Neighborhood

Fig. 3. A 3D Road Segment

Definition 3: A Laser Scan Point Cloud (Pc) is a set of

laser points pi, which is formalized as

Pc = { pi = (xi, yi, zi) ∈ R
3 | 1 ≤ i ≤ N},

where N is the total number of laser points in the point cloud.

B. Problem Formulation

Spatial network lifting augments a 2D spatial network

G2D with elevation information extracted from a laser scan

point cloud Pc and returns G2D’s corresponding 3D represen-

tation G3D as the result.

Intuitively, to lift a 2D model element (e.g., either a 2D

polyline H2D(ek) indicating a road segment or a 2D point

F2D(vi) indicating a road intersection), the 3D laser points

locating nearby the 2D model element are more useful than

the laser points that are further away. We take into account

the laser points belonging to the ε-Neighborhoods of the 2D

elements while lifting them.

Definition 4: Given a point cloud Pc, the ε-Neighborhood
of a 2D model element g, denoted as εN(g), is a set of laser

points in Pc that satisfy a given spatial predicate ε.

εN(g) = {pi ∈ Pc | ε(pi, g)},
where ε(pi, g) denotes a spatial predicate defined on a laser

point pi and a 2D model element g.

Since a 2D point can be regarded as a special case of a

2D polyline, the following discussion focuses on the lifting

of road segments (i.e., 2D polylines) instead of the lifting of

road intersections (i.e., 2D points).

An example of an ε-Neighborhood of a road segment is

shown in Figure 2, where the solid polyline in the center is a

road segment {vi, vj}. The projection of a laser point pi ∈ Pc

onto the 2D plane is defined as prj�(pi) = (xi, yi, 0). We let

the spatial predicate ε be defined as dist(prj�(pi), H2D(e)) �
d, which means that if a laser point satisfies the predicate, the

shortest distance between its 2D projection prj�(pi) to the

2D polyline of the edge should not exceed d. The two dotted

lines indicate the boundary of points that satisfy the predicate.

Since the projected points prj�(p1), prj�(p2), prj�(p4) and

prj�(p5) lie in the range bounded by the two dotted lines,

εN(H2D({vi, vj})) = {p1, p2, p4, p5}.

The laser points in ε-Neighborhood εN(g) can be trans-

formed into a Triangulated Irregular Network (TIN), denoted

as �(g), to approximate the surface around the road segment

g. Projecting the 2D model element g onto its corresponding

TIN �(g), its 3D polyline representation becomes available.

For example, the 3D representation of road segment {vi, vj}
is shown in Figure 3. Assuming prj⊥(g, �) indicates the

projection of a 2D model element g onto a TIN surface �,

spatial network lifting is formalize as follows.

Definition 5: Spatial network lifting takes as input a 2D

spatial network G2D and a laser scan point cloud Pc, and it

returns the corresponding 3D spatial network G3D in which

F3D(v) = prj⊥ (F2D(v), �(v)) for every v ∈ V, and

H3D(e) = prj⊥ (H2D(e), �(e)) for every e ∈ E.

C. Framework Overview

Figure 4 depicts the overview of spatial network lifting,

which consists of two major phases: filtering and lifting.

The filtering phase takes as input a 2D spatial network and

a massive laser scan point cloud, and prunes irrelevant laser

points in the point cloud in order to obtain an appropriate

139

�������	�
���
�������

���� ���	���
��������

������������������

�
�������
�����
�

�����
�

�����
�������� �
!����������
�

�"�
�

��

#��
������

$
���������

%�����������������

Fig. 4. Framework Overview

ε-Neighborhood of every road segment and road intersection

in the 2D spatial network. Two alternative filtering methods,

one pass filtering and external memory based filtering, are

provided in order to exploit situations where the 2D networks

fits in main memory and to also provide a general solution

that does not make this assumption.

The lifting phase consists of two steps, where interpolation
follows triangulation. In the triangulation step, laser points in

ε-Neighborhoods are transformed into TINs. After projecting

the 2D spatial network onto the TINs, the interpolation step

computes the corresponding elevation information, thus pro-

viding a 3D spatial network as the final output.

IV. SPATIAL NETWORK LIFTING

Spatial network lifting focuses on generating an accurate

and compact 3D spatial network in an efficient and scalable

manner.

A. Filtering

1) Overview: The main task of the filtering phase is to

obtain ε-neighborhoods for the 2D model elements in G2D.

Instead of proposing yet another index to filter the laser points,

we explore the opportunities of applying existing indexing

techniques. A priori knowledge of the laser points being almost

uniformly distributed with a guaranteed minimum resolution

(e.g., at least one laser point per square meter), significantly

influences our decision to choose a space-driven indexing

technique, in particular, the grid index, instead of a data-driven

indexing technique, e.g., a tree-based index.

As an aside, we chose not to use an approch where we

first build spatial indexes on the point cloud Pc and on the

2D spatial network (e.g., using R-trees) and then join the two

by synchronized traversing the two indices [11]–[13]. This

is because Pc is massive in size (for Denmark, on the order

of terabytes) and is collected rarely. Thus, the join operation

is not carried out repeatedly, and the filtering is merely an

intermediate step in solving the lifting problem.

By utilizing grid based indices, the filtering becomes par-

allelizable and can be processed easily on powerful machines

with large main memories. However, we also consider the

setting where the available main memory is limited, as this

renders the paper’s proposal applicable to commodity hard-

ware.
We provide two filtering approaches that differ primarily

in how they manage the smaller data set, i.e., the 2D spatial

network G2D.

1) One pass filtering, described in Section IV-A2, assumes

that there is enough internal memory to accommodate a

grid index on G2D and filters the point cloud Pc in a

single pass by checking whether a laser point belongs

to the ε-Neighborhoods of all road segments in G2D;

2) External memory based filtering, described in Sec-

tion IV-A3, works without any assumption on main

memory size, so neither G2D nor Pc are assumed to fit

in internal memory. Two different traversal strategies,

row-major and z-curve order, are used for loading disk

blocks into memory for filtering.

2) One Pass Filtering: One pass filtering (or OPF for

simplicity) utilizes a uniform grid to index both the 2D spatial

network and the laser points. Cells in the grid are squares, and

the width of a cell is governed by a user specified parameter

δ that needs to be given before generating the grid. Figure 5

shows an example of how grid cells map to both road points

(points contained in 2D polylines) and laser points. For ease of

illustration, only a small portion of laser scan points mapped

to cells are shown, while in reality, the cells have much more

laser scan points due to the high density of the laser scan point

cloud.

a1
a2

b1

b3

d1

c1

c2

c3

f1

0

1

2

3

b2

e1

e3

Cell Hg
(3,3) {d1,c1}

p1

Road Points
Laser Points

p7

p6

p8

p12

p11

p9
p10

p2
p5

p3

p4

p13

p14
p15

p16

p17

Hp
p16, p17

Cell Road Blk
(0,0) {c3,f1}

Laser Blk
p1

(0,1) p6, p7
(0,2) p14, p15
(1,0) p2, p5

(1,1)
{c2, c3},
{c3,f1}, {c3,
e1}, {e1,e3}

p8

(1,2) p12, p13
(2,0) {b1,b2},... p3
(2,1) {a2,b3},... p4
(2,2) p9, p10,p11

OPF

EMF

0 1 2 3

Fig. 5. Grid Partitioning Index

The spatial predicate used in OPF, denoted as εOPF (g, pi),
returns true if a 2D model element g and the 2D projection

of a laser point pi, i.e., prj�(pi), fall into the same grid cell.

Given the same 2D model element g, the bigger the cell width

δ is, the more laser points are contained in its ε-Neighborhood

εN(g).

140

OPF assumes that the grid index on the 2D spatial network,

i.e., the mapping Hg given below, can fit fully into internal

memory.

Hg : C →
⋃

e∈E

H2D(e).

For each cell c in grid cells set C, mapping Hg maintains a

set, denoted as Hg(c), containing all the 2D model elements

that intersect with the cell.

Upon creation, Hg acts as a seed for generating the grid

index on the point cloud Pc. OPF sequentially scans Pc only

once to generate another mapping Hp from seed cells (those

cells having 2D model elements in Hg) to laser points whose

2D projections are within the cells. Hp is formally defined as

follows.

Hp : SC → Pc; where Hg(c) �= ∅ if c ∈ SC ⊆ C.

Note that Hp(c) records the ε-Neighborhoods of the 2D model

elements in Hg(c).
Isenburg and Lindstrom [14] observe that laser points are

inherently topologically-coherent, which implies that the laser

points are stored in an order that is an artifact of how they were

collected by the planes flying over the covered land surfaces.

In other words, the laser points in the point cloud are not stored

randomly. Rather, laser points that are geographically close are

also stored close to each other and hence the point cloud is

stored in a manner that to some extent is locality preserving.

OPF exploits this property and thus avoids performing several

passes to sort the point cloud Pc.

Based on the above observation, the mapping Hp does not

need to be maintained for every cell in memory at all times.

Once Hp(c) contains a sufficient number of laser points for

cell c, artificial 2D road points are inserted at all intersections

of the road edges and grid cell boundaries. Finally, the 2D

model elements in Hg(c) are lifted. Recall that the laser point

cloud we use guarantees one laser point per square meter,

meaning that a cell with width δ is expected to contain δ·δ laser

points. As OPF scans the point cloud, when Hp(c) contains

more than α · δ · δ laser points, Hp(c) can be passed to the

lifting phase immediately. Here, the fill factor α ∈ (0, 1]) is

a parameter that represents a trade off between efficiency and

accuracy: the higher the fill factor is, the more laser points

must be contained in the ε-Neighborhoods, thus making the

final 3D spatial network more accurate.

Algorithm 1 describes OPF. Function

GetIntersectedCells(ls, δ) (in line 3) returns the cells

that intersect with line segment ls according to cell width δ,

and function GetContainedCells(pi, δ) (in line 6) returns

the cell that contains the 2D projection of laser point pi
according to cell width δ.

The advantages of one pass filtering are: (i) OPF does not

incur any pre-processing cost of sorting or indexing the mas-

sive point cloud Pc; and it only scans the point cloud once; (ii)

OPF is able to output parts of the resulting 3D spatial network

with different accuracy requirements (by configuring α) as the

laser points stream in. (iii) OPF can easily be parallelized to

Algorithm 1: OnePassFilter
Input : 2D spatial network G2D, grid cell width δ,

point cloud Pc, fill factor α.

/* Initialize mapping Hg */
1 for each edge e ∈ G2D.E do
2 for each line segment ls ∈ H2D(e) do
3 for each cell c ∈ GetIntersectedCells(ls, δ) do
4 Hg(c) ← Hg(c) ∪ ls;

/* One pass scan on the point cloud Pc

*/
5 for each laser point pi ∈ Pc do
6 Cell c ← GetContainedCell (pi, δ)

/* Use Hg as a seed */
7 if Hg(c) �= ∅ then
8 Hp(c) ← Hp(c) ∪ pi;
9 if |Hp(c)| � α · δ · δ then

/* Lift the 2D model elements
in cell c */

10 Lifting(Hg(c), Hp(c));
11 Release Hg(c) and Hp(c);

take advantage of either new hardware architectures like GPUs

or cloud infrastructures like MapReduce.

3) External Memory Based Filtering: In contrast to OPF,

external memory based filtering (abbreviated as EMF) works

even if neither G2D nor Pc is able to fit in internal memory.

The basic goal of EMF is to efficiently filter large data sets of

arbitrary sizes given a limited and fixed main memory budget.

In order to achieve an accurate TIN, EMF employs a spatial

predicate εEMF (g, pi) that returns true if the cell containing

prj�(pi) is the cell that contains g or is one of the eight

neighboring cells of the cell containing g (also called Moore

neighbor cells of g). In the following discussion, we use 9-cell
to indicate a cell and its Moore neighbor cells. For example,

the 9-cell of cell (1, 1) is shown in the bottom left of Figure 5.

EMF scans both G2D and Pc, organizing them into road

blocks (lines 1–4 in Algorithm 2) and laser blocks (lines 5–7

in Algorithm 2), where each road (laser) block contains the

road segments that intersect with (laser points that are in) a

cell. The size of a laser block is typically decided by the

cell width δ. Assuming each laser point takes 20 bytes (two

doubles and one float), a laser block needs 20 · δ · δ bytes.

(Table III in Section V-A details the block sizes.)

A road block typically takes up much less space than a

laser block because it is uncommon to have very dense road

segments (e.g., with a point for every one meter). We therefore

assume that a road block has at most the same size as a laser

block. After block reorganization, EMF reads road blocks into

main memory according to a locality preserving space filling

curve. After reading a new road block, EMF reads in its

corresponding 9-cell laser blocks and overwrites laser blocks

using the least recently used (LRU) [15] policy. A road block

141

Algorithm 2: ExternalMemoryFilter
Input : 2D spatial network G2D, grid cell size δ,

point cloud Pc, Curve Tag TAG ;

Memory Budget B.

/* Scan and sort G2D into road blocks

*/
1 for each edge e ∈ G2D.E do
2 for each line segment ls ∈ H2D(e) do
3 for each cell c ∈ GetIntersectedCells(ls, δ) do
4 writeBlock (c, ls, FILEG);

/* Scan and sort Pc into laser blocks

*/
5 for each point pi ∈ Pc do
6 Cell c ← GetContainedCell(pi, δ);
7 writeBlock (c, pi, FILEP);

8 Buffer A ← ∅;

9 while Decide next cell c according to TAG curve do
10 A ← readBlock(c, FILEG);

11 for each cell c′ ∈ MooreNeighbour(c) ∪ c do
12 B ← LRU (B, readBlock(c′, FILEP));

/* Lift the 2D model elements in
cell c */

13 Lifting(A, B);

along with its 9-cell laser blocks are fed into the lifting phase,

as described in lines 9–13 in Algorithm 2.

Given a limited memory budget, the order in which road

blocks are read has a significant impact on the performance

of EMF. In order to avoid frequent re-reading of the same laser

blocks, locality preserving space filling curves are considered

when EMF loads the road blocks. In particular, we consider

two space-filling curves, namely the row-major curve and

the z-order curve. Figure 6 shows the orders in which road

blocks are loaded in memory starting from the bottom left

cell, according to the two row-major and z-order curves,

respectively.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

(a) Row-major curve.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

(b) Z-order curve.

Fig. 6. Locality Preserving Space Filling Curves

When a road block is being processed, its corresponding

9 laser blocks must be available in memory for processing.

As EMF reads road blocks and moves along a curve, there

are moments where memory is full and old laser blocks are

overwritten with new ones. The dotted boxes in Figure 6 show

the points where there is a high likelihood that new laser

blocks must be read from disk.

Analysis: Given a grid with n · n cells and a fixed-size

memory (a multiple of n) that employs the LRU policy [15],

we investigate the effects of using Z-order and row-major

curves. Two grids with sizes 16 ·16 and 64 ·64 are considered,

and we vary the memory size in multiples of n with 0.5 · n
being the finest granularity. We then report the number of

laser block replacements in Figure 8. The results show that

1 2 3 4 5

300

400

500

600

700

Cache Size (multiple of c)

D
is
k
B
lo
ck
s
R
ea
d

Z
RowMajor

(a) 16 · 16 grid.

1 2 3 4 5

0.4

0.6

0.8

1

1.2

·104

Cache Size (multiple of c)

D
is
k
B
lo
ck
s
R
ea
d

Z
RowMajor

(b) 64 · 64 grid.

Fig. 8. Performance of Z-order and Row-major Curves on Varied Memory
Budget Sizes

for a memory budget ranging from 0.5 · n to 2.5 · n, the Z-

order yields the fewest reads. The benefit of using the Z-order

increases as the grid size n increases. Starting at 3 · n and

onwards, the row-major ordering begins to outperform Z-order

and performs stably. This is because the 9 laser blocks that

must be considered for a road block belong to 3 grid rows.

To illustrate, consider again Figure 6. Assuming that the

memory budget is 3 ·n, when the first two rows of road blocks

have been processed according to the row-major curve, the

memory budget is fully occupied by the first three rows of

laser blocks. In order to process the next road block, i.e., (2, 0)
(surrounded with a dashed box), laser blocks (3, 0) and (3, 1)
need to be read, and laser blocks (0, 0) and (0, 1) are over-

written. The over-written blocks will never again be needed

and hence with memory budget size 3 ·n, no laser block needs

to be read more than once. Therefore, with memory budget

size no less than 3 · n, row-major behaves in a stable fashion,

while with the Z-order some blocks that are over-written may

be needed at a later time. Thus, if the memory budget is less

than 3 · n, Z-order is preferable, while row-major wins and

performs stably if the memory budget is no less than 3 · n.

B. Lifting

Upon successful filtering, the laser points in the ε-
Neighborhoods are triangulated into a TIN. Then the elevation

information in the TIN is assigned to the 2D road segments by

projecting these onto the TINs and performing interpolation.

1) Triangulation: The elevation values in a given region are

only available for the points where measurements were taken

(e.g., the laser points in the region). To get the elevation for

other points in the region, some form of approximation must

142

a1

a2

a3

a4

b1

c1

(a) α = 0.1.

a1

a2

a3

a4

b1

c1

(b) α = 0.4. (c) 9-cell

Fig. 7. (a)(b) Delaunay Triangulation With Varying Fill Factor α in OPF. (c) Delaunay Triangulation With 9-Cell in EMF.

be applied. A naive approach assigns an elevation to a point

that is equal to the elevation of the point’s nearest neighbor in

the laser point cloud or that is equal to the average elevation

of its k nearest laser points. However, these approaches are

unable to produce accurate results.

We adopt a different tack: given a region, all the pertinent

laser points, e.g., those in ε-Neighborhoods, are triangulated

into a TIN to approximate the surface of the region. The

elevation of any point in the region can then be interpolated

from the TIN.

Triangulation transforms a set of laser points, which rep-

resent discrete measurements on a surface, into a set of non-

overlapping triangles where the vertices of the triangles are

the laser points. We use Delaunay Triangulation [16] for

triangulation. This is a specialized triangulation method where,

in the resulting triangles, no triangle vertex is inside the

circumscribed circles of any other triangle.

Recall that OPF utilizes a fill factor α to act as a parameter

when determining how many laser points must be present

when moving to the triangulation step. The higher the fill

factor is, the more accurate the TIN approximates the real

surface, thus yielding a more accurate 3D spatial network. For

example, with a low fill factor of α = 0.1, some road segments

(road points a1, b1, and c1) are not covered by the resulting

TIN (shown in Figure 7(a)). Increasing α to 0.4 improves the

coverage (Figure 7(b)).

EMF passes all the laser points in the relevant 9-cell to the

triangulation step, as shown in Figure 7(c), which typically

guarantees that all the road segments in the center cell are fully

covered by the resulting TIN, thus achieving higher accuracy.

2) Interpolation: Figure 9 shows a 2D polyline representing

a road segment and its TIN. Intuitively, projecting the 2D

polyline to the TIN, the road segment’s 3D representation

becomes available. However, directly projecting a polyline to a

TIN is computationally expensive. Instead, we sample a set of

2D road points on the 2D polyline and then project them onto

the TIN in order to obtain their 3D counterparts. By connecting

these 3D road points, the 3D polyline representation of the

road segment is obtained, e.g., the 3D polyline (a′1, . . ., a′5,

a1' a11'

a1

a11

a5'

a5

Fig. 9. ES With Intersection Road Points

. . ., a′11) shown in Figure 9.

Exact sampling: ES selects the points where either the

direction or the grade of the road segment change. ES starts

by projecting the TIN to the 2D plane by ignoring the z
coordinates of all vertices. To illustrate, this yields the dashed

triangles on the 2D plane shown in Figure 9. Next, points on

the road polyline are sampled by picking the points in the

original 2D polyline representation (i.e., the points where the

direction of the road changes) and all the intersections of the

edges of the 2D triangles and the original 2D polyline (i.e.,

the points where the grade of the road segment may change).

The grade of a road segment may change only when the road

segment crosses from one triangle to another.

Since the intersections obtained by ES are always on TIN

triangle edges, the elevations at the vertices of the triangle

edges are used in linear interpolation to compute the intersec-

tions’ elevations. Figure 9 shows an example of a triangle edge

in bold; its two corresponding vertices are used for computing

the elevation of road point a′5.

The remaining points in ES may fall in a triangle, and

the elevations of these points are interpolated by taking into

account the elevations of all three vertices of the triangle, i.e.,

using plane-based interpolation.

143

V. EXPERIMENTS

We detail the data sets, parameter settings, and implementa-

tion. Then we cover the empirical study of the the efficiency,

accuracy, and scalability properties of the proposed filtering

and lifting framework. Comparisons to existing methods,

covered in Section II, were not performed because the data

necessary to do so was not available to us.

A. Experimental Setup

Data Sets: Two spatial networks in Denmark are lifted in the

experiments.

Aalborg (AA) covers the Aalborg region (North Jutland,

Denmark) which is of size approximately 7km · 5km. The

laser point cloud of AA occupies 2.84 GB. The spatial network

of Aalborg, obtained from OpenStreetMap, has a total length

of approximately 4 · 105m, and its 2D polyline representation

is 1 MB in storage size, consisting of 13, 366 points.

North Jutland (NJ), the northern part of Jutland, Denmark,

covers a region of 185km · 130km. The laser point cloud of

NJ occupies 342 GB. NJ contains a spatial network with a

total length of 1.17 · 107m, whose 2D polyline representation

is 28 MB in storage size, containing 414, 363 points.

We report on experiments were carried out on AA, unless

stated explicitly otherwise.

Parameter Settings: The experiments are conducted by vary-

ing several parameters to study the effect of the trade-offs

between accuracy, efficiency, and memory usage. Table II

shows the parameters with default values shown in bold. The

equidistant parameter ed used in approximate sampling is set

to 10m. Experiments are conducted using default parameter

values unless explicitly stated otherwise.

TABLE II
PARAMETER SETTINGS

Grid Cell Width δ (m) 16, 64, 128
Filling Factor α 0.4, 0.6, 1.0

Memory Size c, 2 · c, 3 · c, 4 · c

Table III shows details on the grid indices for different cell

widths. In the table, r · c indicate the size of the grid, where r
and c denotes the number of rows and columns, respectively.

TABLE III
DETAIL OF GRID INDICES

δ (m) AA (r · c) NJ (r · c) BS (KB)
16 316 · 465 8082 · 11526 5
64 79 · 117 2021 · 2882 80

128 40 · 59 1011 · 1441 320

We compare variants of EMF that use row-major ordering

and Z-curve ordering in terms of disk block reads by varying

the available memory budget. The available memory is set

as a multiple of c blocks (where c is the width of the grid).

Note that as δ varies, the block size, which relates to how

many laser points or 2D polylines fall in a cell in the grid,

also varies accordingly. The size of a (laser or road) block is

shown in the last column of Table III.

Implementation: The filtering and lifting framework is imple-

mented in C and C++, and Perl is used to to perform auxiliary

tasks. SCALGO Terrastream3 is used to generate the TIN

used in our ground-truth method (in Section V-B). Triangle4 is

employed for Delaunay triangulation in the lifting phase. An

R-tree library5 is applied to facilitate the interpolation step

in the lifting phase. All the experiments are carried out on

an Ubuntu 11.04 LINUX machine with an Intel Xeon W3565
@3.2 GHz CPU (8MB cache, hyper-threading, 4 cores), 8 GB

internal memory and 16.5 TB hard disk.

B. Ground Truth Generation

The ground truth is generated by triangulating all the laser

points in the NJ point cloud into a huge TIN and then

interpolate the road points obtained by exact sampling using

this TIN. The statistics of the huge TIN are listed in Table IV,

where � indicates triangles in a TIN.

TABLE IV
GROUND TRUTH STORAGE

Data Laser TIN TIN-to-� Number of �
AA 2.84 GB 3.1 GB 6.3 GB 3.7 · 107
NJ 342 GB 372 GB 742 GB 9 · 109

We use sum of squared errors (SSE), which is defined

in Equation 1, for quantifying the differences between the

3D spatial networks generated by the filtering and lifting

framework and the ground truth.

SSE =

|Rp|∑

i=1

(zi − gti)
2 (1)

In the equation, |Rp| is the total number of road points based

on a sampling strategy (as described in Section IV-B2); zi is

the elevation reported by the proposed method, and gti is the

elevation obtained from the ground truth. The absolute error,

Ai = |zi−gti|, is also introduced as another accuracy measure

in the subsequent discussion.

C. Accuracy Studies

We analyze the accuracy of the proposed approaches against

the ground truth.

Accuracy Analysis of OPF: Figure 10(a) illustrates the effect

of varying the fill factor (α), while fixing the grid size to

its default size (64m). As we increase α, more laser points

are passed into Delaunay triangulation, which yields more

accurate elevation values.

Setting α to its default value and increasing the grid cell

width, as shown in Figure 10(b), we notice that the SSE

increases.

Although α acts as a threshold value for deciding how many

laser points should be processed in triangulation, it is not

3http://madalgo.au.dk/Trac-TerraSTREAM
4http://www.cs.cmu.edu/ quake/triangle.html
5http://superliminal.com/sources/RTree.zip

144

0.4 0.6 1.0
0

50

100

150

200

250

Fill Factor (α)

S
u
m

of
S
q
u
ar
ed

E
rr
or
s
(S
S
E
)

(a) Varying α.

16 64 128
0

50

100

150

200

Grid Cell Width (δ)

S
u
m

of
S
q
u
ar
ed

E
rr
or
s
(S
S
E
)

(b) Varying δ.

0 (0,1] (1,1.5] (1.5,2]

102

103

104

105

106

Absolute Error Ranges (m)

N
u
m
b
er

of
R
oa
d
P
oi
n
ts

(c) Absolute Errors

Fig. 10. OPF Accuracy Study

able to control which laser points are chosen for triangulation.

Since a grid cell with larger width should contain more laser

points, the α fraction of laser points are more likely to be non-

uniformly distributed in the cell, causing a deterioration in the

triangulation and hence in the computed elevation values.

16 64 128
0

5

10

15

20

Grid Cell Width (δ)

S
u
m

of
S
q
u
ar
ed

E
rr
or
s
(S
S
E
)

(a) Varying δ.

0 (0,0.05] (0.05,0.1] (0.1,0.2]

100

101

102

103

104

105

Absolute Error Ranges (m)

N
u
m
b
er

of
R
oa
d
P
oi
n
ts

(b) Absolute Errors

Fig. 11. EMF Accuracy Study

Accuracy Analysis of EMF: Unlike OPF, EMF employs

triangulation on laser points in 9-cells, which results in a

much better triangulation quality. As we increase the grid

cell width, the SSE drops and the elevation values computed

become much more accurate—see Figure 11(a). This occurs

because the 9-cells contain increasingly more laser points,

which results in higher quality triangulations.

Figures 10(c) and 11(b), for OPF and EMF respectively,

display the numbers of absolute error Ai within different

error ranges, thus showing the distribution of the errors. The

leftmost bar in each figure indicates the road points whose

elevation are computed with no error. Note that the points

in the subsequent buckets drop significantly in both methods,

especially in EMF.

D. Storage Studies

We quantify the storage requirements as the maximum

amount of main memory required at any moment in the case

of OPF; and as the number of laser and road block reads from

disk in the case of EMF.

Memory Usage of OPF: Figure 12(a) shows that the max-

imum memory required grows as α increases. The larger α
gets, the longer the wait is until there are enough laser points to

proceed to the lifting phase. Hence, there is a greater demand

on memory. Likewise, increasing the grid cell width yields a

greater memory requirement to hold laser points as the area

of the cell increases (shown in Figure 12(b)).

0.4 0.6 1.0
0

2

4

6

·108

Fill Factor (α)

M
ax

im
u
m

M
em

or
y
U
se
d
(B

y
te
s)

(a) Varying α.

16 64 128
0

1

2

3

4

5
·108

Grid Cell Width (δ)

M
ax

im
u
m

M
em

or
y
U
se
d
(B

y
te
s)

(b) Varying δ.

Fig. 12. OPF Memory Measurements

Memory Usage of EMF: Figure 13 indicates that the disk

block read performance of the Z-curve and row-major orders

adhere to our earlier analytical results (cf. Figure 8). The

biggest memory budget in EMF, with size of 4 · c and the

largest grid cell width of 128m, does not exceed 80 MB of

main memory. Additionally, given the maximum α and grid

cell size, OPF has a memory upper bound of approximately

600 MB. Hence, both EMF and OPF can function with very

limited memory for the AA spatial network.

c 2c 3c 4c
0

0.5

1

1.5

2

2.5

·104

Cache Size as multiple of grid width c

D
is
k
B
lo
ck
s
R
ea
d

Z-Order Row-Major

Fig. 13. EMF Block Reads

c 2c 3c 4c
0

500

1,000

1,500

2,000

Cache Size as multiple of grid width c

R
u
n
ti
m
e
(s
ec
s)

Z-Order Row-Major

Fig. 14. EMF Runtime

E. Efficiency Analysis

We analyze the performance of our proposed methods in

terms of runtime. The goal is to gain insight into the practical

feasibility of OPF and EMF.

For OPF, Figures 15(a) and 15(b) exhibit the effects of

varying grid cell width and fill factor, where both end up

having to pass increasing numbers of laser points to the lifting

phase where triangulation and interpolation take longer.

145

16 64 128
0

100

200

300

Grid Cell Width (δ)

R
u
n
ti
m
e
(s
ec
s)

(a) Varying δ.

0.4 0.6 1.0
0

50

100

150

Fill Factor (α)

R
u
n
ti
m
e
(s
ec
s)

(b) Varying α.

Fig. 15. One-Pass Runtime Measurements

For EMF, Figure 14 shows the effect on overall runtime

when the available memory is varied. A very large propor-

tion of time is spent on disk reads, which are much more

time consuming than in-memory operations. We see a strong

correlation between the disk reads and the overall runtime of

EMF, which is also highlighted by the similarity to the I/O

measurements shown in Figure 13.

Although results show that OPF, which employs no pre-

processing at all, is nearly an order of magnitude faster than

EMF, this superior run-time performance comes at the cost of

an accuracy degradation (as shown in Section V-C). Note that

both OPF and EMF take much less time than the ground truth

computation.

F. Scalability Studies

We conduct experiments on both AA and NJ to observe the

scalability of the proposed methods. Recall that the point cloud

of NJ is almost 120 times larger than the point cloud of AA,

as shown in Table IV. We apply OPF on both data sets with

default parameters. The corresponding runtime and maximum

memory requirement suggest good scalability, as shown in

Table V. For EMF, we use Z-order and a memory budget

TABLE V
SCALABILITY ANALYSIS

Filtering Dataset Runtime (mins) Max Mem (MB)

OPF (Default δ, α)
AA 2.9 327
NJ 122.3 2,457.6

Filtering Dataset Runtime (mins) Blocks Read

EMF (Z-Order, c)
AA 24.2 12,092
NJ 1270.8 126,895

with c blocks (i.e., around 230 MB); all the other parameters

are set to default values. The results in Table V also suggest

that the runtime and number of block reads are proportional

to the numbers of laser points in both data sets, which in turn

suggests that EMF is scalability in the point cloud size. EMF
outputs a 3D spatial network that is an order of magnitude

larger for NJ spatial network, with a total of 4, 640, 865 3D

points.

VI. CONCLUSION AND OUTLOOK

We study a spatial network lifting problem that augments

a standard 2D spatial network with elevation values extracted

from a laser scan point cloud. We propose a novel filtering and

lifting framework that aims to produce accurate 3D spatial

network models that occupy limited storage in an efficient

and scalable manner using commodity hardware. The results

of extensive empirical studies offer insight into the design

properties of the framework and suggest that the framework

is practical and is indeed capable of meeting the design goals.

Our future work aims at exploring higher accuracy estima-

tions of eco-routes using our 3D spatial network.

ACKNOWLEDGEMENTS

The authors wish to thank the companies COWI and

SCALGO for allowing us to use the aerial laser scan data

and for their help with the pre-processing of this data. The

work was supported by the Reduction project that is funded

by the European Comission as FP7-ICT-2011-7 STREP project

number 288254.

REFERENCES

[1] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul. Ecomark: Evaluating
Models of Vehicular Environmental Impact. In ACM SIGSPATIAL, pages
269–278, 2012.

[2] G. Tavares, Z. Zsigraiova, V. Semiao, and M.G. Carvalho. Optimisation
of MSW Collection Routes for Minimum Fuel Consumption using 3D
GIS Modelling. Waste Management, 29(3):1176–1185, 2009.

[3] L. Sugarbaker, G. Snyder, and D. Maune. Results of the National
Enhanced Elevation Assessment. Presentation to International LiDAR
Mapping Forum, 2012.

[4] NASA Jet Propulsion Laboratory. Shuttle Radar Topography Mission.
http://www2.jpl.nasa.gov/srtm.

[5] USGS Global Positioning Application and Practice. U.S Geological
Survey. http://water.usgs.gov/osw/gps/index.html.

[6] Tele Atlas speeding up 3D Road Map Progress. Roads and Bridges. http:
//www.roadsbridges.com/tele-atlas-speeding-3d-road-map-progress.

[7] M. W. Dobson. ADAS and 3D-Road Map Databases. GeoInformatics,
pages 28–33, September 2009.

[8] M. Over, A. Schilling, S. Neubauer, and A. Zipf. Generating web-based
3D city models from OpenStreetMap: the current situation in Germany.
Computers, Environment and Urban Systems, 34(6):496–507, 2010.

[9] Y. Liu, Z. Li, R. Hayward, R. Walker, and H. Jin. Classification of
Airborne LiDAR Intensity Data using Statistical Analysis and Hough
Transform with Application to Power Line Corridors. In Digital Image
Computing: Techniques and Applications, pages 462–467, 2009.

[10] A. S. Antonarakis, K. S. Richards, and J. Brasington. Object-based
Land Cover Classification using Airborne LiDAR. Remote Sensing of
Environment, 112(6):2988–2998, 2008.

[11] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient
Processing of Spatial Joins using R-trees. In SIGMOD, pages 237–246,
1993.

[12] M.-L. Lo and C. V. Ravishankar. Spatial Joins using Seeded Trees. In
SIGMOD, pages 209–220, 1994.

[13] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins using
R-trees: Breadth-first Traversal with Global Optimizations. In VLDB,
pages 396–405, 1997.

[14] M. Isenburg and P. Lindstrom. Streaming Meshes. In IEEE Visualization,
page 30, 2005.

[15] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth
Edition: A Quantitative Approach. Morgan Kaufmann, 2006.

[16] M. de Berg. Computational Geometry: Algorithms and Applications.
Springer, 2000.

[17] U. Ramer. An Iterative Procedure for the Polygonal Approximation
of Plane Curves. Defense Technical Information Center, New York
University, 1972.

[18] C. Zhang, E. Baltsavias, and A. Gruen. Knowledge-based Image Anal-
ysis for 3D Road Reconstruction. In Asian Journal of Geoinformatics,
pages 3–8, 2000.

[19] C. Zhang, E. Baltsavias, and A. Gruen. Improvement and Updating of
Cartographic Road Databases by Image Analysis Techniques. In Ph.D.
thesis, Institute of Geodesy and Photogrammetry, 2002.

146

