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ABSTRACT

As a result of decades of research and industrial development, mod-
ern query optimizers are complex software artifacts. However, the
quality of the query plan chosen by an optimizer is largely deter-
mined by the quality of the underlying statistical summaries. Small
selectivity estimation errors, propagated exponentially, can lead to
severely sub-optimal plans. Modern optimizers typically maintain
one-dimensional statistical summaries and make the attribute value
independence and join uniformity assumptions for efficiently esti-
mating selectivities. Therefore, selectivity estimation errors in to-
day’s optimizers are frequently caused by missed correlations be-
tween attributes. We present a selectivity estimation approach that
does not make the independence assumptions. By carefully using
concepts from the field of graphical models, we are able to fac-
tor the joint probability distribution of all the attributes in the data-
base into small, usually two-dimensional distributions. We describe
several optimizations that can make selectivity estimation highly
efficient, and we present a complete implementation inside Post-
greSQL’s query optimizer. Experimental results indicate an order
of magnitude better selectivity estimates, while keeping optimiza-
tion time in the range of tens of milliseconds.

1. INTRODUCTION
Real-world data sets often exhibit substantial skew and strong

correlations between their attributes. For such data sets, the in-
dependence assumptions made by traditional DBMSs often result
in substantial estimation errors during query optimization. Propa-
gation of such errors can lead an optimizer to choose sub-optimal
query plans [10]. Specifically, aiming at simplicity and low over-
head in cost estimation, the original System-R paper [16] made
three simplifying assumptions regarding the statistical summaries
of data:
Uniform distribution assumption (Uniform): The values of an
attributeR.X are assumed to be uniformly distributed across its ac-
tive domain Dom(R.X). This allows the approximationPr(R.X =
x) ≈ 1/|Dom(R.X)|.
Attribute value independence assumption (AttrInd): Attributes
are considered independent. For attributes R.X and R.Y of rela-
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tion R, this allows the approximation Pr(R.X = x,R.Y = y) ≈
Pr(R.X = x)Pr(R.Y = y).
Join predicate independence assumption (JoinInd): This is also
called the join uniformity assumption in the literature. For join
predicates R.a = S.a, and S.b = T.b, this assumption allows
the approximation Pr(R.a = S.a, S.b = T.b) ≈ Pr(R.a =
S.a) Pr(S.b = T.b). Further, for a join predicate R.a = S.a and
an attribute R.X , the assumption allows the approximation:
Pr(R.a = S.a,R.X = x) ≈ Pr(R.a = S.a) Pr(R.X = x).

The third assumption is implied by the second. However, due to
its importance, we discuss it separately. It is well known that these
assumptions can lead to substantial estimation errors [8, 9], which,
when propagated in an exponential fashion through join plans [10],
can lead the query optimizer to recommend a sub-optimal plan [14].
Thus, a great body of research has been devoted to avoiding these
assumptions, while keeping the overhead of selectivity estimation
reasonable.

Uniform has been successfully addressed in a large body of re-
search on attribute-level synopses, including one-dimensional his-
tograms and wavelets [9, 13]. This research attempts to approx-
imate the real probability distribution of an attribute, P (X), in

limited space using another distribution P̂ (X), called a synopsis.
Then, Uniform can be dropped by approximating Pr(X = x) as

P̂ (x). Modern DBMSs maintain such synopses, which allow for
accurate estimation of simple predicates. Thus, the largest esti-
mation errors in today’s optimizers are due to the independence
assumptions AttrInd and JoinInd [8].

To avoidAttrInd, table-level synopses such as multidimensional
histograms [15] attempt to estimate the joint probability distribu-
tion of two or more variables. Attempting to capture the full joint
distribution of the attributes of a table causes an exponential blowup
of storage space and complexity. Deshpande et al. [6] and Getoor
et al. [7] propose using the principle of conditional independence
to factor the full joint distribution into a set of smaller distributions
to address this problem.

Table-level synopses do not adequately address the JoinInd as-
sumption. Assume a join predicate R.a = S.b between two re-
lations R and S, and an attribute R.X . In principle, one could
construct a three-dimensional synopsis that approximates the joint
distribution P (R.X,R.a, S.b) and estimate the joint selectivity of
the join and the selection R.X = x correctly. This approach suf-
fers from the problem that join attributes are typically keys, which
yields distributions that are hard to approximate. One solution is to
use binary random variables, called join indicators and construct a
(decomposed) probability distribution on all the attributes and join
indicators in the database [7]. This is the approach we follow in
this paper. Our work falls in the category of schema-level syn-
opses [1, 7, 17]. A statistical summary is constructed that approx-



imates the joint probability distribution of all attributes and join
predicates in the database.

The theoretical underpinnings of our method stem from the field
of probabilistic graphical models [4]. We use the notion of condi-
tional independence to factor the full joint probability distribution
of the database into a set of smaller marginal distributions. The ex-
ponential blow-up of space and time is thus avoided. Then, we use
an adaptation of the junction tree algorithm [11] to efficiently com-
pute joint probabilities of selection and join predicates. Graphical
models have been used before to model the probability distribution
induced by a database [7]. In contrast to previous work, we aim
for a practical solution with low overhead. To this end, we make
several contributions.

First, we carefully choose a fixed graphical model structure that
exploits the inherent conditional independencies in a relational da-
tabase, and preserves the most important dependencies, while lim-
iting the dimensionalities of all stored probability distributions to
two variables. Second, we develop a custom model-creation algo-
rithm that significantly outperforms off-the-shelf algorithms (e.g.,
[5]) for large databases. Third, we present a novel dynamic pro-
gramming algorithm for selectivity estimation that exploits the na-
ture of selectivity estimation requests made by a query optimizer.
Fourth, we present a full implementation of our algorithms in the
PostgreSQL query optimizer. Finally, experimental results on our
prototype suggest orders of magnitude better selectivity estimates,
while keeping the estimation overhead within tens of milliseconds.

The rest of this paper is organized as follows. Section 2 re-
views background material relating to graphical models. Section 3
presents the process of modeling a database with a graphical model,
and discusses the assumptions we make along the way. It also dis-
cusses the specifics of our model construction algorithm. Section 4
discusses how the model is used during query optimization. Sec-
tion 5 reports on our experimental study, and Section 6 presents
related work. Finally, Section 7 concludes and offers research di-
rections.

2. PRELIMINARIES
Assume the joint probability distribution of n random variables,

PD(X1, . . . , Xn). The cost of storing and extracting probabilities
from the distribution grows exponentially with respect to n. The
field of graphical models [4] offers ways to approximate the distri-
bution PD via another distribution PM which can be expressed as
a product of low-dimensional distributions. Thus, the exponential
blow-up of storage and computation cost is avoided.

To factor a distribution, the notions of independence and con-
ditional independence are used. When two variables Xi and Xj

are independent (denoted Xi ⊥ Xj ), their joint distribution can
be factored as P (Xi, Xj) = P (Xi)P (Xj). When Xi and Xj

are conditionally independent given a third variable Xk (denoted
Xi ⊥ Xj |Xk), the joint distribution of all three variables can
be factored as P (Xi, Xj , Xk) = P (Xi, Xk)P (Xj , Xk)/P (Xk).
Intuitively, Xi ⊥ Xj |Xk when knowledge about Xj does not con-
vey further information about Xi once we know Xk.

Bayesian networks (BNs) offer a graphical representation of a
set of (conditional) independencies. The qualitative component of
a BN is a directed acyclic graph, as the one shown in Figure 1(b)
(we explain the meaning of the variables later). The nodes of the
graph are the random variables of the distribution PD that we are
trying to approximate. An edge Xi → Xj in the BN denotes that
the value of Xi stochastically influences the value of Xj . Lack of
an edge between two variables does not imply independence. For
example, consider a chain of two edges Xi → Xk → Xj . Here,
Xi influences Xj indirectly through Xk. Once Xk is known, Xi

andXj become independent. If on the other handXk is not known,
an interaction between Xi and Xj exists. In fact, the chain of in-
teractions represents the conditional independence Xi ⊥ Xj |Xk .
Denote by Pa(X) the parents of the variable X in the BN, and by
NonDesc(X) the non-descendants of variableX , i.e., the variables
that cannot be reached from X following the directed edges of the
BN. The full set of conditional independencies encoded by the BN
isX ⊥ NonDesc(X)|Pa(X) for allX .

The inference problem consists of computing marginal distribu-
tions of the form P (Xi|Xj = xj) from a BN. The junction tree
algorithm [11] is an efficient solution to the inference problem that
uses an intermediate representation called a junction tree (JT). The
transformation of a BN to a JT is done in three steps. First, the
moral graph is constructed; the moral graph is an undirected graph
that contains the same nodes as the BN and contains an undirected
edge for each directed edge in the BN. Additionally, two nodes that
share a child in the BN are connected. Figure 1(c) shows the moral
graph of the BN of Figure 1(b), if the dotted edges are excluded. To
be able to construct a JT from the moral graph, the latter must be
chordal: It cannot contain a cycle with more than three nodes with-
out a chord, i.e., an edge that connects two nonconsecutive nodes
in the cycle. If the moral graph is not chordal, an intermediate step
called triangulation precedes the JT construction. It adds edges to
the moral graph to make it chordal. The dotted edges in Figure 1(c)
are the edges added by the triangulation process.

The nodes of the junction tree are the maximal cliques of the
moral graph. An edge between two cliques is annotated with a
separator, a node that contains the intersection of the cliques’ vari-
ables. Figure 1(d) shows a valid junction tree for the moral graph of
Figure 1(c). A junction tree represents a factorization of the joint
distribution of all variables PD . The only distributions that need
to be kept are the marginals of the cliques and separators. For ex-
ample, for the central clique C = {l sdate, l cdate, o odate} of
the junction tree in Figure 1(d), we need to store the joint distribu-
tion P (l sdate, l cdate, o odate). The distribution PM induced
by the junction tree (that approximates PD) can be expressed as the
product of the clique marginals divided by the separator marginals:
PM =

∏

C
P (C)/

∏

S
P (S). It is easy to extract a marginal dis-

tribution from a JT if all variables belong to the same clique. To ex-
tract the marginal P (l sdate, o odate) from the JT of Figure 1(d),
we just need to sum out the variable l cdate from the central clique:

P (l sdate, o odate) =
∑

l cdate

P (l sdate, l cdate, o odate).

If the variables do not belong to the same clique, we need to mul-
tiply clique distributions. For example, to extract the marginal
P (l cdate, l rdate) we need to multiply the distributions of the
central and the upper-left clique and divide by the separator before
summing out the unnecessary variables:

P (l cdate, l rdate) =
∑

l sdate,o odate

P (l sdate, l cdate, o odate)P (l sdate, l rdate)

P (l sdate)

Junction trees are effective for models with low treewidth τ ,
which is the cardinality of the largest clique minus 1. Thus, to
achieve an efficient factorization it is essential to keep the clique
cardinalities small.

3. MODEL SELECTIONANDCONSTRUC

TION
We aim to define a succinct statistical model of a database. The

trade-off is between the expressiveness of the model in terms of



(a) Schema graph and descriptive attributes. (b) Bayesian network. (c) Moral graph (excluding the dotted edges).

(d) Junction tree.

Figure 1: A model constructed on a subset of the TPC-H schema graph along with seven descriptive attributes. The Bayesian

network, the moral graph, and the junction tree representations of the model are shown. The dotted edges in (c) are the edges added

to the moral graph during triangulation.

capturing complex statistical relationships versus the storage cost
to maintain the model and the complexity of performing inference.

We follow two design guidelines. First, the model should cap-
ture the most important correlations that influence the sizes of in-
termediate relations during query optimization. Second, efficiency
is important: we aim for estimation runtime performance similar to
what is offered by commercial DBMSs.

3.1 The probability distribution of the data
base

The first step is to define the probability distribution that we
aim to approximate. We assume that we are given a schema S =
{R1, . . . , Rn} and a query workload W = {q1, . . . , qm}. First,
we define the schema graph GS(VS, ES) as a graph that contains
one vertex for each relation Ri, and an edge for each possible join
relationship between two relations. Note that there can be multiple
edges between two relations, signifying multiple join predicates,
as well as edges whose endpoints are the same vertex, indicating
possible self-joins. Our assumption is that the schema graph is
given as input to the model construction algorithm. In reality, it
can be discovered using the workloadW and possible information
about foreign keys. Figure 1(a) shows an example schema graph
for a subset of the TPC-H schema. Boxes are relations (that also
contain attributes of interest), and the edges indicate possible join
predicates between relations. In Figure 1(a), directed edges signify
key-foreign key relationships. However, we note that our approach
is general, and applies to arbitrary join predicates.

Descriptive attributes: For an attribute of interest in the database
(e.g., attributes that appear in “where” clauses in the queries), we

define a random variable called a descriptive attribute. We denote
by A(S ,W) the set of all descriptive attributes. For example, the
schema graph of Figure 1(a) defines the setA(S ,W) that contains
the descriptive attributes l sdate, l cdate, l rdate, o odate, p size,
s acctbal, c acctbal.

Join indicators: For each edge in the schema graph, we define a
join indicator, a binary random variable that captures the event that
two random tuples from two relations join. For example, the join
indicator JLO in Figure 1(a) is a binary random variable capturing
the event l orderkey=o orderkey for two L and O tuples. A join in-
dicator takes the value T if two tuples join with the particular join
predicate, and it otherwise takes the value F. Denote by J (S ,W)
the set of all the join indicators defined by the schema graph GS .
For example, the set J (S ,W) defined by the schema graph of Fig-
ure 1(a) contains the join indicators JLO ,JOC ,JLP ,JLS , and JSC .

The universal relation: We define the universal relation U in two
steps. Consider the Cartesian product C(S) of all the relations in
the database. We initially add one column to the Cartesian prod-
uct for each join indicator. The value of each join indicator in
each row is T if the join predicate is true for the particular tu-
ple of the Cartesian product, and it is false otherwise. Denote
by CJ this enhanced relation. Then, we project on the set of
join indicators and the set of descriptive attributes A(S ,W), i.e.,
the attributes of the database that will be included in the model:
U(S ,W) = πA(S,W)∪J (S,W)(CJ (S)). For example, the univer-
sal relation extracted from the schema graph of Figure 1(a) contains
the join indicators JLO ,JOC ,JLP ,JLS , and JSC , and the descrip-
tive attributes l sdate, l cdate, l rdate, o odate, p size, s acctbal,
and c acctbal. See Appendix A for an example of a small database



of two relations and the derived universal relation, along with the
produced graphical model and the probability distributions.

3.2 Model granularity
The universal relation U defines a set of random variables V =
A ∪ J , as well as a probability distribution PU (V). This distribu-
tion represents the “ground truth,” the distribution that we will try
to approximate using a graphical model. The graphical models lit-
erature offers algorithms to learn a graphical model structure from
data [4, 5]. However, there are two problems in using an off-the-
shelf algorithm to construct our graphical model structure. First,
large cliques may be created. We aim to keep the clique size small,
so that only one- or two-dimensional histograms will be used to
store the cliques. Second, the way that the relation U was created
induces some independencies between its attributes that are not ex-
ploited by generic algorithms. Finally, the running times of these
algorithms are usually prohibitive for use in large databases.

Relational independencies: Recall that the universal relation U is
a projection of an “enhanced” Cartesian product CJ of all the re-
lations in the database. Using a frequentist interpretation of proba-
bility (which is appropriate for selectivity estimation [7]), a set of
independencies hold in PU for every possible database instance.

Theorem 1. Consider the relations R 6= S 6= T 6= U ∈ S . The
following independencies hold in PU :

1. Descriptive attributes belonging to different relations are in-

dependent: PU (R.X, S.Y ) = PU (R.X)PU (S.Y ).

2. Join indicators are independent if they do not share a rela-

tion: PU (JRS , JTU ) = PU (JRS)PU (JTU ).

3. A descriptive attribute and a join indicator are independent

if they do not share a relation:

PU (JRS , T.X) = PU (JRS)PU(T.X).

PROOF. See Appendix F.1

Fixed model structure: We exploit these independencies to de-
velop a simple, fixed model structure that does, however, capture
the most relevant statistical correlations for the purpose of selectiv-
ity estimation.

Assume that there is only one descriptive attribute per relation.
We allow only one type of edge in our Bayesian network: an edge
from a descriptive attribute R.X to the corresponding join indica-
tor JRS : R.X → JRS . When multiple descriptive attributes are
present, we restrict their dependencies within relations. Specifi-
cally, there are no edges R.X → S.Y , and within a relation R
we do not allow a “common effect” structure, where an attribute
has two parents (e.g., R.X → R.Y ← R.Z). Then, the “lo-
cal” Bayesian network for a given relation R is a forest of directed
rooted trees. Figure 1(b) shows a Bayesian network for the schema
graph of Figure 1(a) that respects the above constraints.

The following theorem guarantees the validity of our fixed model
structure (see Appendix F.2 for the proof).

Theorem 2. The fixed model structure respects the relational in-

dependencies and produces a valid (acyclic) Bayesian network.

It is clear that the introduced fixed model structure is a design
decision, and that it may encode conditional independencies that
do not necessarily hold in an arbitrary database distribution PU ,
i.e., PM (the distribution induced by the graphical model) is an
approximation of PU . We proceed to discuss the intuition behind
our decisions and its limitations.

First, allowing edges between attributes of different relations (of
the form R.X → S.Y ) would violate the relational independen-
cies. The same holds for edges of the forms R.X → JST and
JRS → JTU . Therefore, disallowing these edges does not result in
missed correlations.

Note that the lack of an edge between two attributes does not
imply independence. Consider for example two relations R and S
that join with each other and have one descriptive attribute each:
R.X and S.Y . Our Bayesian network would have an edge from
R.X to JRS and from S.Y to JRS . Although the BN (correctly)
models the two descriptive attributes as independent, conditioned
on the event that JRS = T (i.e., when the two relations are joined),
the two variables are not independent of each other.

Second, if we were to allow a common effect structure within
the local Bayesian network of a relation (of the formX1 → X2 ←
X3) we would need to store and manipulate three- or higher- di-
mensional probability distributions. This would incur significant
cost during selectivity estimation. The same is true if we were to
allow a join indicator to have more than two parents. These restric-
tions do result in missed dependencies, however the resulting se-
lectivity estimation errors are often not significant as demonstrated
by our experimental results.

3.3 Model construction
The model construction algorithm takes as input a set of descrip-

tive attributes A and a set of join indicators J , and constructs a
Bayesian network to be used for selectivity estimation (actually our
algorithm directly constructs the moral graph as discussed below).
Its final output is a junction tree that is stored in the DBMS catalog.
Denote by A(R) the subset of descriptive attributes that belong to
relation R.

As discussed in the previous section, we restrict the space of pos-
sible Bayesian networks by imposing two restrictions. First, a join
indicator Jij has at most two parents, one from relation Ri and
one from relation Rj . Second, within a relation Ri, the “local”
Bayesian network of the attributes A(Ri) is a directed rooted tree.
Thus, the model construction algorithm needs to find the “best” par-
ents of each join indicator, and a local Bayesian network for each
relation. The concatenation of these is the Bayesian network of the
database. Then off-the-shelf algorithms for moralization and trian-
gulation [2] are applied to construct a chordal moral graph, from
which a junction tree can be derived in a standard manner [4]. Fig-
ures 1(b),1(c), and 1(d) show respectively the Bayesian network,
the moral graph, and the junction tree constructed for the schema
graph of Figure 1(a).

Due to the fixed structure of our model, the only edges added
by moralization are between two parents of a join indicator. Thus,
we can operate on the moral graph directly. Algorithm 1 describes
the construction of the moral graph of the database. Initially, the
“local” moral graph,MGR, of each relation is constructed by first
determining the dependence measure between each pair of its at-
tributes and then constructing the maximum spanning tree using
these measures as weights [3]. The dependence measure we use is
mutual information:

I(X;Y ) =
∑

x

∑

y

P (x, y) log(
P (x, y)

P (x)P (y)
).

Then the two best predictors (if they exist) for each join indicator
are found in a similar fashion.

Consider a relation R with attributes A1, . . . , An. In order to
test dependence between Ai and Aj , we need to issue the query

select Ai, Aj ,count(*) from R group by Ai, Aj .



Algorithm 1 Construction of the moral graph

1: function CONSTRUCT-MG(A,J ,R)
2: MG = (A ∪ J , {})
3: for R in R do

4: MGR = (AR, {})
5: for Ai in A(R) do
6: for Aj in A(R) do
7: Add (Ai − Aj) to MGR with weight I(Ai : Aj)

8: MGR =MAXIMUM-SPANNING-TREE(MGR)
9: Add edges of MGR to MG

10: for Jij in J do

11: Abest
i = argmaxAi∈A(Ri)∧I(Ai:Jij)>0 I(Ai : Jij)

12: Abest
j = argmaxAj∈A(Rj)∧I(Aj :Jij)>0 I(Aj : Jij)

13: if Abest
i 6= null then

14: Add (Abest
i − Jij) to MG

15: if Abest
j 6= null then

16: Add (Abest
j − Jij) to MG

17: if Abest
i 6= null ∧ Abest

j 6= null then

18: Add (Abest
i − Abest

j ) to MG

19: return MG

The output of the above query is normalized to obtain the joint dis-
tribution P (Ai, Aj). Since Ai and Aj will likely form a clique in
the final junction tree, we save the distribution when we test de-
pendence to avoid later recomputation. Once the local moral graph
of the relation is found, we can delete the distributions of variable
pairs that do not belong in it. Therefore, after the moral graph of
the database has been found, very little access to the database is
needed.

The same idea is used when testing dependence between a join
indicator and an attribute. Consider the join indicator Jij . We can
form the joint distribution of Jij , a descriptive attribute Ai from
relation Ri, and a descriptive attributeAj from relation Rj issuing
first a query that will extract the distribution P (Ai, Aj , Jij = T).

select Ai, Aj ,count(*) from Ri, Rj

where Ji,j group by Ai, Aj .

Since Ai ⊥ Aj , we can extract the distribution P (Ai, Aj , Jij =
F) by simply subtracting the values of P (Ai, Aj , Jij = T) from
the values of P (Ai)P (Aj). To compute, e.g., P (Ai), we need to
issue the query

select Ai,count(*) from Ri group by Ai.

Algorithm 1 only checks pairs of attributes for dependence, and
issues only joins between base relations. Our model construction
algorithm issues the same queries to the database as CORDS [8], a
highly efficient previous approach to discovering correlations. By
using samples of tables, the overhead of the CORDS construction
algorithm was shown to be independent of the size of the database,
while still resulting to high quality estimates.

We have so far guaranteed that all the probability distributions
that need to be maintained have cardinality two. Within a relation,
all cliques are of the form (R.Ai, R.Aj). A clique containing a
join indicator is in the worst case of the form (Ri.A,Rj .B, Jij),
which can be stored as two 2-dimensional distributions, one for the
value Jij = T, and one for the value Jij = F. This guarantee is a
central point of our work, and is indeed the primary reason why we
can achieve low selectivity estimation times.

There is one exception to this rule: Algorithm 1 may create a
moral graph that is not chordal, and triangulation may introduce
cliques of higher order. This is easy to prevent by further restricting

Figure 2: Selectivity estimation algorithm.

the model, but we have chosen not to, since the unrestricted model
does not incur significant overhead in our experiments. The dotted
lines in Figure 1(c) show the edges in the moral graph added by
the triangulation process. Note that in this example, these extra
edges did not create larger histograms. Appendix D contains more
details.

Model maintenance: When the underlying data changes, two kinds
of updates need to be propagated to the model. First, updates that
cause the probability distribution of an attribute to change. Sec-
ond, updates that cause new correlations to be created or existing
correlations to seize to be significant due to substantial changes in
the data. For the first case, the distributions in which the attribute
is contained are found and re-created. The second may need com-
plete reconstruction of the model. However, strong correlations are
usually a characteristic of the semantics of the database, and are not
likely to change much over time. We plan to address incremental
model updates in future work.

4. SELECTIVITY ESTIMATION
We move to the problem of using the statistical model for selec-

tivity estimation. We assume that the statistical model is available
in the form of a junction tree.

The task of selectivity estimation is to estimate the joint probabil-
ity of a conjunction of selection and join predicates ψ. Assume that
the predicates are over descriptive attributesAq and join indicators
Jq . The task is then to compute Pr(

∧

A∈Aq
φA,

∧

J∈Jq
J = T)

where φA is a predicate over the attribute A.
We solve this problem using a junction tree representation of our

statistical model in two steps. First, the so-called Steiner tree, the
minimal sub-tree that contains Aq and Jq , is extracted from the
junction tree. Second, a propagation algorithm substitutes the val-
ues of the query variables, and eliminates the remaining variables
in the tree. The final unnormalized number is returned as the result
of the query.

For the sake of completeness, we give pseudo-code for the first
step in Appendix C. For the second step, our propagation algorithm
proceeds as follows. First, a clique of the reduced junction tree is
selected as root. Messages pass from the leaves of the tree to the
root, which will return the final result. Assume a clique Cr with
parent clique Ck and child cliques Ci, i = 1, . . . , n as shown in
Figure 2. Let Aqr ≡ Cr ∩ Aq , and Aqri ≡ Sri ∩ Aq , i.e., the
intersection of the query variables with a clique’s variables and a
separator’s variables, respectively. Then, the following steps will
be executed in Cr:



1. Messages πri, i = 1, . . . , n from the clique’s are collected
children by calling the algorithm recursively.

2. The relevant values from Aq are substituted to the clique po-
tential φr and the potential of the upwards separator µkr:

φ∗
r(Cr −Aqr − {Jr}) = φr[

∧

A∈Aqr

A = a, Jr = T]

µ∗
kr(Skr −Aqkr) = µkr[

∧

A∈Aqkr

A = a]

Note that we assumed that each clique contains at most one
join indicator Jr and that separators contain only descriptive
attributes. This always holds in our fixed model structure.

3. Let S∗
kr = Skr − Aqkr be the set of attributes needed by the

upwards clique. Then, the clique multiplies its new potential
φ∗
r with the messages received from its children, summing out

unnecessary variables.

φ∗
r =

∑

Cr∪Ci∪Sri−Aq−S∗

kr

φ∗
r(Cr −Aqr)πri(Ci −Aqi)

µri(Sri −Aqri)

4. The modified potential φ∗
r is the message πkr passed to the

upwards clique Ck.

The answer to the query is just the message πroot created by the root
node. Pseudocode for the selectivity estimation algorithm is given
in Algorithm 2.

We have further developed an improved dynamic programming
algorithm that exploits the order of selectivity requests issued by a
query optimizer, and computes estimates using less multiplications.
Appendix E provides details and pseudo-code.

Algorithm 2 Basic propagation algorithm.

1: function COMPUTE-SELECTIVITY(T , Aq , Jq)
2: return COMPUTE-PROB-REC(T .root, Aq , Jq)

3: function COMPUTE-PROB-REC(Cr,Aq , Jq)
4: Π = ∅
5: for i = 0 to n do

6: πri =COMPUTE-PROB-REC(Cr.children[i],Aq , Jq)
7: Π = Π ∪ πri

8: φ∗
r = φr[JR = T,

∧
A∈Aqr

A = a]

9: µ∗
kr = µkr [

∧
A∈Aqkr

A = a]

10: for i = 1 to n do

11: φ∗
r =

φ∗
rπri

µ∗
ri

12: φ∗
r =

∑
Cr∪Ci∪§ri−Aq−S∗

kr
φ∗
r

13: return φ∗
r

5. EXPERIMENTAL STUDY

5.1 Implementation
We have implemented a graphical model foundation and the pro-

posed selectivity estimation algorithms in PostgreSQL. To the best
of our knowledge, this is the first implementation of graphical model
based selectivity estimation in a real DBMS. Our implementation
consists of two parts: the model construction prototype and the se-
lectivity estimation prototype. Model construction (the implemen-
tation of Algorithm 1) is done outside the DBMS. It is written in
Java, and accesses the database using SQL queries. The resulting
junction tree structure is stored as four relational tables in the Post-
greSQL catalog: (1) a relational table containing the descriptive

attributes, (2) a table containing the join indicators, (3) a table con-
taining the cliques and their inter-connections in the junction tree,
and (4) a table containing the clique potentials.

The model construction algorithm is very efficient. It takes less
than one minute to discover and construct the catalog tables for a
scale-0.1 TPC-H data set, and approximately one hour for a full
scale-1.0 TPC-H data set or the IMDB data set (see Appendix B
for details on our data sets). These numbers are similar to those re-
ported for tuple-graph synopses [17]. Note that we can reduce this
time even further by using sampling [8]. In addition, the graphi-
cal model is space-efficient. It uses 13 pages in the PostgreSQL
catalog, equivalent to roughly 100KB of storage space.

The selectivity estimation part is implemented in the PostgreSQL
backend. When the optimizer is called, the clique catalog table is
scanned, and the junction tree structure is created in the backend.
The clique potentials are not read from disk at this point, since that
would incur significant and unnecessary overhead. Then the Steiner
tree for the query is created with an implementation of Algorithm 3
in Appendix C. Only then are the probability distributions in the
much smaller, query-specific junction tree read from the catalog
table. The startup overhead of loading the junction tree is very
small: it takes between 1 and 3 milliseconds in all our experiments.

Selectivity estimation implements Algorithms 2 and 4 (in Ap-
pendix E) as operations on a junction tree structure. We imple-
mented cliques and probability distributions as plan nodes in the
PostgreSQL class system, including algorithms to multiply, divide,
and marginalize multi-dimensional probability distributions. We
used simple equi-width histograms for multi-dimensional proba-
bility distributions, where a multi-dimensional histogram is stored
as an one-dimensional array. To ensure a fair comparison, we mod-
ified PostgreSQL to use equi-width histograms as well. We used
arrays of size 10 for our distributions, and arrays of size 200 for
the PostgreSQL histograms. A typical clique in our junction tree
contains two descriptive attributes and one join indicator. There-
fore, the size of the clique histogram is the same as a PostgreSQL
histogram.

5.2 The impact of missed correlations
We proceed to offer insight into how missed correlation can af-

fect the plan chosen by a query optimizer, and subsequently the
time needed to execute a query. We use a skewed TPC-H data set
with zipf factor z = 3. Correlations are inherent in the TPC-H
schema. Consider the following query (denoted TPCH-1):

select c_name,c_address

from lineitem,orders,customer

where l_orderkey=o_orderkey and

o_custkey=c_custkey and

o_totalprice=x and

l_extendedprice=y and

c_acctbal=z

We seek to find customers that have placed orders with a particular
combination of total price and prices of items, and with a further
selection on the customer’s account balance.

The attributes l extendedprice and o totalprice are
correlated for tuples of lineitem and orders that join. Specif-
ically, the total price of an order is a function of the price of its
items, and their tax and discount. This correlation causes the selec-
tivity Pr(JLO, φL, φO) to be much higher than the product of the
selectivities Pr(JLO), Pr(φL), and Pr(φO). PostgreSQL cannot
capture such a correlation and therefore underestimates the selec-
tivityPr(JLO , φL, φO) by a factor of 20 in our setting. This causes
the optimizer to place the join L 1 O before the join O 1 C in the
query plan. Further, it causes PostgreSQL to use a nested loop join
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(c) Time for selectivity estima-
tion.

Figure 3: Examples of 2-join queries with correlations in the TPC-H and IMDB data sets. In all queries, PostgreSQL chose different

plans using our versus the default estimates.

for the final join with C, using the join L 1 O as the inner relation.
The plan picked by the optimizer using the default PostgreSQL es-
timates is A : (O 1HJ L) 1NLJ C, where the right operand of the
1 operator is pipelined. In contrast, using our improved estimates,
the plan picked by the optimizer is B : (C 1HJ O) 1HJ L. Thus,
both join order and the join algorithms picked were different. The
execution time difference between these two plans is huge. While
plan B (the one picked using our selectivity estimates) takes less
than 2 seconds to execute in a cold state, plan A takes more than
40 minutes. After instructing PostgreSQL to not use a nested loop
join, plan A is executed in 4 seconds. Therefore, the wrong join
order can result in a 2× execution time penalty, and the nested loop
join increases the execution time by orders of magnitude. Both
decisions were made due to the missed correlation between the at-
tributes l extendedprice, o totalprice, and the join in-
dicator JLO . By capturing these correlations using a graphical
model, the optimizer can pick a better query plan.

Figure 3 shows results for eight queries on the TPC-H and IMDB
data sets. All axes are in logarithmic scale. Appendix B provides
the SQL code of the queries, and details on the data sets. All queries
are examples of missed correlations leading to a wrong join order,
and indeed the PostgreSQL optimizer chose different plans using
the default estimates versus using the estimates by our method.
Our plans are better in all cases. Figure 3(a) shows the plan cost
(measured as the number of intermediate tuples generated), both as
estimated by the query optimizer, and its real value determined af-
ter query execution. Figure 3(b) shows the actual execution times
for these queries.

PostgreSQL underestimates the cost of the query TPCH-1. As
discussed, this causes the execution time to spiral (Figure 3(b)) due
to a nested loop join. This is also the case for the query TPCH-2.
For both these queries, our estimates are very close to the actual
values. TPCH-3 and TPCH-4 are examples where our estimates
resulted to overestimation. Here, a correlation causes a join to pro-
duce zero tuples. Using the default estimates, the optimizer misses
the opportunity to place the join first. Although the difference is
not as dramatic, the plan chosen using the default estimates was
still worse by a factor of 1.5 for these two queries. In these queries,
although the default estimates are more accurate for their resulting
plan, an overestimation by our method can guide the optimizer to a
completely different plan than the default estimates.

In the IMDB data set, correlations are present, but they are not
as extreme as in the synthetic data set. Queries IMDB-1–IMDB-
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Figure 4: Results on a workload of 400 random queries over

the TPC-H data set.

4 are all examples of underestimation by the PostgreSQL default
selectivity estimates. The resulting differences in execution time
can vary from very small (IMDB-2) to more than a factor of two
(IMDB-1, IMDB-3, and IMDB-4).

The time needed for selectivity estimation using our graphical
model is significantly higher than that of PostgreSQL (Figure 3(c)).
This is expected, given the complexity of performing propagation
in a junction tree compared to simply checking a one-dimensional
histogram. However, due to our optimizations, the selectivity esti-
mation time is in the order of tens of milliseconds. The IMDB-4
query is a 3-join chain query. There, the dynamic programming
algorithm (Appendix E) can reduce selectivity estimation time to
about half, and it approaches the time needed by PostgreSQL. The
rest of the queries are 2-join queries, and the time needed by the ba-
sic selectivity estimation algorithm and the dynamic programming
algorithm are similar.

5.3 A random workload
Although what matters in practice is the execution time of the

resulting plan (as shown in the previous section), using this as the
sole metric for selectivity estimation can be misleading. Due to
the complexity of query optimizers and the fine points of each in-
dividual optimizer, a better estimate does not always result in a
better query plan. For example, a large over-estimation may be
better than a slight under-estimation for certain queries, since it
may result in a more “conservative” plan. In order to place equal
emphasis on over- and under- estimation, we use the multiplica-



tive error metric, which has been shown to be the most appropri-
ate for query optimization [6, 14]. Assume that a relation Q pro-
duced during query execution has cardinality |r| and that the car-
dinality estimate is |r̂|. Then, the multiplicative error is defined as
max(|r̂|, |r|)/min(|r̂|, |r|).

Given a query Q, we define the average multiplicative error as
the geometric mean of the multiplicative errors for all estimates
that are asked by the query optimizer during the optimization of

the query: avg-err(Q) =
(

∏

i=1,...,n

max(|q̂i|, |qi|)

min(|q̂i|, |qi|)

)1/n

, where

qi is a relation whose cardinality estimate was requested by the
optimizer.

We generated a workload of 400 queries on a cyclic subset of the
TPC-H data set (see Appendix B for details). Figure 4(a) shows
the average multiplicative error of the default PostgreSQL and our
selectivity estimates, averaged over queries with the same number
of joins. Our estimates are better across all queries; and for 5-join
queries, we can achieve a tenfold reduction of the multiplicative er-
ror. Figure 4(b) shows the optimization time. The basic selectivity
estimation algorithm is used. The penalty for our better estimates
is an increase in optimization time. However, optimization time is
always in the order of tens of milliseconds, which is an acceptable
overhead considering reduced estimation errors.

6. RELATED WORK
CORDS [8] provides a cost-effective schema-level synopsis that

makes the uniform distribution assumption, but not the attribute
and join independence assumptions. CORDS discovers correlated
attributes, but does not create the corresponding probability distri-
butions. Further, it is limited to pairs of attributes. Similarly to
CORDS, we also consider only pairs of attributes in order to cre-
ate the model efficiently. Contrary to CORDS, we avoid all three
assumptions at once. Further, by organizing the dependencies in
a junction tree, we can model indirect dependencies between at-
tributes via chains or trees of dependencies. Our model construc-
tion algorithm has roughly the same complexity as CORDS.

Our work builds on Probabilistic Relational Models (PRMs) [7]
that aim to model a database as a whole using a graphical model.
Similarly to our work, PRMs can estimate the cardinality of a query
without making any independence or uniformity assumptions. How-
ever, this approach cannot deal with cyclic schemas or non-key
queries, both of which we can handle. Second, since Bayesian
networks are used directly to model the database, large distribu-
tions may be kept, and most importantly the model construction
algorithm is expensive. One can view our work as an efficient and
practical adaptation of PRMs for use in real DBMSs.

Another approach is to maintain a “representative” sample of the
database. Graph-based synopses [17] choose a subset of the com-
plete tuple graph of a database and use that subset to perform se-
lectivity estimation. The problem with that approach is that the in-
dependence assumptions made are encoded in the heuristic model
construction algorithm. In contrast, our approach makes the (condi-
tional) independence assumptions explicit by means of a graphical
model. Although the approaches have a different outset (graphical
models and XML graph summarization), it would be interesting to
experimentally compare their efficiency in the future.

7. CONCLUSIONS AND FUTUREWORK
Missed correlations are frequently the reason behind estimation

errors in modern optimizers. We present an approach to selectiv-
ity estimation that avoids the attribute value independence and the
join uniformity assumptions. We carefully adapt techniques from

graphical model theory. By restricting the space of possible mod-
els, we can capture the most important correlations while keeping
the overhead of query optimization and model construction low.
We present results based on an implementation inside a real DBMS.
In several cases, we can achieve large execution time savings while
maintaining optimization time in the range of tens of milliseconds.

We plan to explore several lines of research in the future. Within
selectivity estimation, current multi-dimensional histograms do not
fit well with our work. A novel structure is needed, that performs
well in low dimensions with highly correlated attributes, and pro-
vides error guarantees after multiplications. Current work in this
area has also highlighted such a need, in addition to minimization
of the multiplicative error [14]. Second, we plan to address ways
to incrementally update the statistical model when the underlying
data changes. Another direction that we plan to pursue is advanced
uses of correlations by a DBMS, such as correlation-aware physical
design [12] and horizontally partitioned plans [18].
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APPENDIX

A. EXAMPLE DATABASE
Figure 5 shows a database consisting of two relations: relation

R(X,Y,A) with five tuples, and relation S(Z,W,B) with four
tuples. The relations can join via the join predicate R.A = S.B.
The descriptive attributes are R.X,R.Y, S.Z, and S.W .

The figure shows the universal relation, described in Section 3.1.
The universal relation is the Cartesian product R × S projected
on the descriptive attributes with the addition of the join indicator
JRS ≡ (R.A = S.B). The universal relation captures the joint
distribution P (X,Y, Z,W,JRS), which is approximated using a
graphical model.

The figure also shows one possible Bayesian network for the
database, and the corresponding moral graph and junction tree.
The junction tree is annotated by the probability distributions of its
cliques, the only distributions that need to be kept and that factor
the joint distribution as follows:

P (X,Y, Z,W, JRS) =
P (X,Y )P (Y,Z, JRS)P (Z,W )

P (Y )P (Z)
.

Figure 5: An example database of two relations. The universal

relation, the Bayesian network, the moral graph, and the junc-

tion tree along with the probability distributions are shown.

B. DATA SETS AND QUERIES
Data sets. We use two data sets, the full IMDB data set and gen-

erated data for the TPC-H schema. The IMDB data set is approx-
imately 800MB and consists of 21 tables, a total of 101 columns,
and 54,400,459 rows. For the TPC-H data set, we tweaked the data
generator to introduce additional pairwise correlations between at-
tributes. We use a scale factor of s = 0.1, a zipf factor of z = 3,
and a Pearson correlation parameter of r = 0.9 in our experiments.

Queries. In Section 5.2 we use a suite of queries that contain joins
whose selectivity is correlated with specific values of descriptive
attributes. The queries on the TPC-H schema are the following:

1. TPCH-1: The query finds information on customers with a
given account balance that have placed orders with a given to-
tal price, as well as prices of the order lines. The correlation
between o totalprice and l extendedprice causes
the selectivity of the join L 1 O to be very high.

select c_name,c_address

from orders,lineitem,customer

where o_orderkey=l_orderkey and

o_totalprice=x and

l_extendedprice=y and

o_custkey=c_custkey and

c_acctbal=z;

2. TPCH-2: The query finds information on customers with a
given account balance, that have placed orders with a given
ship date and order date. The strong correlation between
o orderdate and l shipdate causes the selectivity of
the join L 1 O to be very high.

select c_name,c_address

from lineitem,orders,customer

where l_orderkey=o_orderkey and

l_shipdate=x and

o_orderdate=y and

o_custkey=c_custkey and

c_acctbal=z;

3. TPCH-3: The query finds information on suppliers with a
given account balance that have participated in finished or-
ders with a given ship date. The strong correlation between
o orderstatus and l shipdate causes the selectivity
of the join L 1 O to be very low.

select s_name,s_address

from orders,lineitem,supplier

where o_orderkey=l_orderkey and

o_orderstatus=’F’ and

l_shipdate>x and

l_suppkey=s_suppkey and

s_acctbal=y;

4. TPCH-4: The query finds information on pricing and cost of
orders that were shipped after a given date, and ordered before
a given date, with a further selection on available quantity.
The correlation between o orderdate and l shipdate
causes the selectivity of the join L 1 O to be very low.

select o_totalprice,ps_supplycost

from lineitem,orders,partsupp

where l_shipdate>x and

o_orderdate<x and

l_orderkey=o_orderkey and

l_suppkey=ps_suppkey and

ps_availqty=y;

The queries on the IMDB schema were the following:



1. IMDB-1: The query finds titles produced in 2009, for which
the distributing company was US-based.

select T.title

from title as T,

movie_companies as MC,

company_name as CN

where MC.company_id=CN.id and

MC.company_type_id=1 and

CN.country_code=’[us]’ and

T.id=MC.movie_id and

T.production_year=2009;

2. IMDB-2: The query finds movie titles produced in 2009 for
which the distributing company is known.

select T.title

from title as T,

movie_companies as MC,

company_name as CN

where MC.company_id=CN.id and

MC.company_type_id=1 and

T.kind_id=1 and

T.id=MC.movie_id and

T.production_year=2009;

3. IMDB-3: The query retrieves titles together with trivia on ac-
tors that have played in the movie.

select T.title,CI.info

from cast_info as CI,

person_info as PI,

title as T

where CI.person_id=PI.person_id and

CI.role_id=1 and

PI.info_type_id=17 and

CI.movie_id=T.id;

4. IMDB-4: The query retrieves titles together with character
names and trivia on actors that have played in the movie.

select T.title,CN.name,CI.info

from cast_info as CI,

person_info as PI,

title as T,

char_name as CN

where CI.person_id=PI.person_id and

CI.role_id=1 and

PI.info_type_id=17 and

CI.movie_id=T.id and

CI.person_role_id=CN.id;

In Section 5.3 we use a random workload of selection and join
queries over the restricted TPC-H schema graph shown in Fig-
ure 1(a). We use 21 descriptive attributes and introduced two pred-
icates per attribute. Figure 1(d) also shows the junction tree created
for a subset of those attributes. By taking all possible combinations,
we generate 80 one-join queries. By randomly combining queries
with one join, we generate 80 two-join queries, until 400 queries
with one to five join predicates are created.

C. STEINER TREE COMPUTATION
Given a rooted junction tree T and a set of variables V , our goal

is to extract the minimal connected junction tree that contains these
variables. For each clique of the tree C, we maintain a Boolean
variable “C.include” that indicates whether the clique is included
in the resulting tree, and we maintain a set “C.varsInSubtree” that
contains the subset of V that is included in the subtree rooted at C.
The algorithm, shown in Algorithm 3, sets the “include” value for

each clique. If a clique is a leaf, it is included if it contains variables
in the query. A non-leaf clique is included if the variables contained
in the sub-tree originating from the clique contain query variables.
The fine point of the algorithm is that we do not want to include a
clique whose parent already covers the variables of interest. Lines
15 and 16 of the algorithm set the include bit of a clique’s child to
false if the parent clique already covers the needed variables.

Algorithm 3 Steiner tree computation

1: procedure CONSTRUCT-STEINER-TREE(T ,V)
2: Croot = root of T
3: CLIQUE-INCLUDE(Croot,V)
4: return cliques with C.include = T

5: procedure CLIQUE-INCLUDE(C,V)
6: if C is leaf then
7: C.varsInSubtree = V ∩ C.vars
8: if C.varsInSubtree 6= ∅ then
9: C.include = T

10: else
11: localVarsInSubtree = V ∩ C.vars
12: C.varsInSubtree = localVarsInSubtree
13: for c in C.children do

14: CLIQUE-INCLUDE(c,V)
15: if localVarsInSubtree ⊃ c.varsInSubtree then
16: c.include = F

17: C.varsInSubtree = C.varsInSubtree ∪ c.varsInSubtree
18: if C.varsInSubtree 6= ∅ then
19: C.include = T

20: if C.varsInSubtree = V then
21: Stop the algorithm

D. TRIANGULATION AND ITS IMPLICA

TIONS
A junction tree can be constructed only if the moral graph Gm

is chordal. A graph is chordal if it does not contain a cycle with
more than three nodes without a “chord,” an edge that connects
two non-adjacent nodes in the cycle.

For the case that the moral graph is not chordal, an extra step
before creating the junction tree is needed. Triangulation is a pro-
cess that adds edges to the moral graph until a chordal graph has
been constructed. It is usually realized as a process of node elim-
ination [2]. A node is eliminated by connecting all its neighbors,
and removing the node and its edges from the graph. A node is
called simplicial if it can be eliminated without introducing extra
edges (i.e., all its neighbors are connected).

Algorithm 1 may create a moral graph that is not chordal. This
can happen if the query graph of the database contains cycles, but
it cannot happen in a tree-shaped query graph. In our fixed model
structure, join indicators are simplicial nodes because they have at
most two parents that are connected during moralization (e.g., in
the moral graph shown in Figure 1, we can see that the join indi-
cator nodes JLP , JLS , . . . are all simplicial nodes). Thus, trian-
gulation will not add edges involving join indicators. It will only
add edges that contain descriptive attributes (e.g., edge between
l sdate and o odate in Figure 1). This can only happen in the
case of a cyclic query graph, where different descriptive attributes
are parents to join indicators of the same relation. Disallowing the
latter is an easy solution to guarantee that all histograms are 2-
dimensional. Alternatively, one can choose to allow the possibility
of higher-dimensionality histograms.

The latter is acceptable in most cases because, even with cliques
containing 3 or more descriptive attributes, we often only need to
store at most 2-dimensional histograms. For example, consider



the clique {s acctbal, c acctbal, l sdate} created during triangu-
lation in Figure 1. The three variables in this clique are indepen-
dent of each other since they belong to different relations. Hence,
this 3-dimensional probability distribution can be stored compactly
as a collection of three 1-dimensional distributions. Although this
seems counter-intuitive, it is actually expected because the junction
tree encodes fewer conditional independencies than the original
Bayesian network (because it contains more edges). On the other
hand, the clique {l sdate, l cdate, o odate} requires us to store
a 2-dimensional histogram on {l sdate, l cdate}. In future work,
we would like to investigate whether it is possible to construct a
custom elimination sequence that always produces a chordal graph
that needs only 2-dimensional distributions.

E. A DYNAMIC PROGRAMMING ALGO

RITHM

Figure 6: Junction tree for the query R 1 S 1 T 1 U .

The basic selectivity estimation algorithm presented in Section 4
can be improved if we consider the sequence of estimates requested
by the query optimizer. Assume the chain join queryR 1 S 1 T 1

U and the junction tree for this query depicted in Figure 6. During
plan enumeration, estimates are requested from the selectivity es-
timation component in a certain order. When a joint probability,
e.g., Pr(JRS = T, JST = T), is to be estimated, the probabilities,
e.g., Pr(JRS = T) and Pr(JSt = T), have already been com-
puted. Instead of executing the basic propagation algorithm for
Pr(JRS = T, JST = T), we can re-use the previous findings in a
dynamic programming manner to avoid redundant computation.

We maintain an array β. An entry β[J ] caches the intermediate
distribution that is used to compute Pr(

∧

J∈J J = T) and higher-
order probabilities. When the query optimizer needs a cardinality
estimate, it calls the function COMPUTE-SELECTIVITY, shown in
Algorithm 4. It provides two arguments: a set of join indicators J
that correspond to the joins in the intermediate relation, and possi-
bly a set of predicates on descriptive attributes A. There are two
cases:

1. The probability contains only one join indicator Ji that be-
longs to the clique Ci of the junction tree. Then, a new β
entry is created:

β[Ji](
⋃

j

Sij) =
∑

Ci−
⋃

j Sij

φi[Ji = T,
∧

A∈Aq∩Ci

A = a].

The returned result is simply
∑

β[Ji].

2. The set J contains more than one join indicators. Then,
there should exist sets J1 and J2 such that J1 ∪ J2 = J ,
J1 ∩ J2 = ∅, and the entries β[J1] and β[J2] are not null.
These two sets correspond to two sub-trees of the junction
tree, separated by the separator S12. Then, the entry β[J ] is
created: β[J ] =

∑

S12
β[J1]β[J2]/µ12. The returned result

is simply
∑

β[J ].

According to this (simplified) algorithm, only one clique multi-
plication per estimate is needed. Unfortunately, that is not true in
the general case. The two entries β[J1] and β[J2] may not corre-
spond to neighboring cliques. In that case, they must be multiplied

with all the cliques that lie between them. However, the number
of clique multiplications is always lower than in the basic propaga-
tion algorithm. A second caveat exists for junction trees with high
fanout. There, the number of variables of an entry in a β table may
grow to be so large that it dominates the optimization time. Thus,
the dynamic programming algorithm is suitable for junction trees
with low fanout.

Algorithm 4 Dynamic programming algorithm.

1: function COMPUTE-SELECTIVITY(J ⊂ Jq , A ⊂ Aq)
2: if |J | = 1 then

3: β[Ji] =
∑

Ci−
⋃

j Sij
φi[Ji = T,

∧
A∈Aq∩Ci

A = a]

4: return
∑

β[Ji]
5: else

6: Let J1,J2 such that J1∪J2 = J ∧J1∩J2 = ∅ ∧ β[J1] 6=
null ∧ β[J2] 6= null

7: Let S12 be the separator that connects the sub-trees of the junc-
tion tree that contain J1 and J2.

8: β[J ] =
∑

S12

β[J1]β[J2]

µ12

9: return
∑

β[J ]

F. PROOFS

F.1 Proof of Theorem 1

Theorem 3. Assume the relations R 6= S 6= T 6= U ∈ S . The
following independencies hold in PU :

1. Descriptive attributes belonging to different relations are in-

dependent: PU(R.X, S.Y ) = PU(R.X)PU (S.Y ).

2. Join indicators are independent if they do not share a relation:

PU (JRS , JTU ) = PU(JRS)PU (JTU ).

3. A descriptive attribute and a join indicator are independent if

they do not share a relation:

PU (JRS , T.X) = PU (JRS)PU (T.X).

PROOF. The proof uses simply the frequentist definition of prob-
ability:

Pr(R.X = x) ≡
|σR.X=x(R)|

|R|

Pr(JRS = T) ≡
|R 1 S|

|R × S|

Pr(JRS = F) ≡
|R 61 S|

|R × S|
;

and it uses the fact that selection commutes over the Cartesian prod-
uct:

σR.X=x(R × S) = σR.X=x(R)× S.

1. Assume arbitrary values x ∈ Dom(R.X) and y ∈ Dom(S.Y ).
Then,

Pr(R.X = x, S.Y = y) ≡
|σR.X=x∧S.Y=y(R× S)|

|R × S|

=
|σR.X=x(R)||σS.Y =y(S)|

|R||S|

=
|σR.X=x(R)|

|R|

|σS.Y =y(S)|

|S|

≡ Pr(R.X = x)Pr(S.Y = y).



2. Assume JRS ≡ (R.a = S.a) and JTU ≡ (T.c = U.c). We
need to prove four cases ({T,T}, {T,F}, {F,T}, {F,F}) for
the possible values of the two join indicators. For example,
for JRS = T and JTU = F we have:

Pr(JRS = T, JTU = F)

≡
|σR.a=S.a∧T.c 6=U.c(R× S × T × U)|

|R × S × T × U |

=
|σR.a=S.a(R × S)||σT.c 6=U.c(T × U)|

|R × S||T × U |

=
|R 1 S||T 61 U |

|R × S||T × U |

≡ Pr(JRS = T) Pr(JTU = F).

The remaining cases are proven similarly.

3. Proven similarly.

F.2 Proof of Theorem 2

Theorem 4. The fixed model structure respects the relational in-

dependencies and produces a valid (acyclic) Bayesian network.

PROOF. It is easy to prove that any Bayesian network that con-
forms to our fixed model structure is acyclic. First, since the “local”
Bayesian network in each relation is a directed tree, it cannot con-
tain a cycle. Second, since a join indicator has no children, it cannot
be a part of a directed cycle.

For the first part of the theorem, we need to prove that any BN
that conforms to our fixed model structure encodes the relational in-
dependencies. Recall that the conditional independencies encoded
by a Bayesian network are

X ⊥ NonDesc(X)|Pa(X)∀X.

We need to prove three cases:

1. Two descriptive attributes from different relations are inde-
pendent. Consider the attribute X from relation R, and the
attribute Y from relation S. The local Bayesian network of
the relation R is a directed tree. Consider the path from the
root of that tree, X1, to X: X1 → X2 → · · · → Xn → X .
Due to the fixed model structure, Y is a non-descendant of all
attributesX1, . . . , Xn, X . SinceX1 has no parent, we obtain
from the Bayesian network that

X1 ⊥ Y |∅ ⇒ P (Y |X1) = P (Y ).

Using the above result, and thatX2 is independent of Y given
X1 we obtain that

X2 ⊥ Y |X1 ⇒

P (X2, Y |X1) = P (X2|X1)P (Y |X1)

P (X2, Y |X1) = P (X2|X1)P (Y ).

For the joint distribution ofX2 and Y we have:

P (X2, Y ) =
∑

X1

P (X1, X2, Y )

=
∑

X1

P (X2, Y |X1)P (X1))

=
∑

X1

P (X2|X1)P (Y )P (X1))

=
∑

X1

P (X2, X1)P (Y )

= P (X2)P (Y ).

Therefore, X2 ⊥ Y . In the same way, by following the chain
fromX2, we can deduce X ⊥ Y .

2. A descriptive attribute is independent from a join indicator
that does not involve the attribute’s relation. Consider the at-
tribute X of relation R and the join indicator JST . JST has
at most two parents, one descriptive attribute from relation S,
and one descriptive attribute from relation T . Therefore, JST

is a non-descendant ofX . We can prove thatX ⊥ JST in the
same way as in item 1 by substituting Y with JRS .

3. Two join indicators that do not involve a common relation are
independent. Consider the join indicators JRS and JTU . Due
to the fixed model structure, JTU is a non-descendant of JRS .
If JRS does not have any parents,

JRS ⊥ JTU |∅ ⇒ JRS ⊥ JTU .

If JRS has one parent, assume from relation R,X:

JRS ⊥ JTU |X.

From item 2 we have X ⊥ JTU .

P (JRS , JTU ) =
∑

X

P (JRS, JTU , X)

=
∑

X

P (JRS, JTU |X)P (X)

=
∑

X

P (JRS|X)P (JTU |X)P (X)

=
∑

X

P (JRS|X)P (JTU )P (X)

=
∑

X

P (JRS, X)P (JTU )

= P (JRS)P (JTU )

If JRS has two parents,R.X and S.Y :

JRS ⊥ JTU |X,Y.

From item 2 we have X ⊥ JTU and Y ⊥ JTU .

P (JRS , JTU ) =
∑

X,Y

P (JRS, JTU , X, Y )

=
∑

X,Y

P (JRS, JTU |X, Y )P (X,Y )

=
∑

X,Y

P (JRS, JTU |X, Y )P (X)P (Y )

=
∑

X,Y

P (JRS|X, Y )P (JTU |X,Y )P (X)P (Y )

=
∑

X,Y

P (JRS|X, Y )P (JTU )P (X)P (Y )

=
∑

X,Y

P (JRS, X, Y )P (JTU )

= P (JRS)P (JTU )
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