19

Vacuuming

Christian S. Jensen

1 Introduction

Base tables supporting transaction time are ever-growing because all logical up-
dates, including deletions, transform into insertions at the physical level. This con-
trasts snapshot tables where logical and physical deletion coincide. Logical deletion
in TSQL2 was covered in 16. As there is a need for physical deletion capabilities
In snapshot tables (and valid-time tables), there is also a need for such capabili-
ties in temporal tables supporting transaction time (i.e., transaction-time tables and
bitemporal tables).

This chapter is divided into two parts. In the first, the general notion of vac-
uuming and associated concepts are introduced and motivated. It is shown that
straightforward physical deletion may adversely affect the usefulness of query re-
sults and that special attention thus should be devoted to the design of appropriate
vacuuming facilities. We then give reasons why disciplined vacuuming is a highly
desirable capability. Subsequently, the important concepts of vacuuming are pre-
sented by means of a larger example and a survey. In the second part, the spe-
cific design of vacuuming capabilities for TSQL2 is presented. The goal has been
to design minimal facilities that are easily implemented and yet provide adequate
functionality.

2 Motivation

Support for transaction time brings with it the potential for accessing any past data-
base state. Physical deletion, by its very nature, limits this potential, and while this
may be desirable, care should be taken to avoid an adverse impact on the utility of
the data that is retained in the database.

To get an initial understanding of some of the aspects of vacuuming, consider
a scenario where we are studying an author’s perception of a particular historical

465

466 THE TSQL2 QUERY LANGUAGE

phenomenon. Our source is a new printing of the author’'s one-hundred year old
diary. Now consider four possible cases.

1. Itis guaranteed that our new printing has the same content as had the original
diary.
In this case, our source is reliable and we can trust its contents.

2. The publisher removed from the new printing certain parts of the author’s
original description of the historical phenomenon, but described clearly what
was removed.

In this situation, our source may or may not be of less use to us. If we are
not interested in the aspects that were removed, the source is as valuable as in
the first case. If we are interested in the aspects that have been removed, the
source has lost value, and we will find the omissions unfortunate.

3. We know that the publisher may have removed parts of the author’s original
description of the historical phenomenon.
In this case, the source is unreliable and may be of little or no value to us. It
may have value, as we know that it may be inaccurate only by omission. Still,
without knowledge of the type of omission (e.g., omission of complete para-
graphs or omission of words that distort the meaning of individual sentences),
much care must be taken to avoid being mislead.

4. Without informing us and in conflict with current practice, the publisher has
removed certain parts of the author’s description of the historical phenomenon.
This case is highly problematic. We believe that the source is accurate, but it
is not. Thus, the source is now potentially worse than no source at all.

The publisher’s removal of material is in principle similar to physical deletion from

a temporal database. The first case corresponds to a temporal database system that
does not support physical deletion. Here, it is guaranteed that the past states of
the database are retained unmodified and never change. In terms of the example,
once text is entered into the diary, it remains there, and we know that the diary is
complete.

As will become clear, it is, however, necessary for a temporal database system
to support vacuuming capabilities. Then we would like a database system to behave
as in the second case, rather than the third and fourth cases.

It now becomes interesting to investigate trade-offs between specific types
of removals and their effect on the utility of the remaining text. For example, if
the publisher is allowed to remove individual words such as “not” and “never,” the
text may become incomprehensible or misleading (it lacks safe interpretations). It
may be better to restrict deletions to complete paragraphs or larger textual units.
The ease with which removals are explained to the reader is important. Another
important issue is exactly how the deletions should be reported to the reader.

VACUUMING 467

It is part of the task of designing vacuuming facilities to choose functionality
that is sufficiently powerful, is easily described to the user, and has a minimal effect
on the utility of the data that is retained.

Below, we first outline the reasons why physical deletion is necessary and then
explore in more detail some problems and solutions [1] when designing vacuuming
facilities.

Many reasons exist why flexible physical deletion is necessary. In the exam-
ple, deletion from the original diary may be necessary for these reasons.

e Without reductions, the existing diary is very lengthy and boring. Sections
concerning the author’s opinions on local politics are of no interest to the
general readership.

e While an interesting diary, the publisher has strict page limits that necessitate
omissions.

e Certain material in the diary must be omitted to respect confidentiality or na-
tional security interests.

In a general database context, there are also good reasons for physical dele-
tion. In many installations, ever-growing tables will eventually outgrow the mass
storage devices available (e.g., magnetic disks). In order to guarantee continuous
operation, physical deletion capabilities are necessary. It must be possible to delete
data that are no longer needed, or when additional space needs to be freed for more
important data. Next, the efficiency of query processing generally degrades as tables
grow [2]. For this reason, means of controlling the table sizes are highly desirable.
Finally, many countries have strict laws that require the ability to delete certain
records of previous history (while requiring that other records be retained). Cus-
tomers may demand that no information about them exists in some database. Other
laws may require that certain records be kept for a fixed duration of time. For exam-
ple, information related to personal income tax must, in some countries, be retained
by the citizens for five years. Business policies also pose similar requirements.

In correspondence with the first case in the diary scenario, a database sys-
tems supporting transaction time and without physical deletion has a very desirable
property: any query that is not now-relative [3] will always return the same answer
independently of when it is issued (a now-relative query is simply a query that in-
cludes a now-relative timestamp, i.e., a timestamp that is evaluated to a different
value when evaluated at different times). When physical deletion is introduced, it
should be clear that this property no longer holds.

When designing a vacuuming facility, two different approaches may taken to
“minimize the damage.”

e The system can attempt to guarantee that unless the contrary is explicitly in-
dicated, query results are not affected by vacuuming [1]. With this approach,
users are maximally shielded from the fact that vacuuming may occur and

468

THE TSQL2 QUERY LANGUAGE

may affect query results. Assuming that an attempt is made to not vacuum
any useful data, most users need not know that vacuuming occurs at all.
Query modification techniques [4] and algorithms for testing equivalence
among query expressions [5] may be utilized to implement this functional-
ity efficiently.

What type of notification, then, should be given when a query result may be
affected by vacuuming? Again, there are several options. For simplicity, we
consider only interactive queries.

— The system could simply refuse to evaluate the query on the grounds
that vacuuming may have affected the result. Since the result could still
be useful, this option seems too restrictive.

— The system could return the result, but also notify the user that the result
may be affected by vacuuming. With this design, the user can inspect
the descriptions of what has been vacuumed, interpret the query on that
basis, and perhaps issue additional queries. For this to be a good option,
descriptions of what has been vacuumed should be easily accessible. It
seems appropriate for the system to retain, accumulate, and organize this
type of information. That would ensure easy access and completeness.

— The system could return the result and also provide the user with queries
that are “similar” to the original query, but that are not affected by vac-
uuming. This is the most user-friendly, but also the most complex so-
lution. With this solution, the user may not need to inspect potentially
complicated descriptions of what has been vacuumed, but may choose
to ignore vacuuming if one of the system-proposed queries are satisfac-
tory.

Techniques for query specialization and generalization [6, 7] that gen-
eralize query modification and equivalence preserving transformations
may be utilized here.

e The system makes no guarantees and offers minimal assistance. It requires

the users to be up-to-date with the vacuuming that has been performed on
the database and to always take this information into consideration when for-
mulating and interpreting queries. As was the case above, the system should
automatically retain, accumulate, and organize the descriptions of what has
been vacuumed.

Above, users did not need to worry about vacuuming unless explicitly told to
by the system. Here, the user must check any query with respect to what has
been vacuumed.

When it is possible to make complex vacuuming specifications and when

gueries are generally not affected by vacuuming, the first approach may be prefer-

VACUUMING 469

able. However, when only simple vacuuming specifications are allowed, the second,
simpler approach seems acceptable.

A few additional issues should be mentioned. First, not all deletion specifica-
tions are appropriate. A specification stating that data between one and two years
old should be vacuumed is an example. Data more than two years old cannot be
deleted, and data not yet two years old will eventually become two years old and
can therefore not be deleted. In consequence, nothing can be deleted and the specifi-
cation is at best useless. Next, deletion specifications should not delete data needed
by other specifications, integrity constraints, and views.

The actual physical deletion is performed by an asynchronous vacuuming de-
mon according to the specifications. While vacuuming logically has eager seman-
tics, any degree of eagerness or laziness can be adopted for the actual physical
removal of base data, and a variety of conditions triggering the demon can be em-
ployed. This high degree of flexibility makes it possible to achieve efficient vacu-
uming implementations.

3 Using Cut-off Points

Cut-off points provide basic vacuuming. We first present the required language
extensions, then discuss the properties of the vacuuming facilities.

3.1 Language Extensions for Vacuuming

We initially consider specification of vacuuming at schema-definition time
[8]. Then we consider specification of vacuuming after schema-definition time [1].
We base the presentation on a sample table, defined as follows on August 1, 1994.

CREATE TABLE EmpDep
(Name CHARACTER (30) NOT NULL,
Dept CHARACTER (30) NOT NULL)
AS TRANSACTION YEAR (2) TO DAY;

We have created a tablEeEmpDepwith two attributes recording in which depart-
ments employees work. This table is declared as a transaction time table. Transac-
tion-time timestamps are to the underlying granularitp@fy, with a range of 100
years.

Next, assume that the following updates are performed.

On August 4, 1994
INSERT INTO EmpDep
VALUES (‘Jake’, 'Ship’)
On August 9, 1994:
INSERT INTO EmpDep
VALUES (‘Kate’, 'Load’)

470 THE TSQL2 QUERY LANGUAGE

On August 19, 1994

UPDATE EmpDep

SET Dep TO ’Load’

WHERE Emp = 'Jake’ AND Dep = ’'Ship’
On August 22, 1994

INSERT INTO EmpDep

VALUES (‘Kate’, 'Ship’)
Conceptually, this results in the following instance (seen as of 8/25/94).
Emp Dep T
Jake Ship|| {8/5/94,8/6/94,8/7/94,...,8/19/94}
Jake Load|| {8/20/94,8/21/94,8/22/94, ...,8/25/94, uc
Kate Load|| {8/10/94,8/11/94,8/12/94, ...,8/25/94, uc}
Kate Ship || {8/23/94, 8/24/94, 8/25/94, uc
In this instance, “uc” is a special symbol that indicates that the information recorded
by the tuple is still current, i.e., current “until changed.” The symbol allows the
system to correctly update the instance with additional time values as time advances
[9] (see also 12). With this example available, we proceed by considering a sample
specification of a cut-off point (assume tliahpDephas not yet been created).

CREATE TABLE EmpDep
(Name CHARACTER (30) NOT NULL,
Dept CHARACTER (30) NOT NULL)

AS TRANSACTION YEAR (2) TO DAY

VACUUM NOBIND(DATE 'nw - 7 days);

A cut-off point of NOBIND(DATE ’'now - 7 days’) hasbeen specified, mean-
ing that only data current within the most recent seven days is available to queries.

Vacuuming is a logical notion which is independent of the particular repre-
sentation chosen for the temporal table. Logically, facts with transaction times
that overlap a cut-off point lose those transaction times that are before the cut-off
point, and facts that have transaction times completely before the cut-off point are
removed. Logically, the table will contain no transaction times before the cut-off
point. Thus, with the above specification in effect, on August 29, 1994, the sample
table will have the following contents.

Emp Dep T

Jake Load| {8/22/94,8/23/94,8/24/94, ...,8/29/94, uc
Kate Load|| {8/22/94,8/23/94,8/24/94, ...,8/29/94, uc
Kate Ship || {8/23/94, 8/24/94,8/25/94, ..., 8/29/94, uc
While unbound now-relative cut-off points generally seem more useful for

schema definitions than bound now-relative and absolute cut-off points, bound now-
relative and absolute cut-off points may also be used. For exalp@JUM DATE

VACUUMING 471

'August 3, 1994’ in a schema definition issued on August 1, 1994, will result
in a table that does not retain any data until August 3, 1994.

The defaulvVACUUMIause is#ACUUM DATE ’'now; a bound now-relative
cut-off point. Then, if part of a schema definition issued on August 1, 1984,
will evaluate to that date meaning that the table will not contain data current before
the time it is created. Thus, if WMACUUMIause is present, no vacuuming is done.
Specifying an bound now-relative or absolute cut-off point that is before the time
bound toDATE 'now’ generates a warning and is otherwise ignored. Specifying
aVACUUMIause for other tables than transaction time and bitemporal tables results
in an error.

It follows from the above that any transaction time and bitemporal table has
associated exactly one cut-off point. This time is recorded in an appropriate system
table.

In a system with vacuuming, it is possible that the same query yields different
results when issued before and after vacuuming. However, when vacuuming is
specified only at schema definition time, the complication is completely avoided.
This is so because the user has never had access to data that was later deleted. Note
that TSQL2 does support the specification of vacuuming after schema definition
time.

Vacuuming may be implemented by query modification and should pose no
performance problems. When computing a query, the system simply replaces all
references to tables that have been vacuumed by expressions that compute what is
left according to the cut-off points. For example, consider a query that retrieves the
salary record of Jake from the EmpDep table. Assume that the table was created on
August 1, 1992, and that its cut-off point is April 1, 1993. Then the original query
Is simply modified to a new query that retrieves the part of Jake’s salary record that
was current during and after April 1, 1993.

With this approach, the system can perform the actual physical deletion when
this is most convenient without affecting the semantics of the vacuuming specifica-
tions. In the extreme, no deletions need be performed at all. Often doing no physical
deletions defeats the purpose. All data related to facts current only before the cut-
off point or data related alone to those parts of timestamps of facts that are before
the cutoff point may be deleted. What can be physically deleted clearly depends on
the physical representation chosen for the table.

We next consider the specification of vacuuming after schema-definition time.
This is done using thALTERclause.

As an example, assume that the following vacuuming specification takes ef-
fect on August 31, 1994.

ALTER TABLE EmpDep
VACUUM NOBIND(DATE ’now - 7 days)

472 THE TSQL2 QUERY LANGUAGE

The meaning follows the same rules as defined above. From August 31, 1994,
this specification will have the same effect as had the earlier now-relative specifica-
tion at schema-definition time.

With the exception that this type of vacuuming may be specified any time after
the table is defined, the functionality is the same as before.

Subsequent vacuuming replaces existing vacuuming specifications and must
be at least as restrictive. Thus, it is not immediately possible to relax vacuuming of
EmpDepto retain the facts pertaining to the two most recent weeks, i.e., to issue

ALTER TABLE EmpDep
VACUUM NOBIND(DATE 'now - 14 days’)

This specification cannot be honored because data pertaining to the period between
one and two weeks ago may already have been deleted. Instead, it is possible to
issue this vacuuming specification.

ALTER TABLE EmpDep
VACUUM DATE ’now - 7 days’

In this specificatiomow is bound when the specification is issued. So at the time

it is issued, this specification is exactly as restrictive as the specification it replaces
and is thus allowed. Note also that the specification, as time passes, allows more
data than than did the earlier, unbound now-relative specification. Consequently,
seven days later it possible to issue a new specification as follows.

ALTER TABLE EmpDep
VACUUM NOBIND(DATE 'now - 14 days’)

This way, an unbound now-relative vacuuming specification may be replaced
by a less restrictive, unbound now-relative specification.

When transaction time support is added to a table after it initial creation, i.e.,
using anALTER... ADD TRANSACTIONIause, the default cut-off point is set
to the time when th<ERclause takes effect.

3.2 Properties of this Design

Vacuuming is specified on a per table basis. For each table, exactly one cut-off
point is recorded in the system catalog. Only data current after the cut-off point is
available to queries. Both absolute and now-relative cut-off points may be specified.
A now-relative cut-off point is of the formd@ATE 'now =+ interval ' where
interval is some interval, i.e., duration of time. Now-relative periods may be left
unbound using thBlIOBINDfunction as followsNOBIND(DATE ’'now =+ in-
terval) . Inthis case, the value of the cut-off point changes as time advances.
The cut-off point of a table is initially set to the time when the table was
created. A vacuuming specification may change a cut-off point to a time that is

VACUUMING 473

either not before the current cut-off point or is after the current time, at the time the
specification takes effect.

For example, with the current cut-off point beiNOBIND(DATE ’'now -

14 days’) , an ALTER statement that takes effect on August 31, 1994, may
change the cut-off point tDATE ’'August 17, 1994’ or to NOBIND(DATE
'now - 7 days’) . Assuming that the present time is August 31, 1994, a cur-
rent cut-off point ofDATE ’'September 15 may be replaced by a new cut-off
point, DATE ’'September 1, 1994’

Vacuuming of a table may be specified at any time during the lifespan of the
table.

In summary, the flexibility with respect to what can be vacuumed is restricted
to a practical minimum. Vacuuming is specified solely in terms of the transaction
times of tuples, and itis possible only to vacuum data currently earlier than a chosen
cut-off point. It is not possible to vacuum, e.g., all information for a particular
employee or group of employees, just as it is not possible to vacuum, e.qg., salary
information for all employees not currently employed.

Yet, with these restrictions, vacuuming is still useful. In addition, this limited
functionality of specifications provides simplicity to other aspects of vacuuming.

It is easy to keep record (in the data dictionary) of the vacuuming that has been
specified for a table. For each table, exactly one cut-off point needs to be recorded
at any time. By the same token, it is easy for users to comprehend what vacuuming
has been specified for a table.

As another consequence, it is easy to (re-)specify vacuuming for tables. To
prepare a correct vacuuming specification, it is necessary only to pick a cut-off point
that is either not before the current cut-off point or is after the current time.

More importantly, we have been able to exploit the fact that, with the restric-
tions we have imposed, the effect of vacuuming on the results of queries is also
relatively straightforward.

Without going into detail, a general, user-friendly system would be designed
so that users need not worry at all about what has or has not been vacuumed. The
system would be capable of detecting when vacuuming may have made a difference
to the result of a query and of communicating this to the user in a convenient and
effective manner. For an interactive user, the system could inform the user about
what vacuuming specifications may have affected the result of the query, or it could
provide the user with a list of queries similar to the original query and which are
not affected by the vacuuming.

By allowing only cut-off points, we have been able to choose a simpler design.
Specifically, we require users to know about the cut-off points (as stored in the
system tables) for all tables and to then be able to decide whether or not (and how)
gueries may be affected by vacuuming.

Finally, efficient implementation appears unproblematic. By a simple appli-

474 THE TSQL2 QUERY LANGUAGE

cation of query modification techniques that database systems generally already
support, it is possible to implement vacuuming specifications in a simple and effi-
cient manner.

Briefly, the system uses the cut-off points to modify queries on vacuumed
tables so that data that has been specified as vacuumed are excluded from consider-
ation when computing the result. This is similar to the type of query modification
that is employed when views are used in queries. To modify a query that uses a
view, the view name is simply replaced by its definition. To modify a query on a
vacuumed table, the name of the vacuumed table is simply replaced by the query
expression that yields the part of the table that has not been vacuumed, i.e., the part
of the table that is after the most recently specified cut-off point. Since vacuuming
expressions are very simple, this added query modification step is also very simple.
This query modification strategy ensures that vacuuming specifications are given
the right semantics, and it also allows the system to do the actual deletion of data
asynchronously, e.g., when system load is low.

References

[1] Jensen, C. S. and L. Mark. “A Framework for Vacuuming Temporal Data-
bases.” Technical Report CS-TR-2516/UMIACS-TR-90-105. University of
Maryland, Department of Computer Science. Aug. 1990.

[2] Ahn, I. and R. Snodgrass. “Performance Evaluation of a Temporal Database
Management System,” iRroceedings of ACM SIGMOD International Con-
ference on Management of Datad. C. Zaniolo. Association for Computing
Machinery. Washington, DC: May 1986, pp. 96-107.

[3] Dyreson, C. E., R. T. Snodgrass and C. S. Jensen. “On the Semantics of “Now”
in Temporal Databases.” TemplS Technical Report 42. Computer Science
Department, University of Arizona. April 1993.

[4] Stonebraker, M. “Implementation of Integrity Constraints and Views by Query
Modification,” in Proceedings of ACM SIGMOD International Conference on
Management of DataAssociation for Computing Machinery. San Jose, CA:
June 1975.

[5] Aho, A. V., Y. Sagiv and J.D. Ullman. “Equivalences Among Relational Ex-
pressions.”SIAM Journal of Computing, No. 2, May 1979, pp. 218-246.

[6] Chaudhuri, Surajit “Generalization as a Framework for Query Modification,”
in Proceedings of the Sixth International Conference on Data Engineering
February 1990, pp. 138-145.

VACUUMING 475

[7] Motro, A. Query Generalization: A Technique for Handling Query Failure. In
Proceedings of the First International Workshop on Expert Database Systems
pages 314-325, October 1984.

[8] Rowe, L. and M. Stonebraker. “The POSTGRES Papers.” Technical Report
UCB/ERL M86/85. University of California. June 1987.

[9] Jensen, C. S.and R. T. Snodgrass. “Proposal of a Data Model for the Temporal
Structured Query Language.” TemplS Technical Report 37. Computer Science
Department, University of Arizona. July 1992.

