
Identifying Typical Movements Among Indoor
Objects—Concepts and Empirical Study

Laura Radaelli∗ Dovydas Sabonis†
∗Department of Computer Science

Aarhus University, Denmark
Email: {radaelli, csj}@cs.au.dk

Hua Lu† Christian S. Jensen∗
†Department of Computer Science

Aalborg University, Denmark
Email: dovydas.sabonis@gmail.com, luhua@cs.aau.dk

Abstract—With the proliferation of mobile computing, po-
sitioning systems are becoming available that enable indoor
location-based services. As a result, indoor tracking data is also
becoming available. This paper puts focus on one use of such data,
namely the identification of typical movement patterns among
indoor moving objects. Specifically, the paper presents a method
for the identification of movement patterns. Leveraging concepts
from sequential pattern mining, the method takes into account
the specifics of spatial movement and, in particular, the specifics
of tracking data that captures indoor movement. For example,
the paper’s proposal supports spatial aggregation and utilizes
the topology of indoor spaces to achieve better performance. The
paper reports on empirical studies with real and synthetic data
that offer insights into the functional and computational aspects
of its proposal.

I. INTRODUCTION

The identification of movement patterns is an interesting
challenge, and both academic and industrial research is ongo-
ing on this topic, which has a wide range of potential real-
world applications. For example, frequent movement pattern
techniques can be applied to historical records of hurricane
tracking data in order to enable the prediction of the move-
ments of emerging hurricanes [1]. Likewise, frequent pattern
mining of outdoor trajectories is used in traffic control [2],
ecological studies (observing animal movement and migra-
tion [3]), homeland security [4], and other location-based
services.

With the continued deployment of indoor positioning sys-
tems, increasing amounts of indoor tracking data are becoming
available; this enables the development of techniques for the
identification of indoor movement patterns. Like in outdoor
settings, indoor data mining techniques have a wide range
of potential applications, covering such areas as targeted
advertising, store location planning, resource management,
activity monitoring, and security.

Indoor movement data differs from outdoor movement data.
First, indoor and outdoor spaces are different. Indoor space
is composed of entities such as walls, rooms, and doors that
restrict and enable the movement of objects; this makes Eu-
clidian distance inapplicable in indoor settings. Furthermore,
indoor locations are typically symbolic, e.g., room 355, rather
than pairs of coordinate values (latitude, longitude). Second,
indoor positioning systems differ from outdoor positioning
systems and emit different positioning data. For example,

GPS has become the de facto standard outdoor positioning
system, but is generally not applicable indoors. In contrast,
indoor positioning systems are typically based on widely
available wireless radio technologies such as Wi-Fi, Bluetooth,
and short range proximity sensor technologies such as RFID,
or a combination of such infrastructures. Depending on the
infrastructure(s) utilized, separate methods [5]–[8] exist that
aim to enable indoor positioning.

Fig. 1 shows trajectories of people moving inside a building,
as detected by a Bluetooth positioning system. The figure

User1

User3

User2

User4

BS1 BS2 BS3

BS5

BS6

BS4
BS8

BS7

User5

Figure 1. Running Example

depicts four rooms, each connected by a door to a common
hallway. Eight Bluetooth base stations (BS i) are deployed:
five in the hallway and three in two of the rooms. A base
station is depicted as a dot, representing the actual base station,
surrounded by a dashed circle, representing the detection range
of the base station. Users are detected by a base station when
they are inside its range.

The example encompasses five users, represented by lines
with different styles. We can see that the users go to dif-
ferent rooms, but are all passing through the hallway. If we
define a path as being frequent when it is used by at least
40% of the users, we can identify these frequent patterns
that are used by at least two users: 〈BS1,BS 2,BS 3,BS 5〉,
〈BS 1,BS 2,BS 3,BS 6〉, and 〈BS 5,BS 7,BS 8〉.

The paper presents a method for identification of typical
movements among objects moving in indoor spaces. The
method targets specifically movements in indoor spaces, and it
is the first such method that is able to contend with the whole
spectrum of object location data that captures movement in
symbolic terms; it is therefore independent on the positioning

2013 IEEE 14th International Conference on Mobile Data Management

978-0-7695-4973-6/13 $26.00 © 2013 IEEE

DOI 10.1109/MDM.2013.29

197

JacobN
Text Box
©2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

technology used for collecting the movement data. The method
leverages concepts from sequential pattern mining [9], [10]
and encompasses two new techniques for the generation of
candidate frequent movement patterns. These exploit proper-
ties of indoor space in order to improve performance. Empir-
ical studies show that when using one of the two techniques,
the method is able to efficiently support datasets comprising
several millions of records.

The paper covers a series of experiments conducted in
order to test the efficiency of each proposed technique. Both
simulated and real-world data are used. The real-world data
used is obtained from Copenhagen Airport and contains more
than 7 million observations from 25 Bluetooth base stations,
covering more than 74,000 different users.

We exploit the real-world dataset for not only considering
computational efficiency, but also considering the query results
obtained. The findings suggest that our techniques are effective
in discovering patterns of objects moving in indoor spaces.

A variety of techniques have been proposed for finding
frequent patterns in spatio-temporal data and sequential pat-
terns in non-spatial data [9]–[14]. However, these techniques
do not take into account the specifics of the indoor setting
as described above. To the best of our knowledge, only two
studies [15], [16] consider the problem of finding movement
patterns in indoor spaces, and the resulting proposals differ
substantially from the techniques we propose. First, the ex-
isting methods are developed for RFID systems, while our
techniques can be used with all indoor positioning systems
where the location is represented in symbolic terms. Second,
unlike the existing methods, we target large indoor spaces with
large populations.

To summarize, this paper proposes three contributions:

• A general method for identifying typical movements
among indoor moving objects that supports pattern iden-
tification at multiple spatial granularities.

• Two novel candidate frequent movement pattern genera-
tion techniques that exploit the indoor setting to achieve
improved performance.

• An empirical study with synthetic data as well as a large
real-world dataset that elicits design properties of the
method and techniques.

The remainder of this paper is organized as follows: Sec-
tion II presents the problem setting and states the problem;
then Sec. III describes our approach and presents the two new
techniques for candidate generation. Section IV discusses an
optional post-processing that identifies patterns on a coarse
spatial granularity. Section V reports on the experimental
study. Finally, Sec. VI covers related work, and Sec. VII
concludes and offers directions for future work.

II. PRELIMINARIES

A. Indoor Positioning Data

We assume a setting where indoor positioning sensors (e.g.,
RFID readers or Bluetooth base stations) are deployed at pre-
selected indoor positions. Moving objects are attached with

detectable items like RFID tags or mobile phones with Blue-
tooth interfaces. When an object is within the sensing range
of a positioning sensor, its presence is detected and reported
by the sensor. Each sensor continuously detects and reports
objects with a frequency determined by its sampling rate. A
positioning reading is of the form (sensorID , objectID , time),
where sensorID identifies a positioning sensor, objectID

identifies an object, and time is the detection time.
A set of readings for the running example is shown in

Table I, where readingID identifies a reading.

Table I
RAW POSITIONING DATA

readingID sensorID objectID time
r1 BS1 user1 t1
r2 BS1 user1 t2
r3 BS1 user3 t2
r4 BS1 user1 t3
r5 BS1 user3 t3
r6 BS2 user3 t4
r7 BS2 user3 t5
r8 BS2 user1 t7

B. Object Tracking Table

In a pre-processing step [17], the raw readings are con-
solidated and inserted into an Object Tracking Table (OTT)
with schema (recordID , sensorID , objectID , ts, te). A record
in the table states that the object objectID is continuously
observed by the positioning sensor sensorID in the closed
period from time ts to time te. In addition, recordID identifies
a record.

The content of Table I can be transformed to that in Table II.

Table II
INDOOR OBJECT TRACKING TABLE

recordID sensorID objectID ts te
rd1 BS1 user1 t1 t3
rd2 BS1 user3 t2 t3
rd3 BS2 user3 t4 t5
rd4 BS2 user1 t7 t8

C. Problem Statement

As a precursor to defining the problem addressed, we define
key concepts that are also used throughout the paper.

Given an object tracking record rd , ΠsensorID,ts,te(rd) is
a tracking triple of object rd .objectID . An object can have
multiple tracking records and has a corresponding tracking
triple for each such record. Referring to the running example
in Table II, user1’s tracking triple for rd1 is (BS 1, t1, t3).

Given consecutive tracking triples (sensor i, tsi, tei) and
(sensor j , tsj , tej) for an object, the transition duration, i.e.,
the time period between the two tracking records, is tsj − tei.
Next, an object’s indoor trajectory is the time-ordered se-
quence of the object’s tracking triples.

It is possible for an object to have multiple indoor tra-
jectories in an object tracking table OTT . Whether or not
two consecutive tracking triples belong to the same or to

198

two different trajectories depends on the transition duration.
Specifically, two consecutive tracking triples (sensor i, tsi , tei)
and (sensor j , tsj , tej) for an object are put in the same
trajectory if and only if tsj − tei ≤ Tsplit , where Tsplit is
a splitting threshold. Otherwise, (sensor i, tsi , tei) closes a
trajectory, and (sensor j , tsj , tej) starts a new trajectory.

The splitting threshold Tsplit is useful when dealing with
cases where moving objects are not observed for a long
duration of time. For example, employees usually leave their
offices after working hours and return to their offices only the
next working day. In such cases, separate trajectories should be
formed for different days. We use T T (OTT , Tsplit) to denote
the trajectory table that results from OTT when using Tsplit

as the splitting threshold.
In the running example in Table II, let the splitting threshold

Tsplit be 3 time units. As a result, in T T (OTT , 3) user1 has
two trajectories, i.e., ((BS 1, t1, t3)) and ((BS 4, t7, t8)), and
user3 has one trajectory, i.e., ((BS 1, t2, t3), (BS 2, t4, t5)).

Definition 1: Indoor Movement Pattern
An indoor movement pattern is a sequence of sensor identi-
fiers, i.e., 〈sensor i1 , sensor i2 , . . . , sensor in 〉, n ≥ 1.

We refer to an indoor movement pattern of length n as an
n-pattern .

An indoor trajectory upholds an indoor movement pat-
tern 〈sensor i1 , sensor i2 , . . . , sensor in 〉 if and only if there
exist n consecutive tracking triples (sensor i1 , ts1 , te1),
(sensor i2 , ts2 , te2), . . . , (sensor in , tsn , ten) in the trajectory.
In a single trajectory there can exist more than one of such
sequences of n consecutive tracking triples; we let OCC(p, t)
denote the number of occurrences of a pattern p in a trajectory
t.

Definition 2: Support
Given an object tracking table OTT , a splitting threshold
Tsplit , and an indoor pattern p, the support of p is

support(p,OTT, Tsplit) =
∑

t∈T T (OTT,Tsplit)

OCC(p, t)

Thus, the OTT is split according to Tsplit to obtain a set
of trajectories. The support of p is then the sum over these
trajectories of the number of times each trajectory upholds p.

We are interested in finding all frequent indoor movement
patterns from the information captured in an object tracking
table.

Problem Definition: Given an indoor object tracking
table OTT , a splitting threshold Tsplit , and a support
threshold Smin , frequent indoor movement pattern min-
ing returns all indoor movement patterns p that satisfy
support(p,OTT , Tsplit) ≥ Smin .

III. MINING FREQUENT INDOOR MOVEMENT PATTERNS

We proceed to detail our solution to the problem of frequent
indoor movement pattern mining.

A. Solution Outline

The outline of our solution is shown in Fig. 2. First, the
data is prepared for the mining process. The object tracking

table OTT is formed from the raw positioning data, and the
trajectory table T T (OTT , Tsplit) is built according to the
Tsplit set by the user. Second, the actual mining process begins
and subsequent iterations of the trajectory table T T are done
in order to discover all the frequent indoor movement patterns.
Finally, optional post-processing is performed, to be described
in Sec. IV.

Data

Preparation

Mining

Process

Result

Aggregation

Build

Tracking

Table

Reconstruct

Trajectories

Generate

and Test

Candidates

Compute

Regions

Support

Figure 2. Method Outline

The actual mining process consists of the three steps shown
in Fig. 3. In the first step, we obtain the set of individual
sensors (1-patterns) and the set of transitions (2-patterns) that
satisfy the minimum support requirement. In the second step,
multiple passes over the intermediate data are performed in or-
der to discover longer patterns that meet the minimum support.
In each pass, the frequent pattern results calculated in previous
passes are combined to generate longer candidate patterns. In
the third step, the aggregate support of each candidate pattern
is computed, and only the qualifying candidates are kept for
use in subsequent passes. The process terminates when no
candidate patterns exist that meet the minimum support. In
the third step, final results (including all frequent patterns) are
returned.

Candidate Patterns

Frequent Individual Patterns and Transition Table

Aggregate Support

Transitional Technique Mid-Point Technique

Figure 3. Mining Process

B. Frequent Individual Patterns and Transition Table

The first step calculates the supports for sensors and transi-
tions, i.e., 1-patterns and 2-patterns, respectively. The frequent
individual sensors are needed in subsequent steps because
every movement pattern that meets the minimum support must
be composed of a set of 1-patterns that each meet the minimum
support. Furthermore, finding all frequent transitions provides
us with additional information on the indoor space that can be
exploited during candidate generation.

199

The set of frequent n-patterns with their support is
stored in a table called n-pattern table with the schema
(pattern, support). In the rest of the paper, we use PTn to
denote an n-pattern table.

The pseudo-code presented in Algorithm 1 shows how to
find individual frequent sensors and frequent transitions from
a trajectory table. Trajectory table T T is iterated once (lines
1–13), and each trajectory is scanned element by element. For
each element of a trajectory, the support of the corresponding
1-pattern is incremented by 1 (lines 4–7), and also the support
of the 2-pattern composed by the element itself and the next
element (line 8) is incremented by 1 (lines 9–12). Having

Algorithm 1 compute1and2Patterns(T T ,Smin)

1: for t ∈ T T do
2: while t �= ⊥ do
3: p ← head(t).sensorID ;
4: if PT1 .contains(p) then
5: PT1 .incrementSupport(p, 1);
6: else
7: PT1 .add(p, 1);
8: p ← p.concat(head(tail(t)).sensorID);
9: if PT2 .contains(p) then

10: PT2 .incrementSupport(p, 1);
11: else
12: PT2 .add(p, 1);
13: t ← tail(t);
14: for e ∈ PT1 do
15: if e.support < Smin then
16: PT1 .remove(e);
17: for e ∈ PT2 do
18: if e.support < Smin then
19: PT2 .remove(e);
20: return PT1 ,PT2 ;

iterated through the whole trajectory table, infrequent 1-
patterns and 2-patterns are removed from the respective pattern
tables (lines 14–19). The results are returned in a 1-pattern
table and a 2-pattern table (line 20).

C. Candidate Patterns Generation

The mining process proceeds by performing a series of
passes over the data in order to discover longer patterns that
meet the minimum support. In each pass, candidate patterns
are generated based on the result of the previous pass, and the
support of each pattern is computed.

To determine whether a candidate pattern actually meets the
minimum support, an iteration of the whole trajectory table is
needed. Hence, it is very important to reduce the number of
candidates as much as possible while ensuring that all frequent
patterns are found.

A naive approach to generate potentially frequent candidate
patterns is to consider all combinations of frequent patterns
found previously. This approach then considers all combi-
nations of sensors from the 1-pattern table, meaning that it
generates many candidates with support 0. This is because the
indoor topology dictates no path exists that directly connects
many pairs of sensors.

A better idea is to utilize information contained in the
previously formed transition table in order to prune irrelevant
candidates. In general, we exploit all the information provided
by the results of previous passes in order to prune irrelevant
candidate patterns.

In the next two sections, we design two topology-based
techniques for generating potentially frequent candidate pat-
terns. Both techniques exploit the indoor topology as well as
the data gathered in the previous passes to eliminate infrequent
candidates quickly. In each technique, we generate longer
candidates by appending a seedPattern to a basePattern .
Patterns pi and pj can be combined if last(pi) = head(pj),
i.e., the last element of the base pattern must be equal to
the first element of the seed pattern. We refer to this as the
Combination Rule.

1) Mid-Point Technique: The first technique for candidate
patterns generation exploits as much information as possible
from the frequent patterns found in previous passes. The length
of a seed pattern is adjusted to be as close to the length of the
base pattern as possible. Hence, both base and seed patterns
contribute to the new pattern with at most half. In order to
achieve this, the length of base patterns is set to �n

2
+ 1 � and

the length of seed patterns is set to �n
2
	. Therefore, base and

seed patterns differ at most by 1 in length.
This Mid-point Technique is described in Algorithm 2. The

algorithm takes as input a value n, the length of the patterns to
obtain, and it returns an n-pattern table. Base and seed patterns

Algorithm 2 midPointTechnique(n)

1: bases ← PT� n
2
+1�.pattern;

2: seeds ← PT� n
2
�.pattern;

3: candidates ← generateCandidates(bases, seeds);
4: for p ∈ candidates do
5: s← calculateSupport(p);
6: if s ≥ Smin then
7: PTn .add(p, s);
8: return PTn ;

are retrieved from the pattern tables corresponding to half the
length of n (lines 1–2). A set of candidates is generated using
the algorithm described in Algorithm 3 (line 3). After that, the
support of each n-pattern candidate is calculated by function
calculateSupport(·) (line 5), which scans the trajectory table
and counts pattern occurrences according to Def. 2, and the
frequent n-patterns are added to the n-pattern table (lines 6–7)
to be returned (line 8).

Algorithm 3 generates candidates using base and seed
patterns. It takes as input two sets (base and seed patterns) and
outputs a set of candidate patterns. For each base pattern all
the seed patterns are checked (lines 2–3), and the seed patterns
that satisfy the Combination Rule (line 4) are appended to the
base pattern with the common element removed, i.e., the first
element of the seed (line 5). These combined patterns are the
candidates (line 6) that are then returned.

Table III shows how 4-patterns are combined with 3-patterns
to generate candidate 6-patterns for the running example.

200

Algorithm 3 generateCandidates(baseList , seedList)

1: candidates ← ∅;
2: for base ∈ baseList do
3: for seed ∈ seedList do
4: if last(base) = head(seed) then
5: p ← base.concat(tail(seed));
6: candidates ← candidates ∪ {p};
7: return candidates;

Table III
GENERATING CANDIDATE 6-PATTERNS

4-patterns

〈BS1,BS2,BS3,BS5〉
〈BS1,BS2,BS3,BS6〉

×

3-patterns

〈BS1,BS2,BS3〉
〈BS2,BS3,BS5〉
〈BS2,BS3,BS6〉
〈BS5,BS7,BS8〉

⇒

Candidate 6-patterns

〈BS1,BS2,BS3,BS5,BS7,BS8〉

2) Transitional Technique: This technique exploits the con-
straints of the indoor movement transitions in order to reduce
the number of candidates. Such constraints are captured in the
frequent transitions. Indeed, the 2-pattern table contains all the
possible connections between two sensors in the positioning
data. This technique generates candidate patterns by expanding
patterns formed in the most recent pass (n − 1) with patterns
from the 2-pattern table.

The transitional technique is formalized in Algorithm 4. It
differs from Algorithm 2 only in the first two lines, where base
patterns are retrieved from the (n − 1)-pattern table (line 1)
and seed patterns from the 2-pattern table (line 2).

Algorithm 4 transitionalTechnique(n)

1: bases ← PTn−1 .pattern;
2: seeds ← PT2 .pattern;
3: candidates ← generateCandidates(bases, seeds);
4: for p ∈ candidates do
5: s← calculateSupport(p);
6: if s ≥ Smin then
7: PTn .add(p, s);
8: return PTn ;

Table IV illustrates the generation of candidate 4-patterns
by the transitional technique. Here, the 3-patterns and the 2-
patterns are used to generate 4-patterns.

Table IV
GENERATING CANDIDATE 4-PATTERNS

3-patterns

〈BS1,BS2,BS3〉
〈BS2,BS3,BS5〉
〈BS2,BS3,BS6〉
〈BS5,BS7,BS8〉

×

2-patterns

〈BS1,BS2〉
〈BS2,BS3〉
〈BS3,BS5〉
〈BS3,BS6〉
〈BS5,BS7〉
〈BS7,BS8〉

⇒

Candidate 4-patterns

〈BS1,BS2,BS3,BS5〉
〈BS1,BS2,BS3,BS6〉
〈BS2,BS3,BS5,BS7〉

D. Aggregate Support

So far we have used Def. 2 to calculate a pattern p’s support
as the number of occurrences of p in the trajectory table

T T . This definition of support does not take into account the
number of objects that contribute to the support of a pattern.
Thus, it does not distinguish between the extreme cases where
a support of s is due to a single object and where s is due to
s objects.

In traditional sequential pattern mining [9], [10], the support
of a sequence is calculated with regard to the number of
objects supporting it. In our setting, this means that the support
of a pattern is incremented only once per object. However,
when a moving object 9 times out of 10 tends to move
according to pattern p1 instead of pattern p2, the support of
p1 should be able to reflect this.

On the other hand, incrementing the support of a pattern
every time it is encountered in the data without paying
attention to the identity of the objects may also not always be
ideal. For example, this can introduce sensitivity to outliers
because a single outlier object whose trajectories frequently
uphold a pattern can significantly affect, or distort, the final
result.

To account for the above observations, we introduce the
concept of aggregate support.

Definition 3: Aggregate Support
Given an aggregation weight w ∈ [0, 1], the aggregate support
of a pattern p is defined as:

supportA = supportD + (supportT − supportD)× w

Here, supportD represents the number of distinct objects
with a trajectory that upholds a pattern; supportT is the
support according to Def. 2, the total number of times a
pattern is upheld by trajectories in the trajectory table. Thus,
supportT ≥ supportD.

Parameter w controls the impact of a single object on
the support of a pattern. When w = 0, supportA mirrors
the typical sequential pattern mining scenario where support
is incremented once per object. When w = 1, supportA
is the same as Def. 2. Different values of w can disclose
different information from the data, according to the needs
of an application.

Different settings for w are useful in different scenarios. In a
shop planning application, a location is good if many different
potential customers pass by the location, while it is not good
if only a few customers pass by many times. In this case, we
set w to a low value. In a safety study, it is useful to know
the use that some part of an indoor space is getting. It does
not matter whether the space is being “re-used” by relatively
few people or is being used by many different people. In this
case, we set w to a large value.

IV. REGION-BASED PATTERN MINING

The techniques presented in Sec. III mine frequent indoor
moving patterns based on positioning sensors. This fine gran-
ularity of individual sensor ranges may obscure interesting
patterns that are clearer at a coarser spatial granularity. It can
also be of interest to know how many objects moved from
one large indoor region to another large region. For example,
when managing a large airport, it is relevant to determine

201

how passengers move between different regions such as tax-
free shopping zone, the airport security area, and the different
boarding gates.

Here, we define region-based pattern mining as an optional
step that occurs after the mining process described in Sec. III.
This optional step only accesses the frequent indoor movement
pattern results, without any need for additional scanning of the
object trajectory table.

We assume that an indoor space is divided into disjoint
regions, each of which covers a set of positioning sensors.
Accordingly, we define a mapping S2R : S → R that maps a
sensor to its region. Given a sensor si, S2R(si) thus returns the
region that covers si. In addition, a region rj can be regarded
as the set of sensors {sensor i1 , sensor i2 , . . . , sensor in} for
which S2R returns rj .

We then define the region pattern notion as follows.
Definition 4: Region Pattern

A region pattern rp is a sequence of region identifiers, i.e.,
〈ri1 , ri2 , . . . , rin 〉, n ≥ 1.

Using the mapping S2R, we are able to generate the
frequent region patterns of length n from the set of all frequent
indoor movement patterns of length n. Algorithm 5 describes
the process. It takes PTn as input and returns all frequent
region patterns of length n in a table RPTn with schema
(regionPattern, support). The for-loop (lines 1–7) iterates

Algorithm 5 computeRegionPatterns(PTn)

Require: n ≥ 2
1: for (p, s) ∈ PTn do
2: rp ← mapToRegion(p);
3: if rp.length = n then
4: if RPTn .contains(rp) then
5: RPTn .incrementSupport(rp, s);
6: else
7: RPTn .add(rp, s);
8: return RPTn ;

through all the frequent indoor movement n-patterns. Each
such pattern p is converted to a region pattern rp using a
mapping function (line 2). If rp is already in RPTn, its
support is incremented by p’s support s (lines 4–5); otherwise,
rp is inserted into RPTn with s being its initial support (line
7). The algorithm can be used to produce region patterns of
any length n.

The function mapToRegion(.) is described in Algorithm 6.
It converts an indoor movement pattern p to a region pattern
based on mapping S2R. Specifically, each sensor s in p is
mapped to its region (line 3). If two adjacent sensors map to
the same region, only one region identifier is kept in the region
pattern (lines 4–6).

An example of region pattern computation is illustrated in
Table V. It is based on the running example, where the base
stations are grouped into three regions, r1 = {BS 1,BS 2},
r2 = {BS 3}, and r3 = {BS 4,BS 5,BS 6,BS 7,BS 8}. The
table shows the frequent region patterns that can be obtained
from a 3-region-pattern table.

Algorithm 6 mapToRegion(p)

Require: p �= ⊥
1: rprev ← null; rp ← 〈〉;
2: for each element s ∈ p do
3: r ← S2R(s);
4: if r �= rprev then
5: rp.concat(r);
6: rprev ← r;
7: return rp;

Table V
CALCULATING 3-REGION-PATTERNS SUPPORT

3-pattern Support

〈BS1,BS2,BS3〉 4
〈BS2,BS3,BS5〉 2
〈BS2,BS3,BS6〉 2
〈BS5,BS7,BS8〉 2

⇒

region pattern Support

〈r1, r2〉 4
〈r1, r2, r3〉 4

〈r3〉 2

In the example, the first 3-pattern is converted to a 2-
region-pattern, the middle two 3-patterns are converted to
one 3-region-pattern with support 4, i.e. the sum of the two
corresponding supports, and the last 3-pattern is converted to
a 1-region-pattern.

In our frequent pattern mining application, the regions to
use depend on the specifics of the application, and the task of
defining regions is to be accomplished by domain experts and
should be done before starting the mining.

V. EXPERIMENTAL STUDY

This section reports on an experimental study conducted
to gain insight into the properties of the proposed method
and techniques. Experiments are performed on both synthetic
and real-world data. All algorithms described in previous
sections are implemented in Java 6. All the experiments that
study runtime performance are executed on a 2.50 GHz Core
i5 machine with 8 GB main memory, running Windows 7
operating system.

A. Results of Indoor Frequent Pattern Mining

1) Using Synthetic Data: We use a simulation application
to generate synthetic indoor moving object data. We vary three
parameters. The first is the number of moving objects, which
is simply the number of different users moving in the indoor
space during the simulation. The second is the number of
simulation rounds, which influences the time that each moving
object spends in the space before leaving. The third is the
number of positions, which indicates how many positioning
sensors are deployed in the indoor space.

First, we fix the number of rounds to 100, the number of
positions to 19, and the minimum support to 100. We then
vary the number of moving objects among 100, 250, 500, and
1,000. The results on mining efficiency are reported in Fig. 4.

When the number of objects is 100 or 250, the two candidate
pattern generation techniques perform equally well. However,
as the number of objects increases to 500 and 1000, the
transitional technique performs much more efficiently. With

202

 0

 20

 40

 60

 80

 100

 120

 100 250 500 1000

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
s)

Number of Moving Objects

Transitional
Mid-point

Figure 4. Varying the Number of Moving Objects (100–1,000)

 10

 100

 1000

 10000

 100000

 5 10 100 5001K

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
s)

Minimum Support

Transitional
Mid-point

Figure 5. Varying Minimum Support (1,000–5)

1,000 objects, it needs 39.9s to finish, whereas the mid-
point technique needs up to 101.8s. The transitional technique
makes use of the 2-pattern transition table, which significantly
reduces the number of candidate pattern combinations that
must be checked during the mining process.

Second, we fix the number of objects to 500, the number
of rounds to 250, and the number of positions to 19. We then
vary the minimum support Smin among 5, 10, 100, 500, and
1,000. The results on mining efficiency are reported in Fig. 5.

The figure shows that the minimum support has high impact
on the mining efficiency, as it directly affects the number of
candidates that are pruned. A higher minimum support results
in a larger number of candidates being pruned at the beginning
of the mining, which reduces the subsequent computational
loads. The figure also shows that the transitional technique
outperforms the mid-point technique. A huge performance
gap is observed when the minimum support is small (5 and
10). This again indicates that the transitional technique makes
effective use of the indoor topology to constrain candidate

pattern growth.

2) Using Real-World Data: We also use a tracking dataset
from Copenhagen Airport to evaluate the indoor movement
pattern mining techniques. The dataset is obtained from
a Bluetooth-based positioning system that encompasses 25
Bluetooth base stations deployed primarily in the airport’s
Terminals 2 and 3; the user is located within a rough circle
of about 30 meters [18]. When a device, typically a mobile
phone, with an enabled Bluetooth interface is within range
of such a base station, the positioning system continually
records an identifier of the device. According to the supplier
of the system, some 10–20% of all mobile phones have their
Bluetooth interface enabled. The system supports a variety of
services, including services that estimate the waiting time in
the security area [19].

The total number of raw position records in the dataset
slightly exceeds 7 million. This yields a total of 135,397
moving object trajectories when setting Tsplit = 45 minutes.
We use Def. 2 to measure the frequency of patterns. The most
frequent position in the dataset has a support of 1,064,350.

Experiments are conducted in order to discover the most
frequent trajectories in the dataset. Five mining runs are
performed with minimum support set to 100,000, 50,000,
10,000, 5,000, and 2,000. The results are summarized in
Fig. 6(a). We use logarithmic scales on both axes in order
to ease the readability of the results for the high minimum
support values.

As with the synthetic data, the transitional technique out-
performs the mid-point technique for small minimum support,
even if the latter has a major advantage when minimum
support is set to a high value. In fact, with minimum support
50,000, the mid-point technique finishes in 67 minutes, which
is 16 minutes earlier than the transitional technique. The slight
disadvantage of the latter technique seen here is attributed to
the fact that the real dataset contains a large number of short
frequent patterns—the use of the 2-pattern transition table
is penalized by this. When the minimum support is set to
5,000, the transitional technique takes 1,279 minutes to finish,
whereas the mid-point technique takes 1,977 minutes.

We also investigate the number of candidate patterns that
are generated in each pass of the mining process. The results
for minimum support 5,000 are shown in Fig. 6(b), and those

 10

 100

 1000

 10000

 100000

2K5K10K50K100K

E
x

ec
u

ti
o

n
 T

im
e

(m
in

u
te

s)

Minimum Support

Transitional
Mid-point

(a) Varying Minimum Support (100K–2K)

 0

 500

 1000

 1500

 2000

 2500

 4 8 12 16 20 24 28 32 36 40

N
u

m
b

er
 o

f
C

an
d

id
at

es

Pattern Length

Transitional
Mid-point

(b) Number of Candidates, Smin = 5.000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 8 12 16 20 24

N
u

m
b

er
 o

f
C

an
d

id
at

es

Pattern Length

Transitional
Mid-point

(c) Number of Candidates, Smin = 50.000

Figure 6. Number of Generated Candidates

203

for minimum support 50,000 are shown in Fig. 6(c).
From these two graphs, we find an explanation for the

behaviors of the two techniques reported in Fig. 6(a). The mid-
point technique performs better than the transitional technique
when the minimum support is set to 50,000, but worse when
it is set to 5,000. The reason is revealed by the number of
candidates generated in each pass. The mid-point technique
generates less candidates than the transitional technique when
the minimum support is 50,000 as shown in Fig. 6(c). We also
see that the number of candidates is extremely higher when
minimum support is 5,000, as shown Fig. 6(b). Large numbers
of candidates result in more room for the transitional technique
to prune candidate patterns using the transition table.

3) Summary: The mid-point technique performs best when
the size of the dataset is relatively small. It has a chance to
outperform the transitional technique when the dataset is small
or when most patterns are short. The transitional technique is
significantly more scalable and less sensitive to variation in the
minimum support. Overall, the transitional technique is more
generally applicable, and the experimental study indicates that
it performs better in almost all experimental settings.

B. Results on Aggregate Support

We use synthetic data to evaluate aggregate support (Def. 3)
based frequent pattern mining. We mainly investigate the
impact of the aggregation weight w. Recall that given a pattern
p, w controls the influence of the distinctness of the objects
that uphold p. We report the experimental results for the
transitional technique. Use of the mid-point technique yields
the same frequent patterns, but generally with somewhat lower
performance.

We first fix the number of simulation rounds to 100 and
vary the number of moving objects from 100 to 1,000. The
results are shown in Fig. 7. For both object cardinalities, the

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
er

 o
f

P
at

te
rn

s

Aggregation Weight (w)

100 objects
1000 objects

Figure 7. Varying Aggregation Weight and Number of Objects

number of patterns increases very slowly as w increases from
0 to 1. Therefore, the effect of w is insensitive to the number
of objects.

Next, we fix the number of objects to 500 and vary the
number of rounds from 100 to 1,000. The results are shown in
Fig. 8. When the number of rounds is set to 100, w actually has
no effect. When the number of rounds is increased to 1,000, w
influences the number of patterns, which increases linearly as
w increases. More simulation rounds make objects spend more
time and generate more data in the simulation, which increases

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
er

 o
f

P
at

te
rn

s

Aggregation Weight (w)

100 rounds
1000 rounds

Figure 8. Varying Aggregation Weight and Number of Rounds

the probability that the same object supports the same pattern
multiple times. Hence, the difference between supportT and
supportD is higher for a higher number of rounds, and the
effect of w is thus more significant. The effect of w on the

 0

 200

 400

 600

 800

 1000

 1200

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

S
u
p
p
o
rt

Aggregation Weight (w)

100 rounds
1000 rounds

Figure 9. Varying Aggregation Weight and Number of Rounds

average support of frequent patterns is shown in Fig. 9. As
expected, also the average support is increasing with w; and
also in this case, the rate of increase is higher for a higher
number of rounds.

We report on the effect of w on the mining efficiency in
Fig. 10. For a small number of rounds, the execution time is
constant. However, when the number of rounds is high, the
execution time is clearly affected by the value of w. As we

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
s)

Aggregation Weight (w)

100 rounds
1000 rounds

Figure 10. Varying Aggregation Weight and Number of Rounds

have already noticed, the number of patterns increases with w

for high numbers of rounds, and a higher number of patterns
implies a higher number of candidates to check, which results
in a higher execution time.

C. Results on Region Pattern Mining

In order to gain insight into the workings of region-based
mining, we perform experiments on the Copenhagen Airport

204

dataset. We aim to determine whether the use of different
regions (coarse grained versus fine grained) yields different
insights into the data.

To obtain meaningful region patterns, we clean the data by
removing noise. The total number of positioning readings are
reduced from 7 million to approximately 4 million. We use
two different ways of grouping locations into regions.

First, we identify regions in the airport with different func-
tions. Fig. 11 displays the 9 resulting regions. We then assign
the locations to the function regions that they are located in.
This grouping can be used in order to analyze the frequent
paths that people follow inside the airport before getting to a
gate. Specifically, grouping all gates into the same region is
helpful in identifying these kinds of patterns.

Figure 11. Regions in Function-based Grouping

The top-5 frequent 2-region patterns are listed in Table VI.
Clearly, the first two patterns indicate that the Scandinavian
Airlines (SAS) lounge is heavily used in Copenhagen Airport.
This is reasonable because Copenhagen Airport is the airline’s

Table VI
REGION MINING RESULTS, FUNCTION-BASED GROUPING

Frequent 2-region-patterns Support
〈Terminal2 ,VIP〉 448545
〈VIP ,Terminal2 〉 234655
〈Terminal2 ,Bus〉 210243
〈Security ,Bus〉 128445
〈Bus,Security〉 127341

main hub. The frequent patterns involving the bus station
conform to the fact that buses are convenient and extremely
often used means of transportation for passengers from and
to Copenhagen Airport and between the domestic terminal
(Terminal 1) and the international terminals (Terminals 2, 3).

Second, we focus on the boarding gates, which we group
into four disjoint regions. We divide all other areas into three
regions: terminal, security, and outside. The regions are shown
in Fig. 12. Performing region pattern mining using this region
setting can discover patterns between different gates.

Table VII reports the top-5 frequent 2-region patterns that
involve gates. We observe frequent movements from Termi-
nal to Gate D, which has boarding gates for international
flights. We also discover frequent movements to and from
Gate A. This is because most domestic and many Schen-
gen flights are accessed through gates there. Also, pattern

Figure 12. Regions in Gates-Based Grouping

Table VII
REGION MINING RESULTS, GATES-BASED GROUPING

Frequent 2-region-patterns Support
〈Terminal ,GateD〉 153154
〈GateA,Outside〉 126339
〈Outside,GateA〉 97481
〈GateA,Terminal〉 92795
〈Outside,GateD〉 81177

〈GateA,Terminal〉 suggests that many passengers transfer
from domestic and Schengen flights to longer distance inter-
national flights that are accessed via the Terminal region.

D. Summary

Experiments on runtime performance show that the method
used with the transitional technique is capable of dealing with
a large dataset. Experiments on aggregate support show that
it depends on the time objects spend in the space and not on
the number of objects. Results of region-based pattern mining
applied on a real-world dataset provide useful information for
the analysis of movements of objects in the indoor space.

VI. RELATED WORK

We are aware of only a few works that consider the
identification of typical object movements in indoor settings.
However, there are a number of works that target other
problems that are relevant to our work. We proceed to consider
related work on sequential pattern mining, indoor tracking, and
indoor movement mining.

Agrawal and Srikant [9] introduce the problem of sequential
pattern mining: given a database of customer transactions (i.e.,
〈customer ID, time, set of items purchased〉), sequential pattern
mining solves the problem of discovering sequences of items
that are most frequently purchased by customers. We use the
structure of sequential pattern mining algorithms [9], [10] for
our methods. However, indoor movement patterns differ from
purchase patterns in three important respects: (i) an element
of the former has a duration, while the latter is instantaneous;
(ii) an element of a movement pattern is a single sensor, while
in a purchase pattern, it can be a set of items; and (iii) while
the sequence of elements is strict in movement patterns, in
purchase patterns, if two elements occur one right after the
other in one sequence and are interleaved with a third element
in another sequence, the two sequences are still considered

205

as upholding the same pattern. Taking into account these
differences and the specifics of indoor movements, we propose
two new candidate generation techniques that are suitable for
the indoor movement setting.

Next, the pattern mining method presented in this paper
leverages a graph model based indoor tracking approach that
utilizes the topology of indoor space [17]. In particular, the
paper exploits a technique that transforms an initial dataset
into a more compact representation.

Since we model the indoor space as a graph, it is natural
to think of using graph mining methods [20]. However, it is
not straightforward to represent our data as a graph. Doing
so appears to call for a graph model that is not explicitly
considered in standard graph mining. This led us to not use
this approach, although it may be an interesting future research
direction.

Finally, we are aware of two studies that address the prob-
lem of indoor movement mining [15], [16]. The first study [15]
targets activity monitoring where it is important to identify
frequent movements. An RFID infrastructure is proposed that
can detect simultaneous movements of a limited number of
people. However, this infrastructure can only be deployed in
a small field. In contrast, we consider a setting where data
is collected by existing positioning systems that cover large
indoor spaces with very large populations of moving objects.

The second study [16] considers frequent pattern mining
and prediction. The proposed mining method constrains a
pattern on the time dimension; hence, if two users use the
same path at different times of the day, these are considered
as different patterns. This limitation is not reasonable in our
context; therefore, we cannot directly compare to this method.

VII. CONCLUSIONS AND FUTURE WORK

The paper considers the realistic setting where the move-
ments of people in indoor spaces are captured using presence
sensors. Using the resulting data, the paper tackles the problem
of identifying typical movements of objects. Two data mining
approaches are presented that take the logic of sequential
pattern mining as their outset and utilize the topology of indoor
space to improve performance by pruning irrelevant candidate
pattern segments. The resulting approaches also support the
concepts of aggregate and region-wise pattern mining.

The approaches are subjected to empirical studies with both
synthetic and real-world data in order to gain insight into their
efficiency and other properties. For example, the studies show
that one of the approaches has good scalability features and
is able to efficiently contend with datasets comprising several
millions of records.

Three research directions are of particular interest. The first
relates to the invention of new ways of generating potentially
frequent candidate patterns that minimize the number of candi-
dates while assuring that every possible pattern is covered. As
indicated by the paper’s studies, different candidate generation
approaches might perform differently in different phases of
the algorithm; therefore, it is of interest to investigate the
potentials of hybrid candidate generation models. Second, it

would be interesting to extend the representation of patterns
to include temporal information (e.g., duration of the stay
in a location) and adapt the mining process to deal with
this extra information. Third, as graph mining methods show
good performance, their use for indoor tracking data deserves
exploration.

ACKNOWLEDGMENTS

This research was supported in part by the Geocrowd Initial
Training Network, funded by the European Commission as
an FP7 Peoples Marie Curie Action under grant agreement
number 264994, and by the Indoor Spatial Awareness project,
funded by the Korean Land Spatialization Group and BK21
program.

REFERENCES

[1] Y. Su, S. Chelluboina, M. Hahsler, and M. Dunham, “A new data mining
model for hurricane intensity prediction,” in Proc. ICDM Workshops,
2010, pp. 98–105.

[2] T. Hauser and W. Scherer, “Data mining tools for real-time traffic
signal decision support & maintenance,” in Proc. Systems, Man, and
Cybernetics, vol. 3, 2001, pp. 1471–1477.

[3] Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: mining relaxed temporal
moving object clusters,” PVLDB, vol. 3, no. 1–2, 2010, pp. 723–734.

[4] K. A. Taipale, “Data mining and domestic security: connecting the dots
to make sense of data,” The Columbia Science and Technology Law
Review, vol. 5, no. 2, 2003.

[5] A. Baniukevic, D. Sabonis, C. Jensen, and H. Lu, “Improving Wi-Fi
based indoor positioning using Bluetooth add-ons,” in Proc. MDM, 2011,
pp. 246–255.

[6] E. Metola, S. Aparicio, P. Tarrio, and J. R. Casar, “Comparison of
localization methods using calibrated and simulated fingerprints for
indoor systems based on Bluetooth and WLAN technologies,” in Proc.
MADRINET, 2009, 10 pages.

[7] C. di Flora and M. Hermersdorf, “A practical implementation of indoor
location-based services using simple WiFi positioning,” J. Location
Based Services, vol. 2, no. 2, 2008, pp. 87–111.

[8] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 37, part C, no. 7, 2007, pp. 1067–1080.

[9] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. ICDE,
1995, pp. 3–14.

[10] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” in Proc. EDBT, 1996, pp. 3–17.

[11] H. Cao, N. Mamoulis, and D. W. Cheung, “Mining frequent spatio-
temporal sequential patterns,” in Proc. ICDM, 2005, pp. 82–89.

[12] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern
mining,” in Proc. KDD, 2007, pp. 330–339.

[13] S. Khetarpaul, R. Chauhan, S. K. Gupta, L. V. Subramaniam, and
U. B. Nambiar, “Mining GPS data to determine interesting locations,”
in Proc. IIWeb, 2011, article 8, 6 pages.

[14] N. S. Savage, S. Nishimura, N. E. Chavez, and X. Yan, “Frequent
trajectory mining on GPS data,” in Proc. LocWeb, 2010, article 3,
4 pages.

[15] Y. Liu, L. Chen, J. Pei, Q. Chen, and Y. Zhao, “Mining frequent
trajectory patterns for activity monitoring using radio frequency tag
arrays,” in Proc. PERCOM, 2007, pp. 37–46.

[16] K. F. Hu, L. Zhao, Y. C. Xu, and L. Chen, “Research on mining frequent
path and prediction algorithms of object movement patterns in RFID
database,” Applied Mechanics and Materials, vol. 109, 2011, pp. 715–
719.

[17] C. S. Jensen, H. Lu, and B. Yang, “Graph model based indoor tracking,”
in Proc. MDM, 2009, pp. 122-131.

[18] J. P. Hansen, A. Alapetite, H. B. Andersen, L. Malmborg, and
J. Thommesen, “Location-Based Services and Privacy in Airports,” in
Proc. INTERACT, 2009, pp. 168–181.

[19] BlipTrack website, http://www.bliptrack.com/, 2012.
[20] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern Mining,”

in Proc. ICDM, 2002, pp. 721–724.

206

