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Abstract—With the rapidly increasing deployment of Internet-
connected, location-aware mobile devices, very large and in-
creasing amounts of geo-tagged and timestamped user-generated
content, such as microblog posts, are being generated. We present
indexing, update, and query processing techniques that are
capable of providing the top-k terms seen in posts in a user-
specified spatio-temporal range. The techniques enable interactive
response times in the millisecond range in a realistic setting where
the arrival rate of posts exceeds today’s average tweet arrival rate
by a factor of 4-10. The techniques adaptively maintain the most
frequent items at various spatial and temporal granularities. They
extend existing frequent item counting techniques to maintain
exact counts rather than approximations. An extensive empirical
study with a large collection of geo-tagged tweets shows that
the proposed techniques enable online aggregation and query
processing at scale in realistic settings.

I.

The digital universe is expanding exponentially, and the
amount of text content available on the web, including news
items, web pages, and microblog posts, grows rapidly. Today,
everyone can generate such content. In particular, services such
as Twitter, Facebook, and Blogger make it easy for all to
contribute.

INTRODUCTION

Users of social media services often generate similar
content in response to events that catch their attention. For
example, when natural disasters occur, multiple users are
likely to report on this independently. Some users may discuss
evacuations and the traffic situation, while other users may
simultaneously discuss unrelated topics such as food recipes
or a sporting event. With thousands of pieces of content being
made available each second, techniques are needed to maintain
an overview of what occupies minds of users.

Proposals existing that are capable of finding currently pop-
ular topics in streaming text content [24], [26]. We extend these
by supporting also queries on past data and by allowing spatio-
temporal range queries. By supporting queries that retrieve the
top-k most frequent terms in content in user-specified spatio-
temporal regions, we support different services that aim to find
the “word in the street” or “talk of the town” in some time
period. To illustrate, Figure l1a shows a few tweets located in
a query region that covers part of New York City during some
time period. The most popular terms can be represented by a
tag-cloud, as shown in Figure 1b.

In a real-world setting, spatio-temporal regions may contain
millions of tweets.

A key design goal for the techniques needed to support this
functionality is scalability. Specifically, we seek a solution that
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Fig. 1: Example of Messages in New York, USA.

is capable of supporting the entire world and a long history, as
well as supporting a stream with many more posts per second
than what the average of some 3,000 tweets per second that
Twitter sees (and of which only a fraction is geo-tagged). This
goal is set to achieve a future-proof solution that anticipates
the rapid growth in geo-tagged posts.

Index structures, e.g., based on the R-tree, have been
proposed to support spatio-temporal queries. However, these
are not well suited for our setting with a rapid content
stream and spatio-temporal aggregate queries [32]. We thus
propose new indexing techniques that aim to support efficient
querying of streaming and historical data. We extend a popular
algorithm that maintains static-sized summaries of the most
frequent items in data streams to support dynamic, variable-
sized summaries so it can adapt to diverse data. Further, we
provide a new merging algorithm for these summaries.

The paper makes four contributions. First, we provide tech-
niques capable of supporting a holistic aggregate function [12]:
the top-k most frequent terms. We propose a variant of frequent
item counting that maintains top-k most frequent terms error-
free. This allows us to combine aggregates as needed to
support arbitrary spatio-temporal regions with low probability
of introducing errors, and it allows us to provide correctness
guarantees.

Second, we provide techniques that maintain and use
spatio-temporal aggregates that grow and shrink according to
the activity (the number of distinct items to aggregate) and
the required k. The aggregates are partially persistent, i.e., all
versions can be accessed, but only the current version can be
modified. Once aggregated, the top-k terms are compact in
comparison to the currently active aggregates.
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Third, we integrate the above techniques into the Adaptive
Frequent Item Aggregator (AFIA) system that supports spatio-
temporal top-k frequent term queries. The finest spatial gran-
ularity supported is 100x 100 m?, as finer granularities make
little sense in our setting, and the finest temporal granularity
is an hour.

Fourth, we study AFIA empirically using a real-world data
stream from Twitter. On server class machines, AFIA supports
a stream with more than 13,000 tweets per second. One
month of aggregates requires up to 120 GB of memory. The
accuracy depends on the number of precomputed aggregates
needed to answer a query. Since we maintain aggregates at
multiple spatial and temporal granularities, the lowest observed
accuracy was 97%. The study suggests that AFIA meets the
scalability design goal.

The remainder of the paper is structured as follows.
Section II-A defines the problem and covers related work.
Section III presents the indexing and aggregation framework.
An experimental evaluation is given in Section IV. Finally, we
conclude in Section V.

II. PRELIMINARIES AND RELATED WORK
A. Problem Definition

Let D be a set of spatio-temporal web objects 0o = (A, doc,
ts), where X is a point location in 2D Euclidean space, doc is
a text document, and s is a time point. The score of a term
t for a set S of objects, score(t, S), is the count of objects in
S whose text document contains ¢:

score(t,S) =1{o€ S|t € o.doc}| (1)
A top-k most popular terms query ¢ = (R, k,I) returns a
pair consisting of (i) k£ terms from objects in D that belong
to the spatio-temporal range defined by 2D rectangle R and
time interval I = [t,.] and (ii) an integer k, < k. The first
kg terms are guaranteed to have the highest scores for the set
con51dered and the remalnlng k — kg4 terms are approximate.
When k, = k, the result is exact.

The query is designed to take advantage of the setting,
where exact results are not necessary, in order to achieve high
performance. We aim to compute results were kg is close to
k and where the k — k, unguaranteed terms either are top-k
terms or are close to being so.

Example 1. Consider six objects with these documents:

s1 = “Hurricane Sandy causes evacuation of NYTMetro.”
so = “NYC under water.”

s3 = “NYTMetro not running.”

s4 = “NYTMetro down because of sandy.”

s5 = “Sandy Evacuation in New York.”

s¢ = “Flooding due to the storm.”

Ignoring word case and so-called stop words (in grey
color), 17 terms are considered in total. An exact
query with & = 3 on these objects yields the result
({sandy, nytmetro, evacuation}, 3). O

B. Aggregation

Aggregation is an important kind of operation and has been
studied widely. In OLAP settings, it is typical to precompute
intermediate aggregation results and then to reuse these for
computing higher level results. The choice of which intermedi-
ate results to precompute is based on frequently-asked queries
and apriori known data groupings and hierarchies [5], [12],
[14]. In stream processing, running aggregates of stream data
may be maintained so that up-to-date summaries of the data
are readily available (e.g., [22]).

In a spatio-temporal setting, Papadias et al. [30] propose
the aggregation R-tree (aR-tree) that augments each node with
an aggregate value (e.g., count) for all objects in the node’s
subtree. Then, during querying, there is no need to perform
the aggregation for objects in MBRs that are covered by the
query region. Mamoulis et al. [21] show how using the aR-tree
to support top-k queries. Yang and Widom [36] propose the
SB-tree that maintains a hierarchy of intervals associated with
partially computed aggregates.

There are three types of aggregation functions [12]: dis-
tributive, algebraic and holistic. Distributive (e.g., count, sum,
max) and algebraic (e.g., avg) aggregates can be computed
by further aggregating intermediate aggregates, while holistic
aggregates cannot. The pre-aggregation techniques described
above work only for non-holistic aggregation functions, while
the top-k query considered in this paper is holistic. We are
not aware of any existing spatio-temporal grouping techniques
that support holistic aggregates.

C. Frequent Item Counting

The aggregation of frequent items in data streams has also
been studied widely. The ¢-frequent items in a set S are
{i € S| fi > ¢|S|}, where f; is the frequency of an item i in
S. In Example L fsandy =3, fnytmetro =3, fevacuation =2,
Shurricane = 1, etc. For ¢ = 0.1, the frequent items are
{sandy, nytmetro, evacuation}. Since solving the ¢-frequent
problem requires linear space (€2(|.S|)), an approximate version
is often considered: the e-approximate frequent items in a set

Sare {ie S| fi>(p—¢e)|S|}.

Approaches to frequent item counting can be categorized
as counter-based and sketch-based. The former monitor the
items in a stream using a fixed number of counters. If an item
monitored by a counter arrives, its count is incremented. Oth-
erwise, depending on the algorithm, the item is ignored, or it
takes the place of a currently monitored item. Notable counter-
based algorithms include LossyCounting [23], Frequent [11],
[16], [29], and SpaceSaving [28].

Sketch-based approaches maintain the approximate fre-
quency for all items using hashing. Items are mapped into a
(smaller) space of counters, and a hashed-to counter is updated
for every occurrence of a corresponding item. Notable sketch-
based algorithms include CountSketch [6], GroupTest [10], and
Count-Min Sketch [9].

Because the sketch-based approaches provide no guar-
antees about the relative order of items or their estimated
frequency and also suffer from much higher per item process-
ing costs, we turn to counter-based techniques. In particular,
we adapt the SpaceSaving algorithm. In addition to finding



a set of frequent items, this algorithm also finds the top-k
items [28]. It can also provide relative order guarantees for
individual items because each counter value is associated with
its maximum error. Further, our micro-benchmarks as well as
recent experimental evaluations [8], [22] find that SpaceSaving
is a top performer.

SpaceSaving is outlined in Algorithm 1. Each monitored
item 7 is associated with its count, ¢;, and a maximum error,
A;. The counters are initialized by the first m distinct items,

Algorithm 1: SpaceSaving(counters m, stream .S)
T+ 0;
foreach i € S do
if i € T then

| ciscit+1;
else if |T'| < m then

T+ TU{i};

| Ci 1;

// monitored items

B W D=

S W

else
j(—minjech 5
ci+cj+1;
Ai(—Cj ;

T TU {j) :

// item with min count
// new count
// max error

10
11
12

and their exact counts (Lines 3-8). When an un-monitored
item arrives, it replaces a currently monitored item with the
lowest count. As Lines 10-13 indicate, the new item gets the
maximum possible count and records its maximum error in A;.
Intuitively, frequent items reside in counters with large values
and will not be hit by infrequent items that grow more slowly.
SpaceSaving is guaranteed to capture all e-frequent items with
m = 1/e¢ number of counters and the maximum counter error
is [n/m]| [28].

SpaceSaving can provide three levels of guarantees. First, it
can report only items that are guaranteed to be e-approximate
frequent: report a monitored item ¢ if ¢; — A; > ¢n. Second,
it guarantees that the first k items are the top-k most frequent
items if V;<p (¢; — A; > cg41). Third, it guarantees that the
top-k items are correctly ordered if V;<j (¢; — A; > ¢i11).

We extend SpaceSaving to support exact top-k ordered
queries. To support arbitrary spatio-temporal regions, we rely
on the ability to merge aggregated top-k terms across multiple
spatio-temporal granularities. In doing so, we rely on the no-
tion of mergeability of data summaries introduced by Agarwal
et al. [1]. They show that frequent item aggregates computed
using Frequent (or SpaceSaving) are mergeable and preserve
space and error guarantees. Our SpaceSaving extension and its
accompanying merging algorithm preserve exact query results.
We achieve this by trading the space (memory) for being error-
free in an adaptive manner.

D. Related Systems

Several recent systems target social media streams.
BlogScope [4] (and its commercial counterpart, Sysomos)
collects text documents from news feeds, mailing lists, forums,
newsgroups, blogs, etc. Each document is temporally ordered
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and is associated with the profile of its author, which may
include a location. The system supports the discovery and
tracking of real-world entities (stories, events, etc.) [3], the
monitoring of most popular keywords (“trends”) [27], and the
monitoring of temporal and/or spatial bursts [25]. However,
the system does not aggregate keywords according to user-
specified spatio-temporal regions. Also, only currently popular
keywords are identified (with a span of up to few minutes),
whereas our system supports also queries on the past.

NewsStand [34], a spatio-textual news aggregator, extracts
geographic content from RSS feeds and groups articles into
story clusters. Users can then retrieve stories relevant to query
keywords and geographic regions. TwitterStand [31] uses
tweets instead of RSS feeds. Both systems employ a spatio-
textual search engine [20] that was recently updated to support
spatio-temporal querying [17] on a small ProMED dataset.
News aggregation involves significantly more computation and
storage than does our problem. However, the systems also
support much lower updates rates. NewsStand processes up to
50,000 RSS feeds per day [19], while TwitterStand monitors
tweets generated by 2,000 handpicked users who publish news.
Both applications employ transactional database technology
(PostgreSQL) for backend processing. In contrast AFIA, aims
to examine all tweets and to provide exact counts for most
popular keywords in user-specified spatio-temporal regions in
interactive time. This calls for the ability to process up to tens
of thousands tweets per second. Therefore, AFIA is a stand-
alone system that employs spatio-temporal indexing.

Recently several recommender systems based on user-
generated posts have been proposed [15], [33], [35].
Limosa [35] provides user recommendations based on their
geographic interest by exploiting explicit geotags associated
with tweets and by extracting locations from the tweet itself.
As only 0.42% of tweets are geotagged [7], this is very
relevant; however, it is orthogonal to our work.

III. PROPOSED SOLUTION

We present a framework that maintains spatio-temporal
grids at multiple granularities that partition Earth and time.
A precomputed summary is maintained for each grid cell. The
sizes of the summaries adapt dynamically to the data, and a
summary merging algorithm enables query processing.

A. Adaptive Frequent Item Aggregator

We proceed to describe the multi-granularity index struc-
ture and then present an overview of the framework.

1) Grid-Based Indexing of Precomputed Summaries: Large
volumes of queries combined with large spatio-temporal query
regions can lead to the need for aggregating billions of
messages. To achieve interactive response times, we introduce
an index structure that supports pre-aggregation at multiple
granularities. This way, a user-specified spatio-temporal range
query can be partitioned into a collection of coarsest spatio-
temporal regions for which aggregates are available, and these
aggregates can then be combined efficiently to produce the
query result.

We employ a static grid-based approach that uses uniform
grids [2] with predefined and fixed cell sizes. By introducing



multiple layers of grids with increasing cell sizes, we partition
space at multiple granularities. By precomputing information
about the most frequent terms in each grid cell, queries with
regions of any size larger than the finest granularity cell
can be efficiently supported. By indexing the information
precomputed for each cell in a hash table, this approach
supports constant-time cell lookup.

Therefore, to efficiently support queries with different
spatial extents, we divide the world into a grid with multiple
granularities as seen in Figure 2. The lowest granularity defines

Evacuation | 3
Storm 2
Flooding 2

Evacuation | 12
Sandy 8
Flooding 5

Fig. 2: Multiple Spatial Granularities

the spatial accuracy of our summaries (which translates to GPS
accuracy, for instance). Precomputed summaries are associated
with each cell at each granularity. Coarse granularities are used
to more efficiently support queries with large regions as they
obviate the need for many summaries at finer granularities.

2) Frequent Term Counting: Each lowest-granularity cell
covers a small part of the world, and different cells may
receive very different amounts of objects. Also, the terms in
objects may vary substantially, e.g., because users use different
languages. Thus, any given cell may see a large number of
terms that may not be used in other cells. To store, for each
cell, each term in list, e.g., ordered by frequency, requires
linear space and is infeasible for large-scale processing.

Instead, we keep track only of the most frequent terms
in each cell. This is achieved by extending the counter-based
SpaceSaving algorithm described in Section III-B2. As a
result, only a fraction of the terms is stored, while we maintain
guarantees about the results of queries. The precomputed most
frequent term counts are maintained at every object insertion.
The result is a ranked summary for each cell at each granularity
of the terms used in the objects that fall into the cell, as shown
in Figure 2.

3) Temporal Support: To accommodate the temporal ex-
tent of queries, the spatial grid is extended with a temporal
dimension. The finest temporal granularity is the smallest
query-enabled time interval, e.g., an hour. We create a new
instance of every spatial grid cell for every new such time
interval. This is illustrated in Figure 3, where each cell has
frequent term counts for each time interval. This arrangement
enables efficient support for temporal query ranges at the finest
granularity, but it does not offer support for long temporal
query ranges, e.g., weeks or months.

To support queries with arbitrary temporal extent, we also
create new grid cells for multiple time granularities. For
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Evacuation | 1

Evacuation | 3
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Flooding 2 York
Evacuation | 2

Fig. 3: Temporal Dimension

example we may define month, week, day, and hour as our time
granularities. For each spatial cell the corresponding objects
are grouped for each time granule. The temporal granules each
maintain a summary of frequent term counts. This is illustrated
in Figure 4. With this arrangement, a two-week query result

Evacuation | 5
New
Evacuation Sandy 4

Storm

Flooding 2

Fig. 4: Multiple Temporal Granularities

can be obtained by merging only two frequent term summaries.

4) Combining Multiple Granularities: For each granule,
we store aggregate information that allows us to return the
top-k result for the granule. Since a coarser granule aggregates
the same terms as a number of finer granules at a finer
granularity, the coarser granule can be computed by merging
the corresponding finer granules [1]. However, the computed
aggregate looses its accuracy. Figure 5 illustrates the problem.
A coarse granule contains two finer granules, and we maintain
information needed to support k£ = 3 for these two granules.
Combining them yields an incorrect top-3 list for the coarse
granule. The correct result contains “Sandy” with count 4.

To avoid such incorrect merging, we maintain separate
frequent term summaries for every granularity. Thus, when
an object is inserted, its terms are reflected in the aggregate
information stored for each granule the object falls into. The
same principle applies to the temporal dimension.

5) System Overview: Figure 6 shows an overview of the
adaptive frequent item aggregator (AFIA) system. The index
structure in the middle consists of the above-mentioned spatial
(SD and temporal (TI) granularities aggregated with frequent
item counting summaries (FIC).

High-level pseudo-code for stream data processing in AFIA
is given in Algorithm 2. Each message from the data stream
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Fig. 6: The AFIA System

is pre-processed by splitting the message into terms and
removing stop words. The corresponding summary is found
in Line 3. As seen from Figure 6, finding the summary entails
lookups in the index structure. If a summary is able to hold the
new message, it is inserted as shown in Line 4. However, in
some cases, it may be necessary to expand a summary before
insertion. This is described in detail in Section III-B2. If the
summary cannot be expanded, it becomes inactive, and a new
empty summary is created. This is called a checkpoint, which
is covered in Section III-B3.

Algorithm 2: AFIAStreamProcessing(stream S)

1 foreach i€ S do

preprocess (i) ;

summary < £ind (i) ;

if ! summary.insert (i) then
L checkpoint (summary) ;

2
3 // find the summary
4
5

High-level pseudo-code for query processing is given in
Algorithm 3. First, the query region is mapped to the cor-
responding cells. Next, a lookup is performed for each cell
that each produces a set of summaries as seen in Lines 3—4.
Each summary is a partial result. The lookup utilizes the query
parameters ¢.[2 and ¢.I to limit the number of partial results.
Finally, the results are merged to compute the top-k terms and
kg (detailed in Section III-C).

B. Dynamic Summaries

1) Motivation: Existing frequent item counting techniques
utilize static-sized summaries. While this works when the
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Algorithm 3: [R, k,] AFIAQuery(query Q)

cells < retrieve cells that (). R covers ;
summaries <— empty list of summaries ;
foreach ¢ € cells do

1
2
3
4 L summaries.add (Lookup (¢, Q) ) ;

W

[R, ky] < merge (Q.k, summaries) ;
return (R, kg] ;

=)

vocabulary is known beforehand, any static summary size
falls short when the vocabulary changes considerably. And
since we aim to cover the entire world at multiple spatial and
temporal granularities, the vocabulary is guaranteed to vary
across cells. If we use static-sized summaries with too few
counters, we cannot use the summaries to determine the top-k
most frequent terms. In Example 2, too few counters are used
to capture the top-2 most frequent terms. An obvious solution
is to use summaries with an extremely large number of counts.
Howeyver, this is either not feasible or unattractive because it
require excessive storage space. Instead, we develop a new
technique that dynamically adapts the number of counters in
a summary to accommodate the changes in the data.

Example 2. Assume we wish to support top-2 queries with
the SpaceSaving algorithm and that a summary with 2 counters
is used. The following terms are inserted in the given order:
evacuation, evacuation, sandy, evacuation, sandy, storm.

The summary then becomes: {evacuation = 3(A = 0),
storm = 3(A = 2)} (where A captures the maximum over-
counting error. In contrast, the correct result is {evacuation,
sandy}.

2) Aggressive Increment: The 2 counters in Example 2
failed to support top-2 queries for the data given. This type of
problem may occur in every cell if the number of counters is
fixed and too small. In the new approach, we increase counters
when needed. Thus, the summaries can be initialized with a
low number of counters, and more counters can be introduced
in cells when needed. Cells with low activity and skewed term
occurrence will use few counters, while cells with high activity
and temporal variation in the terms will use many counters.

It is important to capture all terms since a miss may
lead to an incorrect top-k result. Thus, we perform what
we call Aggressive Increment. The procedure is covered in
Algorithm 4.

Term counts are recorded in a summary until all available
counters are utilized, as shown starting in Line 6. The counts
are maintained for each processed term, as shown in Line 18.
Assume we start with 2 counters, i.e., limC = 2. Using the
data in Example 2, we are out of counters when we reach the
sixth term and need a new counter.

When all counters are used and a new counter is needed
for a new term, we find the term with the minimum count as
seen in Line 8. If the new term does not influence the targeted
top-k result, ¢.k < targeted-k, we proceed as in the algorithm
SpaceSaving to take over the counter from the currently least
frequent term and record the new term’s maximum possible
count and maximum possible error (Lines 14—17).



Algorithm 4: bool insert(item %)

1 T < currently monitored items ;

2 limC < maximum #counters ;

3 eFree < all-counts-error-free flag ;

4 targeted-k < the targeted k for top-k queries ;

5 if i ¢ T then

6 if |T| < limC then T < T U{i} ; /e <0
7 else

8 J < minjerc; ; /I item with min count
9 if Ciargetea-r < ¢j + 1 then

10 if ! eF'ree then return false ; // checkpoint
1 limC < limC x 2 ; // aggressive increment
12 T+ TU{i}; Ie; <0
13 else /1 else top-k is high enough
14 Ci < Cj // previous min count
15 Az ¢

16 T+ Tu{i}\{j}:

17 eFree + false ; /I error introduced
18 ¢ci+c;+1; // increment the counter
19 if crorgeted-x < ¢i & A; # 0 then
20 /I targeted-k items are not error-free anymore, so restore:
21 rollback (2) ;
22 return false ; /I checkpoint

23 else return true ;

However, if the new term influences the top-k result and
the summary does not contain errors, the number of counters
in the summary is doubled (Line 11). This prevents the term
from entering the top-k result with an error. In Example 2, the
summary would be doubled from 2 to 4 counters when term
storm is to be inserted, thus allowing the term to be counted
without any errors being introduced into the top-2 result. It
is important to maintain error-free top-k results for all cells
since we merge cells and summaries when computing query
results. With error-free results for the cells, the top-%k result
of a query is more likely to contain many guaranteed top-k
terms: in terms of the query definition in Section II-A, k, is
close to k. We return to this in Section III-C.

When a new term is to be inserted that may influence the
top-k, possible errors may have been recorded for counters
outside the top-k. As seen from Line 10, we do not double the
number of counters when this occurs. Doubling the number of
counters when errors exist, the new terms will not maintain
any guarantees about previously inserted terms, leaving the
summary in an inconsistent state. Instead, we avoid this
inconsistent state where new terms have wrong counts by
performing a checkpoint, to be described in Section III-B3.

When the occurrence of a term that already exists in
the summary is to be captured, the associated counter is
incremented as shown in Line 18. If the term is outside
the top-k counters, the term’s counter may record a possible
error. When the counter is incremented, it may enter the top-
k counters along with its possible error, as seen in Line 19.
To prevent this, a rollback restores all counters to their state
before the term was inserted, and a checkpoint is performed.
Thereby, the targeted top-k counters remain error-free.
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Lemma 1. The incrementing of counters preserves existing
counts and their associated possible errors.

Proof. Before the number of counters is doubled, no errors
exist in the summary according to the algorithm. Thus, no
items have been lost and all counters are exact. Therefore, the
introduction of new counters has no impact on already inserted
items. O

Lemma 2. For all elements ¢; where i < k, A; = 0.

Proof. The insertion algorithm allow possible errors to be
associated with elements e;, ¢ > k. Before an element with
an associated possible error can become an element ¢;, ¢ < k,
a checkpoint is performed, yielding a new empty summary.
Therefore, no element e;, ¢ < k can have an associated possible
error. O

The ability of the insertion procedure to increment the
number of counters in a summary allows us to start with
summaries with few counters. We introduce a parameter
initCounters to control the initial number of counters. The
experimental evaluations study the impact of different settings
of this parameter.

3) Checkpointing: To prevent an inconsistent state and
a top-k result with a possible error, we introduce a
checkpointing mechanism. A checkpoint is performed before
an inconsistent state is reached. The currently active summary
is rendered inactive and is archived in its consistent state and
is replaced by a new active summary with twice as many
counters. Thus, earlier changes to the size of the archived
summary due to Aggressive Increment, if any, are retained in
the new summary, and since that number of counters did not
suffice, it is doubled.

NYTMetro | 1, A=0 }& A
Q
$o§. I—> i
Evacuation | 3, A=0 >§3

Sandy

2,A=0

targeted-k

—

limC

/

Fig. 7: Cell with One Archived and One Active Summary.

Due to the introduction of checkpointing, each cell can
contain multiple archived summaries. However, at any point
in time, only one summary is active and is maintained as seen
in Figure 7, where the left summary is achieved and the right
is active.

Example 3. Assume the same setting as in Example 2 and that
the terms are processed according to Algorithm 4. When reach-
ing term storm, the number of counters is doubled, yielding
this summary: {evacuation = 3 (A = 0),sandy = 2 (A =
0), storm = 1 (A = 0)}. Then, inserting terms hurricane,
flooding and water yield: { evacuation = 3 (A = 0), sandy =
2 (A =0), flooding =2 (A =1),water =2 (A =1)}.



Inserting the term NYTMetro triggers a checkpoint (as
seen from Line 10) before errors are introduced in the targeted
top-k result. The resulting summaries are shown in Figure 7.
O

4) Compaction of Inactive Summaries: Summaries can
become inactive for two reasons: (i) due to a checkpoint as just
described and (ii) because their time interval ceases to overlap
with the current time so that no updates will apply to them.
As described in the following section, only the targeted top-
k counters are considered during query processing. As part
of the archiving of inactive summaries, we thus remove the
counters c; with j > targeted-k. This releases memory that
is no longer needed. In the setting of Example 3, the two last
grey counters of the left summary in Figure 7 are removed
from the summary before archiving.

5) Relaxed Decrement: The number of updates that apply
to a cell may vary across time. The Aggressive Increment
procedure effectively handles the case of increasing activity.
However, activity may also decrease, causing already allocated
counters become unnecessary and resulting in poor memory
utilization. There is thus a need to be able decrement the
number of counters in a summary.

Care must be taken when decreasing the number of coun-
ters since an overly aggressive decrease may lead to more
checkpoints. When performing checkpoint too frequently,
query performance is reduced because more merging of sum-
maries is needed.

The Relaxed Decrement procedure described in Algo-
rithm 5 is designed to reduce the number of counters in a
summary without causing excessive checkpoints. The proce-
dure is invoked after any given time granule has passed. As
shown in Lines 4-5, the number of counters is halved if the
summary’s number of error-free counters is at least double
targeted-k. Then the summary maintains many more error-
free counters than required. Note that if any checkpoint was
created during the previous time granule, this means that the
number of counters has been increasing. Therefore, the activity
level may be expected to remain at the same level or continue
to increase. Consequently, no reduction is performed.

Algorithm 5: Summary RelaxedDecrement (int
cp, Summary s)

cp < #checkpoints in the previous time granularity ;
s.ltmC < maximum #counters ;

s.errorfree < #counters without error ;

if cp == 0 & s.targeted-k > s.errorfree x 2 then

L s.limC + % ;

W N =

return s ;

C. Query Processing

1) Overview: The spatio-temporal range of a query gen-
erally covers a number of cells. We cover a query region
and interval with the fewest possible cells from the multi-
granularity structure and use the summaries of these cells to
produce the query result. Specifically, any query region can be
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covered by a unique set of most coarse cells. Starting from
the coarsest granularity it is checked if each cell is contained
in the query region. We refine a cell that merely intersects the
query range by the cells it covers at the next, finer granularity
until the cells considered are contained in the query region.
If a query region partially overlaps other cells, we “snap” the
boundary of the query region to the nearest inclusive border.
Next, as shown in Figure 6, we proceed to find the summaries
that overlap with the query time interval. This results in a
number of summaries that are to be “merged” to produce the
query result.

The summaries of the cells needed to cover the query
range are used to produce the result. This calls for a technique
to merge such summaries into a query result (in Line 5 in
Algorithm 3). Also, if a query region and interval are identical
to those of an existing cell, the same merging procedure applies
to possibly several archived summaries associated with that
cell.

2) Merging Dynamic Summaries: Recall that each sum-
mary maintains counters for only the most frequent terms seen
in that summary. Thus, different summaries maintain counters
for different sets of terms. Figure 5 illustrates how a wrong
result can be produced when merging summaries. The problem
occurs when terms that do not occur in all summaries make it
into the merged summary.

However, we can still provide guarantees about the merged
summaries. Recall that targeted-k counters of each summary
are without any errors. For each summary, we maintain
targeted-k+1 counters to provide guarantees about the merged
summary. Thus, before running Algorithm 4, the value of
targeted-k is incremented with one more counter. Algorithm 6
details the merging procedure for dynamic summaries.

We can guarantee that a merged summary is correct if no
other term can possibly make it into the summary. To do this,
we utilize the extra counter maintained for each summary—
see Line 4. These extra counters provide information about
the best possible counts of terms outside the top targeted-k
terms. The best case for the remaining terms is calculated by
adding up the values of these counters in each summary. If
the resulting value is below the lowest count for a term in
the merged summary, the terms are not competitive, and the
summary is correct—see Line 21.

In the example in Figure 8a, targeted-k is 3, the shading
identifies the targeted-k + 1st counter maintained by a sum-
mary, and the last, grey rows are not stored in the summaries,
but are only included for illustration. In this example, the
merged summary is correct because no other term can have a
count that places it among the top targeted-k terms. A count
that exceeds 3 is needed to enter the merged summary, and
the best possible count of a term not in the merged summary
is 3.

We cannot always return a correct merged summary. In the
example in Figure 8b, the merged summary fails to include
the term “Sandy” that has a higher count than “York.” The
targeted-k + 1st counters maintained by the two cells tell
that a term not in the merged summary, e.g., “Sandy,” may
be able to gather a score of 2 from each cell. The counters
guarantee that terms in the merged summary with scores no
less than 2 4 2 = 4 are correct. See Line 27 in the algorithm.



Algorithm 6: [R, k;] Merge (int k, parResults P)

1 M < set used for merging ;
2 foreach p € P do
3 p. T < terms in the result summary ;
4 p.lc < the best count outside targeted-k ;
5 foreach t € p.T do
6 t.count <— frequency of the term ;
7 if t € M.terms then
8 | M[t].count <= M|t].count + t.count ;
9 else
10 sumlc <+ 0 ;
1 foreach p, € P do
12 if ¢ € p,. T then
13 | continue ;
14 sumlc < sumlc + ps.lc ; // best case
15 t.count < t.count + sumlc ;
16 t.A + sumlc ;
17 | MIt] = Mt]u{t} ;
18 | low < low+p.lc;
19 R < k most frequent terms from M ;
20 if R.minCount > low & Vt € R (t.A = 0) then
21 L return [R, k] ; // they are guaranteed
22 else
23 G <+ set used for guaranteed terms ;
24 A < set used for approximate terms ;
25 foreach t € R do
26 if t.count > low & t.count - t.A >
R.next().count then
27 | G+ GU{t};
28 else
29 | A« AU{t};
30 | return [GU A, |G]];
Evacuation | 5
Evacuation | 5 New 4
New 4 Sandy 4
York 3 York 3
Evacuation | 3 New 4 Evacuation | 3 New 4
Storm 2 York 3 Storm 2 York 3
Flooding 2 Evacuation | 2 Flooding 2 Evacuation | 2
Atteid A/ N INietto A | Aftgid 3| N INBetro 3
Sandy 1 Sandy 1 Sandy 2 Sandy 2

(a) Guaranteed (b) Approximate

Fig. 8: Guaranteed and Approximate Merging of Summaries

In the example, we return a result with 3 terms along with the
information that the 2 first are guaranteed to be correct (while
the last may be correct). The correctness of the Algorithm 6 is
given in Theorem 1. The experimental evaluation studies the
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correctness of the merged summaries.

Theorem 1. Let a query Q = (R, k,I), k < targeted-k be
given that covers dynamic summaries S1 and Sy that describe
datasets D1 and Ds, respectively. Then there does not exist a
term t such that Ve € Merge(k,{S1,S2})q (score(t, (D1 U
Dy) N Merge(k,{S1,52})q > e.count), where
Merge(k,{S1,S2})4 contains only the guaranteed elements.
Further, Merge(k,{S1,S2})4 is ordered descendingly on the
count of the item.

Proof. It follows from Lemmas 1 and 2 that the counts in S
and Sy are exact and have no errors for the first targeted-k
terms. Merging the summaries produces up to 2targeted-k
terms.

There are two possibilities for the count and order guaran-
tees of the merged summary:

First, the counts and order of the merged summary can be
fully guaranteed. If the sum of the counts of the targeted-k-+1-
st terms in S; and S is lower than the count of each of the
terms in the merged result, the merged summary contains the
terms with the highest counts. Also, if the merged summary
contains only targeted-k terms, all the terms are known to be
in both S; and S5. Thus, no better combination of terms can
exist.

Second, the order of the first ky, k; < targeted-k, terms
can be fully guaranteed. If the k,-th term has a higher count
than the sum of the counts of the targeted-k -+ 1-st terms in S
and S, the term’s count exceeds that of any terms not in the
merged summary. Thus, the terms in the merged summary are
the ones with highest counts. The count of any term, ¢;,7 <
kg that only occurs in one of the summaries, S; or Ss, is
increased by the count of the targeted-k + 1-st item of the
other summary. If the ordering of the first &k, terms remains
after the increments, no terms can exist in D or Do that can
change the order of the first k, terms. g

IV. EXPERIMENTAL EVALUATION

We proceed to evaluate the AFIA framework and also
compare with other available techniques.

A. Experimental Setup

We use two different machines for the experimental study.
For small-scale experiments (see Section IV-D), we use a local
machine (termed local): a quad-core Intel Core i7-3770 with 8
hardware threads and 16 GB of main memory. For large-scale
experiments (Sections IV-E-IV-G), we employ an Amazon
EC2 High-Memory Cluster (termed HM(C') backed by a dual
Intel Xeon E5-2670 processor with 32 hardware threads and
244 GB of main-memory. In all experiments, the processing
occurs in-memory.

The framework is implemented in Java and we utilize the
available parallelism on the machines as follows. One hardware
thread is dedicated to a concurrent garbage collector and
one to accepting incoming messages. The remaining hardware
threads are assigned to equal-sized partitions of the world, as
constructed for this purpose.



For the spatial partitioning, we use the Military Grid
Reference System (MGRS) [13]. Thus way, we represent any
location on the surface of the Earth at multiple granularities,
ranging from 1x1 m? to 100x 100 km?, by an alphanumeric
value. For temporal partitioning, we use the typical temporal
hierarchies from data warehousing (hour, day, week, month).
We drop cells with very low activity, specifically cells where
the most popular term occurs in fewer than 5 messages at the
finest granularity (hour). We will shortly describe how we fix
the spatio-temporal hierarchy in AFIA based on the considered
workload.

We perform three sets of experiments. The first mea-
sures the space and accuracy of the proposed algorithms and
compares them with two baselines. The second evaluates the
throughput, memory consumption, and number of checkpoints
when varying the targeted-k parameter. The third evaluates
the query processing performance when varying the size of
the spatio-temporal query range. We also show the number of
checkpoints created during a time period.

B. Data and Queries

We collected all geo-tagged messages from the public
Twitter FireHose during May, 2013. The dataset contains
110,426,053 tweets, yielding an average rate of circa 41 tweet
per second. Figure 9 provides insight into the workload and
helps choose an appropriate spatio-temporal hierarchy.

Figure 9a shows the total number of cells that receive at
least one tweet. Thus, the graph shows the expected number
of active summaries at the given granularities. For example,
every hour, the number of 0.1x0.1 km?, 1x1 km?, 10x10
km?, and 100x 100 km? spatial grid cells that receive at least
one tweet is circa 0.5M, 200K, 40K, and 10K, respectively
(i.e., the “Hour” curve in the figure).

Figure 9b considers the cells at the 0.1 kmx0.1 kmx1
hour granularity. The y-axis depicts the number of such cells
subject to different loads (the number of terms ¢ processed).
This shows that the number of “interesting” cells (with at least
100 terms) is quite low, barely reaching 100. Therefore, we fix
the finest temporal granularity at an hour.

Figure 9c considers the cells at the 100 kmx100 kmx1
week granularity. The figure shows that thousands of such cells
have summaries that receive more than 1 thousand terms.

We fix k at 25 and generate 2 query sets each consisting of
100 queries. Each query in the first set has a temporal extent
with a length chosen at random among 1 hour, 1 day, and 1
week, and it has a randomly selected spatial region. The spatial
granularity of the coarsest cell that is contained in the spatial
query region is the query’s spatial granularity, and the query
region is enlarged to cover all the cells at that granularity that it
intersects with. In visual terms, this procedure corresponds to
“snapping” the spatial query region to the coarser granularity.
The underlying rationale for adopting this procedure is that
finer-granularity cells do not contribute with term counts at the
same magnitude as do cells at the granularity of the coarsest
fully covered cell. Since any rectangle can be created from
a number of merged squares, we limit the experiments to
squares. Each cell contains 10 x 10 cells at the next, finer
granularity. Thus, the largest number of cells any query square
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can cover is 18 x 18 = 324. As a result, we employ queries
that may cover up to 1,800 x 1,800 km?.

While the first query set focuses on variation in the spatial
range, the second focuses on temporal variation. Each of the
100 queries has a spatial region chosen at random from one of
the spatial granularities. The query resulting in most temporal
summary merges is the query that spans from the first hour
after midnight on the first day in May until the hour before
midnight on the last day of May. This query covers 2 x 23
hours, 3+ 5 days, and 3 weeks, which amounts to 57 temporal
summaries.

To avoid empty results, we do not consider regions that
only cover empty cells. Note, that we do not perform com-
paction on the last (active) temporal granularities, to better
reflect the real-life scenario where a stream is constantly keep-
ing these summaries active. To simplify the experiments, the
initCounters parameter, which determines the initial number
of counters is set to the same value as targeted-k.

C. Baselines

We consider two baselines for comparison and validation
of our proposal.

SS: In each active spatio-temporal summary, we aggregate
the most frequent items using the SpaceSaving algorithm.
Active summaries maintain a fixed number (m) of items
and their counts, while archived summaries are compacted
by keeping only the counters for the £ most frequent terms.
Choosing a value for m represents a trade-off between storage
size and result accuracy.

HT: In each active spatio-temporal summary, we maintain
a full list of terms using a hash table. Once the summary be-
comes inactive and is archived (its time granularity passes), the
list is sorted and cleaned up by discarding all but the counters
for the targeted top-k terms. This approach maintains the exact
top-k items at all spatio-temporal granularities and serves to
measure the accuracy of the other approaches. However, since
HT has excessive storage requirements, we do not expect it to
scale under the considered workloads.

D. The Space Versus Accuracy Trade-Off

In the first set of experiments, we evaluate the accuracy
of our approach by comparing it with the baselines. Since HT
maintains the exact counts at all granularities, its storage re-
quirements are too high for large scale experiments. Similarly,
SS maintains a fixed number m of counters at all granularities,
and m cannot be set too high for large scale experiments. Thus,
we consider only tweets occurring in the spatial region with
the 11S grid zone designator (a region in the US of size ca.
900% 550 km?). We use the local machine.

We consider variants of SS where m is set to 50, 100, and
200. In AFIA, we set targeted-k to 50. The first week (four
days in May) is used for warm-up, and only the accuracies
of the subsequent summaries are evaluated. We perform top-k
queries on all summaries at each spatio-temporal granularity.
We compare the top-k most frequent terms in each summary
produced by AFIA and SS and compare with the corresponding
top-k items produced by HT. We set k = 20.
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Fig. 9: Twitter Workload Intensity at Different Spatio-Temporal Granularities

The results are shown in Figure 10. We measure the
fraction of correct top-k for varying spatial granularities, and
we report separate graph for each temporal granularity. The
coarser spatio-temporal summaries are subject to higher loads
and more diverse terms. At the finest granularity (0.1x0.1
km? in Figure 10a), all approaches produce quite accurate
results. However, as the spatial or temporal granularity gets
coarset, the accuracy of SS deteriorates. Increasing m does not
solve the problem, but just postpones it. On the other hand,
AFIA is virtually as accurate as HT at all spatial and temporal
granularities. Its Aggressive Increment procedure is effective
in making it adapt its number of counters as needed to capture
the most frequent items very accurately. Due to checkpointing
(when several summaries have to be merged), few top-k terms
are missed, and we did not observe accuracies below 0.99,
0.98, and 0.97 for hours, days, and weeks, respectively.

Figure 11 reports the average number of counters main-
tained per summary in the same experiment. Note the log-
scaled y-axis. The figure confirms the impracticality of using
HT in large scale scenarios. SS maintains a fixed number
of counters. The figure shows how AFIA adapts. At hours
and days (Figures 11a-11b), AFIA follows SS (m 100),
implying that on average 100 counters is enough to achieve
the desired accuracy. At weeks (Figures 11c), the adaptivity
of AFIA is even clearer: for finer cells, it uses much fewer
counters than for coarser cells.

This experiment shows how AFIA achieves the best of two
worlds: accuracy is at the level of HT, which is 100% accurate,
while the space requirements are at the level of SS with a small
number of counters. Having demonstrated the accuracy of our
approach, we proceed to large scale performance experiments
on the HMC' machine.

E. Varying targeted-k

In this experiment we vary targeted-k and consider two
cases where the finest spatial granularity is 0.1x0.1 km? and
1x1 km2. For each case, we also maintain all the coarser
granularities. Figure 12 shows the results. AFIA always has a
throughput of more than 13,000 items per second (Figure 12a).
As expected, the throughput increases as either targeted-k
decreases or the finest granularity becomes more coarse.

Figure 12b shows how the memory consumption increases
with increasing targeted-k. This is because increasing numbers

157

of counters have to be maintained to guarantee correctness
when there are more terms. The memory consumption in-
creases slowly at first, due to fewer checkpoints occurring
(Figure 12c). Thus, for small values of targeted-k, much of
the space consumption is due to checkpoints. As expected,
more memory is required for maintaining finer granularities.
The results show that a single HMC machine can maintain
between 2 and 3 months of data, meaning that it takes 4 to
6 machines to support a full year. At current costs', this is
feasible for larger companies. Note that the measured memory
consumption represents the entire Java heap memory used
by the application. The actual aggregates (not shown) require
much less.

When targeted-k is set to a low value, the number of
required counters will most often also be low. With only a few
counters, any small change in activity of a cell may impact the
targeted-k counters, resulting in a checkpoint. Therefore, we
see that the number of checkpoints decreases with targeted-k.
Having a high number of counters makes a cell more robust
to changes in activity, and any small changes can be captured
without checkpoints. The number of checkpoints increases as
expected when a finer granularity is maintained.

E Varying Q.R and Q.T

We fix targeted-k at 100 and vary the spatial and temporal
extents of the queries. We employ the two query sets and
measure the average runtime. Figures 13a and 13b show the
results.

Retrieving a summary requires one or more constant time
lookups (in Algorithm 3, Line 3), depending on the spatial or
temporal granularity of the query, and it may also require the
merging of checkpointed summaries. Because finer granularity
cells generally receive fewer items than coarser granularity
cells, the runtime is lower at finer granularities. Fewer merges
are required because more cells are empty. The results show
that this applies to both the spatial and the temporal granular-
ities.

When the spatial extent increases, more lookups are per-
formed, resulting in an expected higher runtime. With more
coarse temporal granularities, more merges are performed,
increasing the runtime further. The runtime is not made worse

The price for a Spot Instance in June 2013 was USD 0.343 per hour.
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Fig. 12: Varying targeted-k

to the same degree when varying the temporal extent since the
temporal lookups are performed after the summaries are fil-
tered spatially. Thus, significantly fewer entries exist, resulting
in faster lookup times. However, as the spatial extent increases,
the runtime also increases since more cells are retrieved and
merged.

G. Checkpoints Over Time

In the last experiment, we explore the checkpointing activ-
ity over time. We fix targeted-k at 100 and count the number
of checkpoints per hour for the first 5 days. Figure 14 shows
the results. The first day sees more than 18,000 checkpoints,
but the number of checkpoints drops quickly. This is because
a new day is initialized based on the ending state for the
previous day. On the fifth day, only half as many checkpoints
are performed. Overall, the number of checkpoints keeps
decreasing, but may increase occasionally. This demonstrates
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the adaptivity of our approach, as the number of counters in
the cells adjust to the activity levels of the cells.
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V. CONCLUSIONS

We present a new framework for the processing of spatio-
temporally constrained top-k most popular terms queries on
streaming, spatio-temporally tagged text content, such as mi-
croblog posts. The framework’s index extends existing tech-
niques for counting frequent items in summaries to allow
the summaries to grow and shrink dynamically to adapt to
changes in the incoming data. Query processing works by
merging relevant summaries. To provide guarantees about
the query results, a new merging algorithm is proposed that
supports spatio-temporal query regions. Experimental studies
with an implementation of the framework offers insight into
the accuracy, scalability and performance of the processing
of incoming data and queries; and they demonstrate that the
framework is capable of offering very accurate query results
at high performance at scale.
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