
A Clustering Approach to the Discovery of Points
of Interest from Geo-Tagged Microblog Posts

Anders Skovsgaard# Darius Šidlauskas# Christian S. Jensen∗

#Aarhus University {anderssk, dariuss}@cs.au.dk
∗Aalborg University csj@cs.aau.dk

Abstract—Points of interest (PoI) data serves an important role
as a foundation for a wide variety of location-based services. Such
data is typically obtained from an authoritative source or from
users through crowdsourcing. It can be costly to maintain an
up-to-date authoritative source, and data obtained from users
can vary greatly in coverage and quality. We are also witnessing
a proliferation of both GPS-enabled mobile devices and geo-
tagged content generated by users of such devices. This state
of affairs motivates the paper’s proposal of techniques for the
automatic discovery of PoI data from geo-tagged microblog
posts. Specifically, the paper proposes a new clustering technique
that takes into account both the spatial and textual attributes
of microblog posts to obtain clusters that represent PoIs. The
technique expands clusters based on a proposed quality function
that enables clusters of arbitrary shape and density. An empirical
study with a large database of real geo-tagged microblog posts
offers insight into the properties of the proposed techniques and
suggests that they are effective at discovering real-world points
of interest.

I. INTRODUCTION

Points of Interest (PoIs) represent geographical entities (e.g.,

restaurants, museums, hotels), as a series of geo-referenced

points with attached semantics (e.g., names or addresses). PoIs

are important for a wide variety of services, e.g., Google/Ya-

hoo/Bing Maps, Yelp, TripAdvisor. Also, they have high value

for companies like Factual and Google, who sell PoIs. PoIs can

represent formal locations defined by authoritative sources of

information (e.g., lists of landmarks and buildings for tourist

attractions), or they can represent informal gatherings that

result from local activities (e.g., places where demonstrations

occur, picnic spots, public events). PoIs can be static (e.g., the

Empire State Building) or changing (e.g., a specific exhibition

at a museum). Also, PoIs can be relevant only during some

time (e.g., during a festival).

PoIs may be collected in different ways that each has

its shortcomings. Manual PoI collection and maintenance is

expensive and affordable only to big corporations. It may be

possible for PoI owners to contribute information themselves;

however, it is likely that they only contribute to the most

popular services and only if it is beneficial to them. Infor-

mal gatherings may be more difficult to capture due to the

lack of knowledge about these or the absence of incentives.

Collaborative projects such as OSM1 depend on volunteered,

crowdsourced data, and thus coverage and quality vary greatly.

1http://www.openstreetmap.org

We leverage the increasing availability of geo-tagged mi-

croblog posts to enable a new way of obtaining PoIs. Increas-

ingly large volumes of geo-tagged content are becoming avail-

able with the proliferation of GPS-enabled mobile devices.

Specifically, users of such devices are creating large amounts

of geo-tagged microblog posts describing their daily activities.

Some users may report on information from their current

location. For example, the circles in Figure 1a represent

geo-tagged posts containing the term ”hotel.” Other users in

the same region may report on information unrelated to the

location (the square symbols in the figure). We aim to extract

PoIs from such user-generated content.

Intuitively, users are likely to use specific textual descrip-

tions more often in some regions than in others. For example,

posts mentioning “hotel” might be more frequent in a region

containing a hotel than in a region containing a supermarket.

We assume a PoI can be created for a location if a sufficiently

high percentage of the posts in the region of the location have

a similar textual description. An example result is shown in

Figure 1b, where three clusters are formed from the objects in

Figure 1a. When sufficiently many dissimilar posts exist in the

same region, no cluster may be formed. Due to the nature of

geo-tagged posts, the clusters may be of arbitrary shape and

density.

(a) Geo-Tagged Microblog Posts (b) Discovered “Hotel” Clusters

Fig. 1: Clustering of Real Objects

A system that enables the creation of PoIs from geo-

tagged microblog posts should satisfy several challenging

requirements.

First, due to the diverse nature of spatial objects, the clusters

may be of arbitrary shape. Second, in addition to the shapes

2014 IEEE 15th International Conference on Mobile Data Management

978-1-4799-5705-7/14 $31.00 © 2014 IEEE

DOI 10.1109/MDM.2014.28

178

JacobN
Text Box
©2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

being arbitrary, clusters can overlap, and a cluster can span

several other clusters. Third, there can be significant amounts

of irrelevant data in a region. A clustering algorithm therefore

must be robust to noise or outliers (we do not distinguish

between these two). Fourth, different clusters may have very

different densities, and the density of posts inside a cluster

representing a PoI may also vary. Fifth, a spatial clustering

algorithm is required that takes into account not only the

spatial proximity among posts, but also the similarity among

their textual attributes. Sixth, since geo-tagged content is

obtained in arbitrary order, the results of a good clustering

approach should be independent of the ordering of the input

data. In other words, it should be order-insensitive with respect

to the input data.

To meet these requirements, we contribute a new type of

clustering method for spatio-textual objects, termed CLUSTO

(clustering of spatio-textual objects). Specifically, this method

satisfies the following requirements:

1) Discovers clusters of arbitrary shape.

2) Enables overlapping clusters.

3) Is robust to noise and outliers.

4) Identifies clusters of varying density.

5) Takes into account both spatial and textual attributes.

6) Is insensitive to the ordering of the input data.

Many previous works have explored research directions

related to microblogs [1]–[4], [6], [11]–[13], [16], [18]–[22].

However, to the best of our knowledge, there is no existing

work that address the discovery of PoIs using geo-tagged

microblog posts. Spatial data mining is a popular research area

(see Section V), where the most related work includes density-

based clustering algorithms [5], [7]–[9], [17]. However, they

fail to fulfill requirement 5, which is essential. In the experi-

mental evaluation, we extend DBSCAN to support non-spatial

attributes, but show that it suffers from over-expansion.

CLUSTO is based on nearest neighbor chaining that fulfills

requirements 1 and 6. The proposed quality-based clustering

criterion solves, in combination with the nearest neighbor

chaining, requirements 3, 4, and 5. CLUSTO allows overlap-

ping clusters, depending on the setting of a quality-threshold

(addressing requirement 2).

In the paper’s empirical study, we study the effectiveness

of CLUSTO using a real-world dataset. By comparing with

Google Places, we show that CLUSTO is able to successfully

identify most PoIs from an abundance of geo-tagged tweets

(we have accumulated more than 280,000 geo-tagged tweets

from downtown San Francisco from the Twitter stream during

a period of more than a year).

The remainder of the paper is structured as follows. Sec-

tion II proposes the notion of quality based clustering. The

proposed solution along with two base-lines are presented in

Section III. The experimental evaluation is given in Section IV.

Section V covers related work. Finally, we conclude in Sec-

tion VI.

II. QUALITY BASED CLUSTERING

A spatio-textual object has a spatial position and a textual

description. An object may have a unique textual description,

or parts of its description may be shared with other objects.

Many different textual descriptions may exist in a dataset of

spatio-textual objects, and we represent objects with different

descriptions by different shapes in our examples. In Figure 2,

squares may represent objects with text ”hotel,” while circles

may represent objects with text ”park.”

Spatially nearby objects do not necessarily have similar

textual descriptions. For example, consider the objects in

Figure 2a. Although their spatial distribution or density is very

similar, one can easily identify three clusters: two clusters of

squares and one cluster of circles.

Objects that share a textual description may have neighbor-

ing objects with different textual descriptions. An example is

provided in Figure 2b, where circles occur arbitrarily among

the squares. The objects in this example may be regarded

as a single cluster of squares with a small amount of noise.

Also, the spatial distance between objects may vary greatly

within a single cluster. For example, there may be a higher

concentration of objects in a specific part of a park, but more

sparse regions of the park may still be considered as part of

the park.

When there is much variation in the textual description of

the objects, it may not be possible to determine the type of

the cluster. In this case, all the objects will be considered as

noise. For example, in Figure 2c, there is no clear dominating

textual description among the objects.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig. 2: Sample Datasets where Shapes Represent Different

Textual Descriptions

To simplify the problem of clustering spatio-textual objects,

each textual description may be considered in an isolated

manner. That is, clustering is performed for each set of objects

that share a textual description in isolation from objects with

different textual descriptions. As a result, clustering is based

only on the spatial dimension. Many spatial clustering algo-

rithms exist that take into account only the spatial dimension

(see Section V). However, this approach implies that the

textual information is ignored and that clusters may expand

over unrelated but spatially nearby objects. For example, when

only the squares are considered in Figure 2a, the natural cluster

is all the squares. As the spatial distribution among the square

179

objects is similar, it becomes difficult to distinguish the actual

clusters. When considering the circles, they clearly separate

the two clusters of squares. Also, when textual descriptions

are ignored, a set of noisy objects may form a false cluster.

For example, the objects in Figure 2c may result in multiple

clusters because the textual descriptions are considered in

isolation. Therefore, purely spatial clustering is not adequate

in our targeted setting.
Motivated by this, we aim for an approach that takes into

account both textual and spatial attributes of an object and

is able to detect the above clusters correctly. We continue to

formalize the problem.
Clustering spatio-textual objects results in a set of objects

which has a spatial region. The region may be defined using

different techniques. In this paper, for ease of understanding,

we define the region of a cluster to be the convex hull of all

objects in the cluster. An example is provided in Figure 3a.

Other techniques for enclosing the objects, like the orthogonal

convex hull, the minimum bounding box, or the bounding

sphere, may be used with the proposed solution.

Definition 1. Let D be a set of objects. Given a set of objects

O in D, function γ: D→D returns the minimal subset of O
that has the same convex hull as O.

The objects in the enclosing region, regardless of their

textual description, are called ClusterEnclosed.

Definition 2. Let D be a database of objects. Given a set of

objects O in D, function Λ: D→D returns the set of objects in

D that are enclosed by the convex hull of O. We say that the

objects returned by Λ(O) are ClusterEnclosed by γ(O).

An example of a set of ClusterEnclosed objects is

provided in Figure 3b. The set O contains the squares, γ(O)
contains the 6 squares on the border, and Λ(O) contains all

11 objects inside the convex hull. Note that the three circles

do not contain the same textual description as the squares, but

are still ClusterEnclosed objects.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig. 3: Sample Datasets where Shapes Illustrate Different

Textual Descriptions

The addition of a single object to a given cluster may

increase the number of ClusterEnclosed objects by more

than one. The new objects that become ClusterEnclosed

may or may not share the same textual description as the other

objects in the set. In Figure 3b, three objects (circles) were

added to ClusterEnclosed when the top square object was

included.

We proceed to define the quality of a given textual descrip-

tion, termed annotation, in a set of ClusterEnclosed objects.

Ideally, a set of ClusterEnclosed objects is preferred, where

all objects share the same textual description, as in Figure 3a.

Any cluster can easily be annotated with a textual de-

scription if the ClusterEnclosed objects all share the same

textual description. However, this may not always be the case.

As seen in Figure 3b, objects with different textual description

may occur. These “noise” objects may be acceptable since

one cannot expect that all objects in a given region contain

the same textual description. For example, in a park, some

may publish the information that they are actually in the park,

while others may publish information about arbitrary topics.

To accommodate this, we introduce means of measuring the

quality of an annotation of a cluster.

Intuitively, a cluster like the one in Figure 3c is of lower

quality than the cluster in Figure 3a. Figure 3a has seven

objects that all share the same textual description, making

the annotation of the cluster obvious. However, Figure 3c

has six objects for each of two textual descriptions, making

it difficult to determine a good annotation of the cluster. We

want to reflect this in our quality function. The quality function

depends on the number of noise objects and the number of

objects with a textual description that contains the annotation,

a. Thus, a smaller fraction of noise objects results in a better

quality of the cluster. More formally:

Definition 3. The quality of an annotation a of a given set of

objects S is given by:

q(S, a) =
|Sa|
|S| , (1)

where Sa is the objects in the set with a textual description

containing a. The function returns a value in [0, 1], and the

value 1 represents the best possible quality.

Example 1. Consider the clusters in Figures 3b and 3c. The

quality of each cluster with respect to the square annotation is

8/11 and 6/12, respectively. Clearly, the cluster in Figure 3b

has a better quality since it is dominated by square objects.�
When a cluster is expanded by a new object or set of objects,

the quality of the cluster must be recomputed. Adding an

object to a cluster with a large number of objects has minimal

impact on the quality score. Consider a cluster like the one

in Figure 3a with a large number of objects and a quality

of 1. Adding an object to this cluster may also produce a

good quality score, even with a number of accompanying noise

objects as seen from the example in Figure 3b. Therefore, large

clusters may expand excessively and may include numerous

noise objects. Large clusters with initially high quality are in

particular likely to suffer from this over-expansion.

To avoid expansions that decreases the quality of the result-

ing clusters, we introduce a new measure of cluster quality

when expanding clusters. The expansion of a cluster involves

merging two clusters that each consists of one or more objects.

The number of noise objects resulting from the merge may

180

have different impact on the quality when considering the

clusters individually. Therefore, we define the merged quality

of two clusters to be determined by the lower quality computed

for each cluster in combination only with newly added (due

to merge) objects.

Definition 4. The quality of a cluster with respect to an

annotation a when merging two clusters, c1 and c2 is given

by:

mergedQ(c1, c2, a) = min
x∈{c1,c2}

q(Λ(c1 ∪ c2) \ Λ(x), a) (2)

Example 2. We consider the clusters in Figure 4 and calculate

the merged quality with respect to the square annotation. The

3 top square objects are cluster c1 and the lower 7 objects

are cluster c2. When combining the two clusters, the merged

quality is:

mergedQ(c1, c2,�) = min{3
6
,
7

10
} = 0.5 (3)

Note that the quality of the complete cluster exceeds the

merged quality. In this example the quality of the complete

cluster is:
10

13
. �

Fig. 4: Two Clusters Separated by Three Noisy Objects

A. Candidate Annotations

A cluster consists of a number of objects that share a textual

description, an annotation, and a number of noise objects. To

find annotations that can form a cluster, we consider multiple

combinations of the terms in the textual descriptions. We

consider each single-term text and a multi-term text starting

with capital letters as a candidate annotation. Thereby, we aim

to capture places of interest and their descriptive terms.

Example 3. Table I lists all possible annotations for the textual

description: ”We are having a barbecue in Central Park.” Note

that stop words are removed. �
In the following, we consider clustering using only the

above candidate annotations. Notably, many other approaches

can be supported, e.g., all term combinations or all n-grams

can be derived from textual descriptions. We also ignore the

problem of lexical heterogeneity, i.e., when different textual

descriptions refer to the same real-world objects (e.g., Museum

annotation
〈 barbecue 〉
〈 Central 〉
〈 Park 〉

〈 Central Park 〉
TABLE I: Example of Annotations

of Modern Art versus MoMA). While we expect this to

improve the quality of the clustering, such studies are beyond

the scope of this paper.

III. PROPOSED SOLUTION

We proceed to present the CLUSTO clustering technique.

CLUSTO uses the above-defined merged cluster quality

concept and is configured with two parameters. The first

parameter, minQ , defines the threshold for the mergedQ
value that controls when two clusters are merged. Two clus-

ters c1 and c2 with annotation a are merged if and only

if mergedQ(c1, c2, a) ≥ minQ. The second parameter,

minSize , defines the minimum number of objects that a valid

cluster must contain.

We start by giving a general description of how our quality-

based function can be integrated into cluster expansion al-

gorithms, including the approach taken by CLUSTO. Then

we provide algorithm implementation details. We assume that

each object is also a single-object cluster, and thus we use

simply the term “cluster” in the following.

A. Spatial Cluster Expansion

There are several approaches to how mergedQ can be

integrated into spatial cluster expansion.

Range-based Expansion. Motivated by DBSCAN [5] and

its cluster expansion based on a configured maximum range

parameter (ε), a similar approach can be taken to find clusters

using the quality function. A random cluster is selected, and

a range search with distance ε around it is performed. The

cluster is merged with each of the clusters in the range if the

merged quality of the resulting clusters (mergedQ) exceeds

the given threshold (minQ).

In addition to it being difficult to choose ε optimally,

this approach suffers from the same problem as DBSCAN—

varying density. Consider the example dataset in Figure 2a,

where the distances between the square objects are similar. In

this case, it may be possible to select a suitable value for ε.
However, the distances between the objects in Figure 2b vary

greatly. Therefore, to capture all clusters, the value must be

set high in order to contend with objects that are far apart.

This may result in large clusters since the quality is evaluated

for all objects in the range. Thus, this approach fails to detect

smaller clusters.

Nearest Neighbor Expansion. This approach expands a

cluster based on its nearest neighbor (NN) cluster. Initially,

a random cluster is selected, and an NN search is performed

to find its NN cluster. As before, the two clusters are merged

if the merged quality exceeds the given threshold. As such,

181

this approach overcomes the varying-density problem of the

previous approach. However, it is now sensitive to the order in

which the clusters are considered for merging. Since the initial

cluster is selected at random for each candidate annotation, the

final clustering may vary from run to run.

In CLUSTO, we overcome the shortcomings of both ap-

proaches as follows.

Reciprocal Nearest Neighbor Expansion. Our approach

builds on nearest neighbor (NN) chains [14]. An NN-chain

consists of an arbitrary cluster, followed by its NN, which in

turn is followed by its NN from the remaining clusters, and

so on. Such a chain ends in a mutual or reciprocal (RNN)

pair, i.e., a pair of clusters c1 and c2 such that the NN of c1
is c2, and vice versa. When such an RNN pair is found, the

corresponding clusters are merged. Since such an expansion

between two clusters is performed only if they have no

other closer neighbors, the algorithm can recursively perform

an agglomerative hierarchical clustering until all clusters are

merged into a single (root) cluster. We employ single-linkage

clustering. As discussed above, we extend this approach with

a stopping condition based on the merged-quality function.

Since the next candidate is the nearest neighbor, it does not

require any range parameters (ε) and is immune to varying

density.

1) Correctness: Using the NN-chaining algorithm, the re-

sulting merged clusters are not affected by the order in which

the clusters are selected for merging. That is, the algorithm

eventually arrives at the same clustering independently of the

order in which the clusters are traversed. The correctness relies

on the reducibility property [14].

Lemma. The NN-chaining algorithm forms the same clusters

independent of the ordering of the dataset.

Proof: We verify the reducibility property of the NN-chaining

algorithm, implying that when two clusters are merged, they

do not affect any other clusters.

Given two RNN clusters i and j, and any other cluster c,
using single-linkage clustering, there is some (Euclidean

distance) p satisfying the following:

||i, j|| < p, ||i, c|| > p, and ||j, c|| > p.

With single-linkage clustering, no object is closer to i than

j and vice versa. Thus, the following holds when merging i
and j:

||i+ j, c|| > p.

This verifies the reducibility property. Thereby, i and j can

be merged without effecting the RNN properties of any other

clusters. �
As a result of using a clustering algorithm that satisfies the

reducibility property, the order in which clusters are discovered

may vary, but the eventual clustering is the same. For example,

consider the two dendrograms in Figure 5. The dendrogram in

Figure 5a may have either object o1 or o2 as a starting point,

whereas the dendrogram in Figure 5b may have any of o3, o4,

or o5 as a starting point. As seen from the figures, the order

in which the clusters are formed may change depending on

the starting point: however, the formed clusters are the same.

Intuitively, the order enforced by RNN expansion is favored

because it first tries to merge the clusters that are closest

to each other. This is confirmed by our empirical study (in

Section IV).

(a) Dendrogram 1 (b) Dendrogram 2

Fig. 5: Sample Dendrograms where the Clustering is not

Impacted by the Starting Point

This approach can handle excessive expansion of clusters

and noise in the dataset. For example, consider the objects in

Figure 6. Two clusters may be formed: one cluster with the five

left-most objects and one cluster with the objects o1, o2, o3,
and o4. With the reciprocal nearest neighbor requirement,

object o5 is regarded as noise since its NN is the cluster of four

(and merging them would result in a much lower quality of

the cluster). Similarly, such a stopping condition may prevent

the inclusion of the upper-right object in Figure 3b.

When a cluster fails to expand to its NN, it is considered

complete. Since the nearest neighbor sharing the same partial

textual description is the most related, no other object may

be more relevant for expansion. Continuing the example in

Figure 6, the cluster of four will not include any of the

five left-most objects. Intuitively, if the cluster should be

expanded, there would be objects in that direction with shorter

distance than the distance to the outlier o5. Therefore, when

we encounter a too low quality the first time, we stop and

avoid over-expansion of the cluster.

Fig. 6: Sample Dataset where Cluster Expansion is Stopped

B. CLUSTO Implementation

We proceed to describe the implementation of CLUSTO.

The following algorithms integrate the selection of candidate

annotations, nearest-neighbor chaining, and the stopping rule

based on the proposed merged-quality function. The algo-

rithms are designed to run on a large dataset of spatio-textual

objects (such as geo-tagged microblog posts) for effective PoI

identification.

1) Clustering Algorithm: Algorithms 1–3 show the clus-

tering approach implemented in CLUSTO. The entry point

is Algorithm 1 with the global parameters configured at

the beginning (Lines 1–3). The for loop iterates through all

candidate annotations. The annotations are sorted descendingly

182

by the length of their textual description so that the most

descriptive/specific (i.e., longest, probably containing multiple

terms) annotations are considered first. Each annotation is

passed to Algorithm 2 that performs cluster expansion.

Algorithm 1: CLUSTO(Dataset D)

/* Global variables: */

1 minSize ← minimum cluster size; // config. parameter

2 minQ ← quality threshold; // config. parameter

3 V ← dictionary to store clustering; // {string→clusters}
4 sort D by text length in descending order;

5 foreach Annotation a ∈ D do
6 V [a]← ExpandCluster(a, D);

7 return V ;

Algorithm 2 is responsible for expanding all possible clus-

ters for the given annotation. It starts by initializing five

working variables (Lines 1–5): one stack (A), two lists of

clusters (R and E), and two sets of objects (Da and Va). The

stack maintains clusters that may be further expanded when an

RNN is found. The two lists of clusters contain the clusters that

are no longer considered for expansion. Thus, the clusters in

the list R are completed and may be returned at any time. The

set Da stores all candidate objects for clustering with the given

annotation, i.e., objects with textual description containing a.

The set Va stores objects that already formed valid clusters

containing the given annotation.
After the initialization, a while loop follows that iterates

through all unvisited objects containing the given annotation.

Each object is randomly selected, marked as visited, and

pushed to the stack of active clusters (Lines 7–9). Then, the

processing continues in the inner while loop until the stack of

active clusters is empty (Lines 10–25).
The loop follows the logic behind NN-chaining, taking into

account the stopping condition. A cluster (c) is popped out

from the stack, and NN search is performed (Line 13). We use

the Euclidean distance calculated from an object in c to its NN

object. If the found NN object does not belong to any cluster,

cnn stores a single-object cluster. Otherwise, cnn stores the

cluster that the found object belongs to. Note that NN search

excludes the objects from already formed clusters containing

the same annotation (Va). Since longer annotations are consid-

ered first, later clustering with a shorter sub-annotation does

not reuse the same objects. For example, objects that formed

“Central Park” are not reused when clustering “Park.”
Next, the algorithm performs NN-chaining, taking into ac-

count the stopping condition based on the quality function. The

NN of c is examined as follows. If no NN to c can be found

or the found NN belongs to the list of previously rejected or

accepted clusters (Line 14), the expansion of c is stopped by

calling Algorithm 3 (Line 15), which finalizes the clustering

of c (more on that in a moment). If the found NN and c
are reciprocal (Line 17), the merged quality of the clusters

is computed and compared to threshold minQ (Line 18). If

the quality is satisfactory, c is expanded with its NN cluster

Algorithm 2: ExpandCluster(Annota. a, Dataset D)

1 A← stack of active clusters;

2 R← list of approved clusters;

3 E ← list of rejected clusters;

4 Da ← {o ∈ D | o.text contains a};
5 Va ← {o ∈ c | c.a contains a, c ∈ V };
6 while Da contains non-visited objects do
7 select random unvisisted object, o ∈ Da;

8 mark o as visited in Da;

9 push {o} to A; // as a single-object cluster

10 while A is non-empty do
11 c← pop cluster from A;

12 cnn ←NN cluster of c in Da \ (c ∪ Va);
13 mark cnn as visited;

14 if cnn is null or cnn ∈ (E ∪R) then
/* Stop expanding - no more valid NNs */

15 FinishCluster(c, A, R, E);

16 continue;

17 if cnn ∈ A then // RNN pair found

18 if mergedQ(c, cnn, a) ≥ minQ then
19 remove c and cnn from A;

20 push (c ∪ cnn) to A; // merge and push

21 else // Stop expanding - the quality is too low

22 FinishCluster(c, A, R, E);

23 FinishCluster(cnn, A, R, E);

24 else // not RNN

25 push cnn to A;

26 return R;

by removing them from the stack of active clusters (Line 19)

and pushing the newly merged cluster instead (Line 20). As

such, the pushed cluster may be further expanded in the next

iteration. Otherwise, the expansion of both c and its NN are

finalized by calling Algorithm 3 as before (in Lines 22 and

23, respectively).

Finally, the found NN may not be an RNN to c. In this case,

it is simply pushed on the stack of active clusters (Line 25),

implying that the search of its RNN is performed in the next

iteration.

Algorithm 3 performs the final steps for the given cluster.

First, if the cluster is large enough, it is added to the list

of approved clusters (R). Otherwise, it is added to the list

of rejected clusters (E). In either case, all the objects in the

cluster are marked as visited. This implies that the objects are

no longer considered for clustering, as they formed or failed

to form a cluster under the given annotation. Lastly, the cluster

is removed from the stack of active clusters (A).

2) Complexity Analysis: Each object from Da is added only

once to the stack of active clusters (Line 9), since it is marked

as visited on entry, and, when it is removed it is either added

to the list of approved or rejected clusters. Therefore, it may

never enter the stack again as seen from Lines 7 and 14. This

183

Algorithm 3: FinishCluster(Cluster c, Stack A, List

R, List E)

1 if |c| ≥ minSize then
2 R← R ∪ c;

3 else
4 E ← E ∪ c;

5 remove c from A;

gives the space consumption in the stack of O(|Da|), for each

annotation in D . The NN-chain is grown from the most recent

cluster in the stack, and a cluster may merge with as many as

|Da|−1 clusters. This gives a run-time of O(|Da|2), for each

annotation in D [14].

In the following example, we walk through the entire

clustering process in CLUSTO.

Example 4. We run the algorithm with the 8 objects seen

to the right in Figure 6 as the dataset and set the minimum

quality threshold, minQ , to 0.5 and the minimum cluster size,

minSize , to 2. We assume that the � annotation is longer and

thus select a random starting point o2 (in Algorithm 2, Line 7).

As such, the first single-object cluster is pushed to A.

A = {{o2}}
In Line 13, we find that the NN to o2 is o1. Since o1 does

not exists in A, it is pushed to A too (Line 25).

A = {{o2}, {o1}}
Next, the NN to object o1 is object o2. Since o2 exists

in A, they are RNNs, and the merged quality is computed

(Line 18). The quality of the two objects is 1, since no

other ClusterEnclosed objects exist. The quality exceeds

the threshold, and the objects are merged and added to A.

A = {{o1, o2}}
The expansion continues:

A = {{o1, o2}, {o3}}
A = {{o1, o2}, {o3}, {o4}}
A = {{o1, o2}, {o3, o4}}
A = {{o1, o2, o3, o4}}
A = {{o1, o2, o3, o4}, {o5}}
The process stops when o5 becomes the RNN of the

cluster of the other four objects. The merged quality is

mergedQ({o1, o2, o3, o4}, {o5},�) = 0.25, which is below

the threshold minQ = 0.5. Thus, the clusters are not expanded

any further as seen from the two calls to Algorithm 3. The

cluster of four is added to the set of approved clusters, R,

while the cluster consisting of o5 is added to the list of rejected

clusters, E.

The order in this example follows the order of the den-

drogram in Figure 5a. Had o3, o4, or o5 been the random

starting point, the order would have followed the dendrogram

in Figure 5b, but it would have produced the same clustering.

�

IV. EXPERIMENTAL EVALUATION

We empirically evaluate CLUSTO’s effectiveness at discov-

ering points of interests using a real dataset and compare

it against the DBSCAN algorithm. First, we present our

experimental setup. Then, we describe the results of a number

of experiments.

A. Experimental Setup and Data

We use a commodity machine with a quad-core Intel Core

i5-2520M (2.5 GHz) processor and 8 GB of main memory.

In all experiments, the data is loaded into PostgreSQL with

geo-spatial indexes capable of measuring distances on the

Earth’s surface. All data in the database is stored on disk.

The proposed solution is implemented in a single-threaded

Java application. All possible annotations are pre-processed

and stored in main memory using an inverted file index (a

mapping from textual annotation to the corresponding object

identifiers in the database).

To evaluate the quality of the computed clusters, we utilize

the Google Places API2 that enables us to retrieve place

information (including points of interests) within a given

geographic region.

We collected all geo-tagged messages from the public Twit-

ter FireHose in the period from September, 2012 to November,

2013. For this study, we extracted all tweets issued within a 6

km2 down-town region in San Francisco, USA. In our micro-

benchmarks, we found the region to be very well covered

by Google Places. The dataset contains 285,173 geo-tagged

tweets in total. To accommodate the inaccuracy of GPS, we

assume an object to be located anywhere in a 10 meter radius

of the point reported by the Twitter FireHose.

In the following, we conduct three sets of experiments and

discuss the results. First, we test how CLUSTO configuration

parameters, i.e., minQ and minSize , affect clustering quality.

This enables us to choose an optimal configuration for the

subsequent experiments. Second, we measure the runtime of

CLUSTO. Third, we compare our approach against DBSCAN.

B. Varying minQ and minSize

In the first set of experiments, we study how varying minQ
and minSize impact clustering in CLUSTO. Intuitively, the

closer minQ is to zero, the more clusters are formed. However,

the formed clusters are of poor quality because more noise

objects are allowed to be in each cluster. On the other hand,

the closer minQ is to 1, the higher the quality is of the clusters

that are created. However, setting it too high can result in

missing valid clusters. Choosing a value for minSize involves

a similar trade-off.

1) Cluster Coverage: We start with evaluating the coverage

of the discovered clusters. We make use of the Google Places

API as follows. Initially, a random object is fetched from

Google Places within the region considered. Google Places

may return road names or other objects that are not considered

2http://developers.google.com/places/

184

as points of interest. To prevent these type of places, we require

objects to have one or more ratings3.

Then, we search among the clusters of CLUSTO to see

if a similarly annotated cluster exists. Google Places objects

have specific coordinates, while ours may span a larger region.

To accommodate for imprecision in Google Places or in user

locations, we allow a search radius of 25 meters from the

Google Places object. We report a match if a cluster exists

within the search radius that has an annotation that contains

one or more similar terms. For example, if a randomly selected

object from Google Places has the name ”Hotel Tomo” and

CLUSTO detected a cluster with either of the annotations

”hotel,” ”tomo,” or ”hotel tomo,” it is considered a match.

We remove all stop words before the matching.

For each clustering, we fetch 100 random places from

Google Places and perform the above matching. Figure 7

shows the results. As expected, more matches are found when

more noise is allowed, i.e., with minQ values closer to 0.

However, a weaker requirement implies that false clusters

might be created. The matching decreases from almost 80%

to less than 10% when increasing minQ from 0.1 to 0.9. This

includes a sharp decrease when minQ > 0.5. In contrast,

varying minSize has just a slight impact on the matching.

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.1 0.3 0.5 0.7 0.9

m
at

ch
 %

minQ

2
5

10

Fig. 7: CLUSTO Matches of Google Places

To show whether CLUSTO discovered clusters exist in

Google Places, we perform an “opposite” matching, too. That

is, we randomly select 100 CLUSTO clusters and search (using

their annotations) for analogous PoIs in Google Places. The

same setting (search radius, term matching) as above is used

for the matching. The results are shown in Figure 8 (the value

of minQ = 0.9 is omitted as not enough clusters are formed

for all settings). In contrast to the previous experiment, the

impact of minQ is smaller, while the impact of minSize is

bigger. This indicates that setting minSize too low may result

in more false clusters. CLUSTO achieves a relatively high

and stable 80–85% matching unless very poor clusters are

allowed. That is, only with minQ = 0.1 and minSize = 2,

the matching drops below 65%.

In the following experiments, we fix the value of minSize
to 5 since it demonstrates good results for both experiments.

3We verified that this procedure yields a PoI in the region.

 60

 65

 70

 75

 80

 85

0.1 0.3 0.5 0.7

m
at

ch
 %

minQ

2
5

10

Fig. 8: Google Places Matches of CLUSTO Clusters

2) Cluster Properties: In this experiment, we consider

how the characteristics of the discovered clusters change

when minQ is varied. We ran the experiment on the same

dataset (containing 285,173 tweets) and analyzed the formed

clusters with the following five popular annotations: “hotel,”

“food,” “park,” “coffee,” and “restaurant.” The number of posts

mentioning the popular annotations are given in Table II.

hotel food park coffee restaurant
5273 3591 2641 2484 2306

TABLE II: Number of Objects in the Dataset

First, we examine the changes in the spatial extent of the

clusters by measuring their maximum diameter. Recall that

a too low value of minQ can result in over-expanding the

clusters. For example, if two “hotels” are located within close

proximity, they can be merged into one. Therefore, while

we still can have a match of “hotel” in Google Places, the

clustering does not provide accurate information about the

region. Figure 9a shows the results. As expected, the diameters

of the clusters decrease when minQ approaches 1. However,

for the clusters that are expected to be larger (i.e., “park”),

CLUSTO is able to perform relatively stable (the diameter

remains large) also with higher values of minQ . A cluster with

the maximum diameter of 1 meter corresponds to a precisely

located cluster (recall that we assume a GPS inaccuracy of 10

meters).

Next, Figure 9b shows the total number of clusters formed

with each of the five annotations. The numbers decrease as

expected for all annotations as minQ approaches 1, due to the

stronger requirement for forming clusters. We notice that for

values close to 0, more clusters are created in close proximity

to clusters with similar annotations. For example, a cluster

with annotation ”park” may have a cluster with the same

annotation in close proximity, separated by a number of noise

objects. This is the result of the weaker requirement that may

introduce more clusters, but may not always be able to merge

the clusters when too many noise objects exist.

As seen from Figure 9a and 9b, a fixed value of minQ is

suitable for different annotations. The diameter and number of

clusters formed generally decreases for all annotations when

minQ approaches 1.

185

 1

 10

 100

0.1 0.3 0.5 0.7 0.9

m
ax

. d
ia

m
et

er
 (

m
)

minQ

hotel
restaurant

coffee
food
park

(a) Sizes of the Clusters

 0
 20
 40
 60
 80

 100
 120
 140

0.1 0.3 0.5 0.7 0.9

of

 c
lu

st
er

s

minQ

hotel
restaurant

coffee
food
park

(b) Number of Clusters

 200

 400

 600

 800

 1000

 1200

 1400

0.1 0.3 0.5 0.7 0.9

se
co

nd
s

minQ

hotel
restaurant

coffee
food
park

(c) Runtime of CLUSTO

Fig. 9: Cluster Properties

C. Runtime

We continue with the five popular annotations and measure

the runtime of each clustering. CLUSTO runs offline and only

once for a dataset, making the runtime less critical. The results

are shown in Figure 9c. The runtime of a particular clustering

depends on the number of candidate objects and roughly

follows the order given in Table II. As such, “hotel” with

most objects (5,273) takes the longest to process. Although

“park” has slightly more objects than “coffee,” clustering the

former is faster than clustering the latter. We notice that this

is because “park” objects are less spread in the region and

are closer to each other than are “coffee” objects. Also, the

running time tends to decrease for all annotations when minQ
increases. This is because the higher minQ is set, the earlier

the stopping condition is triggered in each clustering. This is

especially true for the numerous “hotel.”

D. Annotation Properties

The proposed solution prioritizes the processing of longer

annotations for two reasons. First, it makes the entire clus-

tering run faster because each call to Algorithm 2 operates

on smaller candidate sets. That is, the number of objects

sharing the same longer (more specific) annotation (e.g.,

“Central Park”) are likely to be smaller than the number of

objects sharing the same shorter (more general) annotation

(e.g., “Park”). As such, the processing of longer annotations

is faster. Also, since the objects that successfully form a cluster

are not reused, the candidate sets for shorter annotations

shrink, making their processing faster as well. Second, longer

annotations are likely to describe PoIs better. CLUSTO is

therefore able to report relevant PoIs to the user as soon as it

starts running.

In this experiment, we vary minQ and count the number

of terms in each annotation forming a cluster. The results are

shown in Figure 10. When minQ is set to 0.1, the majority

of the annotations have 1 or 2 terms. This is because the low

threshold allows more noise, and it is more likely that users

share single terms rather than multiple. When minQ increases

to 0.3, 0.5, or 0.7, the number of terms in each annotation

increases. Thus, single-term clusters are more likely to contain

noise and thus are rejected by the stronger requirement. In

general, the results confirm that CLUSTO is able to detect

multi-term annotated clusters representing more descriptive

PoIs. The results for minQ = 0.9 are omitted because not

enough clusters are formed.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 3 4 5 6 7

%
 o

f c
lu

st
er

s

of terms in annotation

0.1
0.3
0.5
0.7

Fig. 10: Distribution of Number of Terms in Annotations

With the results so far, we propose a good value of minQ
for the current dataset. First, we want to avoid over-expansion,

reducing noisy clusters, and to have the most descriptive

annotations. Therefore, we avoid the value 0.1. Second, we

want to maximize the number of clusters. Thus, we propose to

use either 0.3 or 0.5. With a value of 0.3, we get more clusters

and more matches with Google Places while preserving a

reasonable size of the clusters.

E. Popular Annotation Properties

In this experiment, we fix minQ at 0.3 and report the

number of terms each of the five popular annotations contains.

Naturally, the number of terms vary greatly for each annotation

as seen in Figure 11. The names of the places and how

users mention them affect the clustering. For example, when

the majority of the users mention ”food” without any other

common term, most of the resulting annotations have only this

single term. The annotation ”hotel” most often occurs with one

additional term, and ”restaurant” is most often combined with

two additional terms.

186

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7

%
 o

f c
lu

st
er

s

of terms in annotation

hotel
restaurant

coffee
food
park

Fig. 11: Number of Terms in Popular Annotations

F. CLUSTO versus DBSCAN

In the last set of experiments, we compare the clustering of

CLUSTO with the clustering of DBSCAN [5]. In CLUSTO,

we fix minSize and minQ to 5 and 0.3, respectively.

Similarly, DBSCAN requires a minimum number of points

(MinPts) in a cluster, which we set to 5. Also, it requires a

distance threshold parameter (ε). Setting it too high may result

in over-expanded clusters, while setting it too low may miss

larger clusters. Based on the previous experiments, we know

that cluster sizes vary and can reach 50 meters in diameter.

To ensure the capability to form clusters with this diameter,

the value of ε must be equally high. However, to avoid over-

expansion, which we show in the following experiment, we

choose a relatively low value of 25 meters, to make the

comparison fair. Note that with this low value, DBSCAN is

not be able to combine objects located more than 25 meters

apart.

The resulting clustering for “hotel” is shown in Figure 12. It

is clear from Figure 12a that DBSCAN over-expands clusters

when the data is dense. As a result, the formed clusters do

not correspond to the actual points of interest. CLUSTO, on

the other hand, provides quite accurate clusters as seen from

Figure 12b.

(a) DBSCAN, ε = 25 m (b) CLUSTO, minQ = 0.3

Fig. 12: Clustering for ”hotel”

DBSCAN does not take into account the textual attribute of

other nearby objects, and it performs clustering based purely

on spatial density. As a result, it may form clusters with

annotations that are not dominating in the region. This effect

is clearly visible in Figure 13a: DBSCAN finds ”park” clusters

where there are obviously no parks. CLUSTO takes into

account the textual attribute and expands the clusters based

on the merged quality function. Therefore, it forms clusters

only with annotations that are dominating in the region. In

Figure 13b, we see that no false “park” points of interests are

formed.

(a) DBSCAN, ε=25m (b) CLUSTO, minQ=0.3

Fig. 13: Clustering for ”park”

Finally, we compare the maximum diameters of the clusters

in Figure 14. We use the five popular annotations given in

Table II. The diameters of the clusters formed by DBSCAN

are up to two orders of magnitude larger than those of

CLUSTO. While a 200 meter diameter for “park” clusters

may be reasonable, a 1,000 meter diameter for clusters “hotel”

and “food” are unrealistic. In contrast, CLUSTO provides

meaningful diameters for all annotations.

 1

 10

 100

 1000

 10000

ho
te

l

re
sta

ur
an

t

co
ffe

e
fo

od
pa

rk

m
ax

. d
ia

m
et

er
 (

m
)

CLUSTO
DBSCAN

Fig. 14: Sizes of the Clusters

V. RELATED WORK

Recently, substantial research efforts have explored vari-

ous research directions related to microblogs. This includes

indexing of microblogs [1], [3], [21], [22], event detection

from microblogs [12], [13], [16], news extraction from mi-

croblogs [18], microblog posts based recommendations [6]

and decision making [2] systems, microblog ranking [4], [20],

visualization [11], and spatio-temporal aggregation [19].

Despite such rich research on microblogs, to the best of our

knowledge, no existing work that addresses the discovery of

points of interests using geo-tagged microblog posts, which

is the focus of this paper. However, the paper’s proposal is

closely related to spatial clustering.

Spatial Clustering. For decades, there has been extensive

research on clustering algorithms and their applications in

187

many areas [8]. Our work is closely related to density-based

partitioning algorithms [9]. In these, a set of data objects form

a cluster if they are spread in the data space over a contiguous

region of high object density. Density-based algorithms aim

to identify all such dense regions that are separated by low-

density regions. Data objects located in low-density regions are

considered as noise. Well-known examples of such algorithms

include DBSCAN [5], its extension GDBSCAN [17], and

DENCLUE [7]. The major advantage of these algorithms

over the classic partitioning approaches (e.g., k-means [10]

or CLARANS [15]) are that they do not require the number

of clusters as an input parameter (k), which would be a

crucial limitations in our setting, too. To apply density-based

clustering to our setting, i.e., to take into account the textual

attribute, the algorithm has to be run for each text annotation

separately. Thus, density-based clustering does not consider

objects with other text annotations, which may result in over-

expansion of clusters. Further, density-based is limited by the

search range, which on the other hand may result in under

expansion of clusters. Both cases are evaluated in Section IV-F.

In CLUSTO, the proposed quality function takes into ac-

count all nearby objects, and an object is added to a cluster

only if their merged quality is not below the given thresh-

old. Although similar to a minimum density (defined by ε
and MinPts in DBSCAN), our approach, roughly speaking,

expands a cluster as long as the annotation is dominating in

the region. Thus, clusters of varying density can be formed,

which is not possible with density-based clustering.

To choose the next candidate for a cluster, CLUSTO

borrows techniques from agglomerative clustering based on

nearest neighbor (NN) chains [14]. An NN-chain consists of an

arbitrary cluster, followed by its NN, which is again followed

by its NN from among the remaining clusters, and so on.

Such an NN-chain ends in a mutual or reciprocal NN (RNN)

pair, i.e., a pair of clusters c1 and c2 such that the NN of c1
is c2, and vice versa. We found RNN clustering particularly

efficient in our setting for two reasons. First, the merged RNN

pair does not affect the remaining chain members, and thus

can be reused for the subsequent agglomerations. Second, the

spatial NN search can be accelerated using spatial indexing.

VI. CONCLUSIONS AND FUTURE WORK

We present a spatio-textual clustering method for the discov-

ery of points of interest from geo-tagged microblog posts. The

method takes into account both spatial proximity and textual

relevance and is able to form clusters of arbitrary shape and

density. A proposed merged cluster quality function serves

as a criterion for cluster expansion and, in combination with

nearest-neighbor chaining, prevents over-expansion of clusters.

An experimental study with real data offers insight into the

properties of the resulting clusters; and it demonstrates that

the method is able to extract accurate and comprehensive PoIs

in a realistic, real-world setting.

Since all microblog posts are timestamped, interesting

future work includes adding a temporal dimension to the

spatio-textual clustering. This may enrich the points of

interest further, e.g., by labeling them with inferred opening

hours. Also, in the proposed solution, we perform simple

preprocessing of the textual description of objects. This may

be extended using more advanced natural-language processing

techniques.

Acknowledgments We thank the reviewers for their helpful

comments. The research was supported in part by the Danish

National Research Foundation grant DNRF84 through Center

for Massive Data Algorithmics (MADALGO) and by a grant

from the Obel Family Foundation.

REFERENCES

[1] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin.
Earlybird: Real-time search at twitter. In ICDE, pages 1360–1369, 2012.

[2] C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? Jury selection for
decision making tasks on micro-blog services. Proc. VLDB Endowment,
5(11):1495–1506, 2012.

[3] C. Chen, F. Li, B. C. Ooi, and S. Wu. TI: an efficient indexing
mechanism for real-time search on tweets. In SIGMOD, pages 649–
660, 2011.

[4] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng, and
H. Zha. Time is of the essence: improving recency ranking using twitter
data. In WWW, pages 331–340, 2010.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
volume 96, pages 226–231, 1996.

[6] J. Hannon, M. Bennett, and B. Smyth. Recommending twitter users to
follow using content and collaborative filtering approaches. In RecSys,
pages 199–206. ACM, 2010.

[7] A. Hinneburg and D. A. Keim. An efficient approach to clustering in
large multimedia databases with noise. In KDD, volume 98, pages 58–
65, 1998.

[8] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley-Interscience, 1990.

[9] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. Density-based
clustering. WIREs Data Mining Knowl Discov, 1(3):231–240, 2011.

[10] J. MacQueen et al. Some methods for classification and analysis of mul-
tivariate observations. In Proc. Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297, 1967.

[11] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller. Processing and visualizing the data in tweets. SIGMOD
Rec., 40(4):21–27, 2012.

[12] M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing and
describing spatial bursts. Proc. VLDB Endowment, 3(1-2):1091–1102,
2010.

[13] M. Mathioudakis and N. Koudas. Twittermonitor: trend detection over
the twitter stream. In SIGMOD, pages 1155–1158, 2010.

[14] F. Murtagh. A survey of recent advances in hierarchical clustering
algorithms. The Computer Journal, 26(4):354–359, 1983.

[15] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In VLDB, pages 144–155, 1994.

[16] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users:
real-time event detection by social sensors. In WWW, pages 851–860,
2010.

[17] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in
spatial databases: The algorithm GDBSCAN and its applications. Data
Mining and Knowledge Discovery, 2(2):169–194, 1998.

[18] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling. Twitterstand: news in tweets. In GIS, pages 42–51, 2009.

[19] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen. Scalable top-k spatio-
temporal term querying. In ICDE, pages 148–159, 2014.

[20] I. Uysal and W. B. Croft. User oriented tweet ranking: a filtering
approach to microblogs. In CIKM, pages 2261–2264, 2011.

[21] X. Xiao, Y. Xu, L. Wu, and W. Lin. LSII: An indexing structure for
exact real-time search on microblogs. In ICDE, pages 482–493, 2013.

[22] J. Yao, B. Cui, Z. Xue, and Q. Liu. Provenance-based indexing support
in micro-blog platforms. In ICDE, pages 558–569, 2012.

188

