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Semantics of Time-Varying Information

Christian S. Jensen and Richard T. Snodgrass

This paper provides a systematic and comprehensive study of the underlying
semantics of temporal databases, summarizing selected results of an intensive
collaboration between the two authors over the five-years period from 1991 to
1995. We first examine how facts may be associated with time, most promi-
nently with one or more dimensions ofvalid time andtransactiontime. One
common case is that of abitemporal relation, in which facts are associated with
timestamps from exactly one valid-time and one transaction-time dimension.
These two times may be related in various ways, yieldingtemporal specializa-
tion. Multiple transaction times arise when a fact is stored in one database, then
later replicated or transferred to another database. By retaining the transaction
times, termedtemporal generalization, the original relation can be effectively
queried by referencing only the final relation. We attempt to capture the essence
of time-varying information via a very simple data model, thebitemporal con-
ceptual data model. Emphasis is placed on the notion of snapshot equivalence
of the information content of relations of different data models.
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1 Introduction and Historical Context

This paper summarizes selected results of an intensive collaboration between the
two authors over the five-year period from 1991 to 1995 into the semantics of time-
varying information. A wide variety of topics were investigated, yielding a compre-
hensive understanding both of this semantics and of why such disparate approaches
to temporal data modeling have appeared in the literature.

Christian initially came to Tucson in January, 1991 to start a seven-month
sabbatical1. Rick had been at the University of Arizona for 16 months. We had each
read the other’s work, but had met only a few times at conferences. There existed
no established joint research stream, nor commonality other than a shared interest
in temporal databases. Fortunately, in turned out that we worked very effectively
together, and Christian was able to come to Tucson for additional sabbaticals during
January–August, 1992 and July, 1994–January, 1995. Rick returned the favor with
several shorter visits to Denmark.

Rick had previously worked on temporal query language design and imple-
mentation, in the context of his TQuel language [20, 32, 44, 45, 49], and on tempo-
ral semantics, specifically characterizing the orthogonality of valid time and trans-
action time [48]. Christian had previously worked on transaction-time databases,
specifically architecture [23, 25], implementation [24], and language support [22].

In our initial discussions once Christian arrived, we identified two areas of
common interest: understanding the semantics of temporal data in detail, and de-
veloping efficient implementation techniques for bitemporal databases. In large
part due to the many projects already underway by Rick’s students addressing im-
plementation, we decided to focus instead on the semantics of time-varying infor-
mation.

At that time, there had already been over a decade of work on temporal data-
bases, principally on temporal query languages and their associated data models.
Unlike relational databases, in which a single data model, the relational data model
[7], held sway, there were perhaps 20 extant temporal data models described in the
literature (that number has since doubled). There was little consensus on the fea-
tures that a temporal data model should include. Quite the contrary: there was a
raging debate over whether the data model should be nested or not (characterized
asfirst normal form(1NF) versusnon-1NF(N1NF) approaches). While there had
been some comparisons between the proposals (e.g., [33]), there had been little
work to delineate the notions underlying these varied models.

This lack of consensus of even a starting point for work on query language
design, query optimization, or temporal access methods was starting to have a con-
stricting effect on temporal database research. Certainly it was complicating tem-

1Mention of one author is in the third person; mention of both authors is in the first person.
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poral semantics and its close relative, temporal database design.
The lack of a single, or at least consensus, temporal data model had less im-

pact on early work on conceptual modeling of time and time-varying information,
the latter primarily in the context of the ER model and its temporal extensions.
There were also insights from temporal logic, a prominent example being the var-
ious models of the time line: dense, continuous, discrete, and branching. Several
authors had emphasized the utility of a stepwise constant semantics, in which a fact
stored in the database remains true until modified or updated (a kind of Newto-
nian second law). There had been a few efforts to definetemporal normal forms;
however, all were specific to a particular data model, limiting their applicability.
Finally, there occasionally appeared in papers various observations about attribute
semantics, anomalies, and normalization.

At the start, we explicitly intended to not produce yet another data model,
with its own peculiarities; that would only add to the confusion. Instead, we hoped
to discern the underlying semantics of temporal data. Our vague intuition was that
much of the work on temporal data models was “representational" in nature. It
seemed that the model-independent semantics of time-varying information was be-
ing forced into specific configurations by existing data models. The resulting struc-
tures did capture some of the essence, but were to a large extent artifacts of the data
model itself, rather than emphasizing the underlying information content. At the
same time, we realized that considering information outside the context of a data
model,somedata model, would have been an aimless and ultimately unsatisfying
exercise.

Our early discussions focused on several confusing aspects that we felt might
lead us to more fundamental issues.

• Why are there so many temporal data models? Is a single ideal model even
possible? As a more specific related question, should data be stored as events
(state transitions) or as states?

• Are transaction time and valid time really orthogonal, as Rick had previously
claimed [48]? More specifically, what is the relationship between POST-
GRES’ two timestamps, TQuel’s four timestamps, and Ben-Zvi’s five times-
tamps? Are there more than two dimensions of time? How does Thompson’s
taxonomy of four kinds of time relate to valid and transaction time?

• Is first normal form versus non-first normal form a fundamental distinction?

• Which data model aspects are concerned with the information content of the
modeled data, which aspects are best justified by their interaction with query
language facilities, and which aspects concern only efficiency, and thus are
in the domain of physical design? As a specific question, is the problem of
NULL values in some temporal data models a logical issue, concerning data
semantics, or a physical issue, concerning only performance?
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Thinking about these leading questions and following the technical threads that
emerged turned out to be a great adventure. This paper gives some of the of the
milestones along that journey and provides often surprising answers to the above
questions.

The exposition that follows deviates somewhat from a strict chronological
order, and the focus is on the fundamental question of how to associate time with
facts, leading to an understanding of the nature of temporal data. For each topic
introduced, we start with the initial questions that got us thinking about the issue,
then follow the investigation as it unfolded.

2 Associating Time with Facts

The past decade of temporal DB research presented a conundrum. Time-varying
data seems so simple: rather than one value, there is a value for each instant of time.
Yet it seemed that temporal data model design was terribly complicated. There were
a plethora of temporal data models, now over 40 discussed in the literature [38].
There must be something else going on. So we worked hard to get to the essence of
temporal data.

Philosophers have long recognized the dichotomy, and the duality, between
events and states [40]. Astateis something that has extent over time. Something
is true about an object for an interval of time, but was not true before and not
after. An eventis instantaneous [21]; it is something that “happens,” rather than
being true over time2. Events delimit states. The occurrence of an event results
in a fact becoming true; later, the occurrence of another event renders that fact no
longer valid. Hence, events and states are duals; states can be represented by their
delimiting events, and events are implied by states.

A conventional relation models the reality relevant to an enterprise as a single
state [44]. This is often illustrated as a two-dimensional table, with the tuples as
rows and the attributes as columns. If nothing changes in reality, the tuples will
remain in the relation. Otherwise, some tuples are removed and others are inserted
into the relation.

It is well known that database facts have at least two relevant temporal aspects
[47, 48]. Valid time concerns when a fact was true in the modeled reality [21].
Transaction timeconcerns when a fact was current in the database. These two
aspects are orthogonal, in that each could be independently recorded or not, and
each has associated with it specific properties. The valid time of a fact can be in the
past or the future and can be changed freely. In contrast, the transaction time of a

2We do not consider the so-called “macro events” that are true, or take place, for an interval of time, but are
not true for any subset of their interval. A wedding is an example, as the first, say, 20 minutes of a “wedding
macro event” is not itself a wedding [11, 35].
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fact cannot extend beyond the current time (there is no foolproof way of knowing
whether the fact will be current in the database in the future), and the transaction
time cannot be changed (we cannot now change what was stored in the database in
the past).

Such was the context for the start of our investigation of temporal database
semantics. The simplicity of associating with each fact two times, one valid time,
indicating when the fact was true in reality, and one transaction time, indicating
when that fact was current in the database, was not adequate to capture the full
semantics of time-varying information. We then began a systematic study of the
frayed edges of this appealing framework.

3 Temporal Specialization

While valid time and transaction time had been shown to be orthogonal [48], some
papers did not make a distinction between the two. Instead, they seemed to use
one time to handle both aspects. For example, the POSTGRES papers mentioned
“time travel,” terminology strongly suggesting valid time: “For example to find the
salary of Sam at timeT one would query [...] POSTGRES will automatically find
the version of Sam’s record valid at the correct time and get the appropriate salary”
[52, p. 515]. However, POSTGRES technically supports only transaction time in
its data model and query language. Clearly something was going on that was not
being captured.

Example 1 Consider a relation recording the assignment of employees to depart-
ments, using two attributes,NameandDept . On Monday, we observe that em-
ployee Tom is in the Shipping department and that Kate is in the Loading depart-
ment. By end of Tuesday, Tom leaves the Shipping department, and on Wednesday
another employee, Sam, starts in Shipping. By end of Thursday, Kate leaves Ship-
ping. This can be represented in a temporal table as illustrated in Figure 1(a).

Name Dept Time
Tom Shipping Monday – Tuesday
Kate Loading Monday – Thursday
Sam Shipping Wednesday – now

(a)

Name Dept
Kate Loading
Sam Shipping

(b)

Figure 1: A Sample Temporal Relation (a) and a Timeslice (b)

Thetimesliceat any time yields the conventional relation at that time. For example,
the timeslice at time Wednesday yields the relation in Figure 1(b). 2

The question we asked was, is the temporal relation a valid-time relation or a
transaction-time relation? Our eventual answer was: either, or perhaps even both,
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i.e., a bitemporal relation.
The insight was to consider the interaction between valid and transaction time.

While the semantics of these two times are indeed orthogonal, theirusein a par-
ticular application need not be. In the employee example, the relation is updated
precisely (at a granularity of days) when reality changes. On Tuesday, there was no
change to the assignment of employees, and so no updates were made to the rela-
tion. The relation is assumed to be always up to date; otherwise, the timeslice might
not yield the correct result. In this light, the employee relation may be considered
to be a transaction-time relation, and the timestamp a transaction time representing
when the fact was stored in the database. All modifications are insertions, except
that right end points for the timestamps are being supplied when assignments are
terminated (more on this in Section 11). A timeslice at any time in the past yields
what the database stored as current at that time.

An equally correct interpretation is that the employee relation is a valid-time
relation, with the timestamps indicating when in the past the employee assignments
held true. Modifications reflect a change in our understanding of reality; when we
learn about a change, we update the relation. A timeslice at a time in the past yields
what assignments were valid in reality at that time.

A third, equally correct interpretation is that the employee relation is a bitem-
poral relation. The transaction time and the valid time, for this application, are
synchronized. Hence we could replicate the timestamp, and consider one the valid
time and one the transaction time. While a bitemporal relation affords additional
query and update capabilities (e.g., retroactive updates), such features are not used
by this particular application.

This led us to consider other interactions between valid and transaction time.
We term relations with such relationshipsspecializedtemporal relations [26]. We
identified a taxonomy of interrelationships—in between the extremes of identity
and no interrelation at all—that are possible between the valid and transaction times
of facts, shown in Figure 2.

In this taxonomy, the employee relation would be classified asdegenerate. As
another example, a temporal relation isretroactiveif the facts stored by the tuples
are valid before they are entered into the relation, i.e., the facts became true before
they were stored. Retroactive relations are common in monitoring situations, such
as process control in a chemical production plant, where variables such as temper-
ature and pressure are periodically sampled and stored in a database for subsequent
analysis.

Further, it is often the case that some (non-negative) minimum delay between
the actual time of measurement and the time of storage can be determined. For
example, a particular set-up for the sampling of temperatures may result in delays
that always exceed 30 seconds. This gives rise to adelayed retroactive relationif it
is retroactive and if there is a bound on the time between when the fact became true
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delayed strongly retroactively boundeddegenerateearly strongly predictively bounded

delayed retroactiveearly predictive

retroactivepredictive strongly bounded

predictively boundedretroactively bounded

undetermined

general

strongly predictively bounded strongly retroactively bounded

Figure 2: Generalization/Specialization Structure of the Taxonomy for Temporal
Specialization

in reality and when it was stored in the database.

In a data warehousing application where, e.g., point-of-sales records from
an operational system are entered into a warehouse relation on a daily basis [30],
the valid times of the point-of-sales records are between twenty-four hours and a
few minutes earlier than the corresponding transaction times. Thus, the temporal
warehouse relation isdelayed strongly retroactively bounded.

A temporal relation ispredictiveif the values of an item are not valid until
some time after they have been entered into the relation. An example is a rela-
tion that records direct-deposit payroll checks. Generally a copy of this relation
is made on magnetic tape near the end of the month, and sent to the bank so that
the payments can be effective on the first day of the next month. Theearly predic-
tive temporal relation is the specialization of the predictive temporal relation. The
direct-deposit payroll check relation is an example if the tape must be received by
the bank at least, say, three days before the day the deposits are to be made effective.

The taxonomy of specialized temporal relations provides a coherent frame-
work that allows us to more precisely describe, distinguish, and thus understand
temporal relations. The taxonomy may also be used for characterizing the many
existing temporal data models. We illustrate this by characterizing several well-
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known temporal data models.
Ariav’s Temporally Oriented Data Model includes thetemporal isomorphism

assumption, in which “there is a tight correspondence between the database and the
temporally concurrent reality it is aimed to capture.” [1, p. 503]. As the transaction
time of a fact can be determined from the stored valid time, under this assump-
tion, this data model supports degenerate bitemporal relations as well as general
transaction-time relations.

Gadia presents a multi-dimensional data model which is in turn restricted to a
two-dimensional data model with valid and transaction time as the dimensions [16].
In this model, however, only data valid in the past may be stored. For example, it
is impossible to store on May 11, 1995 the fact that “Employee Kate will be in the
Shipping department from September 1, 1995 until August 31, 1997.” Therefore,
the model does not support fully general bitemporal relations, but supports instead
retroactive bitemporal relations. The restriction to retroactive data is inherited from
an earlier (retroactive) valid-time data model [14].

Sarda proposes another specialized temporal data model in which current facts
may be appended and where so-called retrospective updates (changes to information
about the past) are possible [42]. Hence, the transaction time is always equal to or
after the valid time, and, like the previous model, this model supports retroactive
bitemporal relations.

The POSTGRES data model [41, 51] supports degenerate bitemporal rela-
tions, in that facts valid now in the real world are stored now, and all past states are
retained. The POSTGRES query language [52] supports transaction timeslice. This
query language may be viewed alternatively as a transaction-time, valid-time, or
even bitemporal query language, with significant restrictions on the expressiveness
(query and data) of each.

Temporal specialization goes down the taxonomy, adding constraints on the
interaction of valid and transaction time. Temporal generalization goes up the tax-
onomy, removing constraints. While considering a different aspect of temporal
semantics, we discovered that it made sense to apply generalization above even the
top-most point of the hierarchy in Figure 2, yielding temporal relations more gen-
eral than those termedgeneralin the hierarchy, as we will see in the next section.

4 Temporal Generalization

A common concern voiced about temporal data models was, why timestamp facts
with only one or two timestamps?

Example 2 Consider a promotion decision at a University, which is associated with
many dates: the date materials were submitted, the date the departmental commit-
tee made its decision, the date the department head decided, the date the college



SEMANTICS OF TIME-VARYING INFORMATION 41

committee decided, the date the Dean decided, the date the Provost’s committee
decided, the date the Provost decided, the date the President decided, the effective
date of the promotion, and the date when each of these decisions was stored in the
database (whew!). 2

Does it make sense to associate more than one timestamp (valid or transaction)
with a fact? Which timestamps are in fact valid and which are transaction? Does it
really matter?

The latter two questions are easier to answer. Yes, it does matter, for the sim-
ple reason that each kind of time has a particular semantics. The database designer
determines the temporal support—valid-time, transaction-time, or bitemporal—of
the relations that is appropriate for the applications at hand. The application pro-
grammers then exploit that support. Valid and transaction time have precise, crisp
definitions. If changes to the past are important, then valid-time support is required.
If it is necessary to, e.g., rollback to a previous state of the database, then transaction
time support is called for.

Let us examine the promotion decision example more closely. The submission
of materials concerns reality, as do the various decisions. These would have dates
associated with them regardless of whether they were ever stored in the database.
This hints that each of these dates concerns valid time. But which isthevalid time
of the promotion? None of these dates, it turns out. The valid time of the promotion
is the time the promotion was valid, that is, its effective date.

The apparent confusion, both in the paragraph above and in some of the re-
search literature, occurs because it makes little sense to reason about what the trans-
action time and the valid time is abstractly, without reference to a particular fact.
We must first identify the fact we are considering! Then it not only makes sense,
but also becomes easy to talk about transaction time, valid time, and other times.

So, let us first determine what fact is being timestamped. If the fact is “person
X was promoted to Professor,” the valid time is the time when the person became a
Professor, and the transaction time is when the fact that the person was a Professor
was recorded in the database. If the fact is “person X was approved for promo-
tion by the department head,” then the valid time is the time when that approval
was made (probably when the letter from the department head was signed) and the
transaction time is when that fact was recorded in the database. If the fact is “person
X is a Professor,” the valid time is the interval that started when the promotion de-
cision took effect and is terminated when person X is no longer a Professor. Hence,
we see that there are many interrelated facts, each with different valid times and
(potentially!) with transaction times.

This discussion provides insight into the relationship between valid time and
the so-calleddecision timethat has been considered in the literature (e.g., [3, 4, 10,
17, 29, 36, 37]). Assume that we are considering the fact “person X is a Professor.”
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In the example, many decisions took place a different times before person X could
become a Professor. These times are decision times of our fact. Different types
of facts may have different numbers of different types of decision times. The dis-
cussion above reveals that the decision times of a fact are also valid times of facts
that are closely related to the “main” fact. What the “closely related” facts are is
dependent on the reality to be modeled and on the requirements of the application at
hand. Specifically, no general statement can be made about the number and specific
meaning of the decision times can be made.

The question is then how to best reflect decision times in a data model. One
approach is to store decision times as valid times of the related facts. This permits
any number of decision times to be (indirectly) supported, and it clarifies what the
individual decision times actually mean. Another approach is to allow for the direct
association of an arbitrary number of decision times with all database facts. So far,
proposals that take this approach have considered only one decision time per fact.
As the meaning of this decision time will vary from application to application, little
semantics can be built into the data model for this time. It is not yet known what
the benefits of a general solution with this approach are and whether these benefits
outweigh the added complexity.

There is, however, an unrelated rationale for storing multiple transaction times
in a tuple. This insight followed from considering the four time domains introduced
in Thompson’s dissertation [53]. When facts flow between temporal relations, sev-
eral time dimensions may be associated with individual facts.

Example 3 Consider again the promotion decision. This fact has an associated
time when the promotion was effective as well as the time when it was entered into
a relation on the University’s administrative computer. Later, this fact was copied
into the departmental personnel relation on a different machine, and is associated
with an additional time value, namely the time it was stored there. This personnel
relation has three times. Storing both transaction timestamps makes it possible to
query the one relation from another relation. In the example, it is possible to query
the time-varying relation on the centralized administrative machine indirectly via
the personnel relation on the departmental machine. In contrast to the previous dis-
cussion, where the multiple times were associated with multiple facts, here we have
asinglefact, “person X is a Professor,” with a single valid time and two transaction
times: when that fact was stored in the University’s database and when it was stored
in the departmental database. 2

The ability to have multiple transaction times fits in well with temporal spe-
cialization. The concepts of specialization and generalization have been used pre-
viously within data modeling (e.g., [9, 19, 43]). A subclass may be created from a
class by means of specialization, i.e., by making the defining properties (the inten-
sion) of the class more restrictive and thus also restricting the set of examples (the
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extension) of the class. As the dual, a superclass may be created from a class by
means of generalization, i.e., by making the intension of the class less restrictive
and thus expanding the extension of the class.

Temporal specialization and generalization are also duals. As we have seen,
specialization contracts the space of possible timestamp combinations. Temporal
generalization appears in at least four guises, each of which expands the space of
possible timestamps. The first is removing restrictions. For example, a strongly
predictively bounded relation may be generalized to a predictively bounded relation.
This generalization is the opposite of specialization, and it involves moving up the
lattice given in Section 3.

A second way to define a generalized temporal relation is to simply add com-
pletely new, orthogonal time dimensions. In systems where facts flow between mul-
tiple temporal relations, facts may accumulate transaction timestamps by retaining
their previous timestamps and gaining new transaction timestamps as they are en-
tered into new temporal relations. Consequently, a fact in a generalized temporal
relation has several kinds of timestamps: a valid timestamp, which records when the
fact was true in reality, aprimary transaction timestamp, which records when the
fact was stored in this relation, and one or moreinheritedtransaction timestamps,
which record when the fact was stored in previous relations.

A third, more involved, means of defining generalized relations is to have
derived relations inherit transaction time-stamps from their underlying relations.
For example, consider process control in a chemical manufacturing plant. Values
from temperature and pressure sensors may be stored in temporal relations. The
sensed data may later be processed further to derive new data, such as the rates at
which the reaction is progressing [39]. This derivation typically would depend on
past temperature and pressure trends. The derived temporal relation that records the
reaction rates would store the transaction time when the rate was recorded, along
with one or more inherited transaction times, specifying when the underlying data,
the temperature and pressure readings, were originally recorded. These underlying
transaction times provide an indication of the relevance of the calculated rates.

A fourth way of generalizing temporal relations occurs when different beliefs
about the modeled reality is to be recorded. For example, a database that records
the history of some country and is being used by historians may benefit from the
inclusion of multiple valid-time dimensions. The different valid-time dimensions
may be used for accommodating different, competing perceptions of history.

This elaboration of the original taxonomy of valid and transaction time [47]
allowed us to better understand Thompson’s 4-time model [8, 53]. Specifically,
Thompson’sphysical timeis precisely the transaction time of a base financial re-
lation, hislogical timeis the valid time of this relation, hisaccounting time(when
the account associated with that relation is closed out) is the valid time of the rela-
tion resulting from the close out process, and hisengineering timeis the inherited
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transaction time in the close out relation.
Our conclusion is that for facts stored in databases, two kinds of times are fun-

damental and universal, namely valid time and transaction time, and that these are
indeed orthogonal. However, an application’s usage of these two time dimensions
may introduce interdependencies between the timestamps, multiple valid times, and
multiple (inherited) transaction times. In this light, decision time and Thompson’s
physical, logical, accounting, and engineering times may be seen as valid or trans-
action times with refined semantics.

From now on, we will assume one valid time dimension (either event or state)
and one transaction time dimension.

5 Temporal Data Models

At this point, we felt that we had a good handle on the semantics of timestamps. We
then turned to the central question of the semantics of time-varying values. How
should time be associated with facts? There were at the time some two dozen
temporal data models that timestamp facts in some way with valid time. Each
proposal came with justifications as to why it was better than the others. Each
proposal appeared in a refereed conference or journal, and thus had survived the
reviewing process, and was judged to make a contribution.

Rick and a colleague previously analyzed a dozen or so models [33], and had
come to the conclusions that (a) there were many desirable criteria for a temporal
data model, (b) each model satisfied a substantial subset of the desirable criteria, (c)
the design space had been thoroughly explored, in that there generally existed a data
model for each combination of relevant aspects, and (d) the desirable criteria were
mutually incompatible. So a temporal data model that did everything was simply
unattainable.

The implicit mind-set of those developing temporal data models was to find
the ideal combination of properties, to come as close to the perfect model as pos-
sible. The data models we had individually designed before our collaboration also
sought this holy grail [24, 31, 32, 44]. We eventually decided that that course of
action was inappropriate. The specific design decisions were highly subjective. Be-
cause the criteria were incompatible, many design decision necessarily forced use-
ful properties to be unmet. Instead of one design towering over the others by virtue
of it satisfying most of the desirable properties, the situation was unavoidably one
of a plethora of designs, each with its strong, but also weak, points.

So we decided that the best approach was to alter our goals, instead advocat-
ing a separation of concerns. Rather than attempt to define a temporal data model
that did everything, we would eliminate those aspects not central to capturing the
temporal semantics of the data, which is after all the primary job of a temporal data



SEMANTICS OF TIME-VARYING INFORMATION 45

model. In particular, we would not be concerned with presenting all the information
concerning an object in one tuple, or of ensuring ease of implementation and query
evaluation efficiency. With a shorter list of requirements, we would then identify a
data model that was ideal, in that it did all that was asked of it.

Focusing just on semantics, we found that the existing data models, includ-
ing our own, were too complicated. These complications arose from the other re-
quirements they were addressing. So we developed a very simple data model, the
Bitemporal Conceptual Data Model, or BCDM [28], whose sole goal was to capture
when facts were valid in reality and when they were stored in the database.

The BCDM is termed aconceptualmodel dues to its single-minded focus
on semantics. In essence, we advocate moving the distinction between the various
existing temporal data models from a semantic basis to a physical, performance-
relevant basis, utilizing our proposed conceptual data model to capture the time-
varying semantics. The terminology of “conceptual” is used only to emphasize the
use of the model for design and as a basis for a query language; otherwise, this new
model is similar to other temporal data models in the formalism used to define it.

We rely on existing data model(s) for the other tasks, by exploiting equiv-
alence mappings between the conceptual model and therepresentationalmodels.
The equivalence mappings are well-behaved in that they preservesnapshot equiva-
lence, which says that two relation instances have the same information content if
all their snapshots, taken at all times (valid and transaction), are identical (a precise
definition will be provided later). Snapshot equivalence provides a natural means
of comparing relation instances in the models considered in this paper. Finally, we
feel that the conceptual data model is the appropriate location for database design.

6 The Bitemporal Conceptual Data Model

The idea behind the BCDM was to retain the simplicity of the relational model
while also allowing for the capturing of the temporal aspects of the facts stored in a
database. This was accomplished by associating with each conventional relational
database tuple a region in the space spanned by transaction time and valid time that
succinctly defines the temporal aspects of the tuple. Below, we describe this in more
detail.

The BCDM employs the same model of time for both time domains: that of
a finite sequence of chronons. In mathematical terms, this sequence is isomorphic
to a finite sequence of natural numbers [27]. The sequence of chronons may be
thought of as representing a partitioning of the real time line into equal-sized, indi-
visible segments. Thus, chronons are thought of as representing time segments such
as femtoseconds or seconds or years, depending on the particular data processing
needs. Real-world time instants are assumed to be much smaller than chronons and
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are represented in the model by the chronons during which they occur. We will use
c, possibly indexed, to denote chronons.

A time interval is defined as the time between two instants, a starting and a
terminating instant. A time interval is then represented by a sequence of consecu-
tive chronons, where each chronon represents all instances that occurred during the
chronon. We may also represent a sequence of chronons simply by the pair of the
starting and terminating chronon. Unions of intervals are termedtemporal elements
[14].

The domain of valid times is given asDV T = {cv1, cv2, . . . , cvk}, and the do-
main of transaction times may be given asDT T = {ct1, ct2, . . . , ctj }. A valid-time
chrononcv is thus a member ofDVT , a transaction-time chrononct is a member
of DT T , and a bitemporal chrononcb = (ct , cv) is an ordered pair of a transaction-
time chronon and a valid-time chronon.

Next, we define a set of names,DA = {A1, A2, . . . , AnA}, for explicit at-
tributes and a set of domains for these attributes,DD = {D1, D2, . . . , DnD}. For
these domains, we use⊥i , ⊥u, and⊥ as inapplicable, unknown, and inapplicable-
or-unknown null values, respectively (see, e.g., [54]). We also assume that a domain
of surrogates is included among these domains. Surrogates are system-generated
unique identifiers, the values of which cannot be seen but only compared for iden-
tity [18]. Surrogates are used for representing real-world objects. With the pre-
ceding definitions, the schema of a bitemporal conceptual relation,R, consists of
an arbitrary number, e.g.,n, of different explicit attributes fromDA with domains
in DD, and an implicit timestamp attribute, T, with domain 2(DT T ∪{UC})×DVT \ ∅.
Here,UC (“until changed”) is a special transaction-time marker. A value(UC, cv)
in a timestamp for a tuple indicates that the tuple being valid at timecv is current in
the database. The example below elaborates on this.

A tuple (a1, a2, . . . , an| tb), in a bitemporal conceptual relation instance,
r(R), consists of a number of attribute values associated with a bitemporal time-
stamp value. Depending on the extent of decomposition, such a tuple may be
thought of as encoding an atomic or a composite fact. For convenience, we will
simply use the terminology that a tupleencodes(or records) a fact and that a bitem-
poral relation instance is a collection of (bitemporal) facts.

An arbitrary subset of the domain of valid times is associated with each tuple,
meaning that the fact recorded by the tuple istrue in the modeled realityduring
each valid-time chronon in the subset. Note that valid times larger than, as well as
smaller than, the current time may be assigned to tuples, making it possible to record
facts about the future (i.e., in effect predictions) and the past. Each individual valid-
time chronon of a single tuple has associated a subset of the domain of transaction
times, meaning that the fact, valid during the particular chronon, iscurrent in the
relation during each of the transaction-time chronons in the subset. Any subset



SEMANTICS OF TIME-VARYING INFORMATION 47

of transaction times less than the current time and including the valueUC may
be associated with a valid time. Notice that while the definition of a bitemporal
chronon is symmetric, this explanation is asymmetric. This asymmetry reflects the
different semantics of transaction and valid time.

We have thus seen that a tuple has associated a set of so-calledbitemporal
chrononsin the two-dimensional space spanned by transaction time and valid time.
Such a set is termed abitemporal element[21] and is denotedtb. Because no two
tuples with mutually identical explicit attribute values (termedvalue-equivalent) are
allowed in a bitemporal relation instance, the full history of a fact is contained in a
single tuple.

In graphical representations of bitemporal space, we choose thex-axis as the
transaction-time dimension and they-axis as the valid-time dimension. Hence, the
ordered pair (ct , cv) represents the bitemporal chronon with transaction timect and
valid timecv.

Example 4 Consider a relation recording employee/department information, such
as “Tom works for the Shipping department.” We assume that the granularity of
chronons is one day for both valid time and transaction time, and the interval of
interest is some given month in a given year, e.g., January 1995. Throughout, we
use integers as timestamp components. The reader may informally think of these
integers as dates, e.g., the integer 15 in a timestamp represents the date January 15,
1995. The current time is assumed to be 19 (i.e.,NOW= 19).

Figure 3(a) shows an instance,empDep, of this relation. The timestamp T is a
set of bitemporal chronons. For the tuple (Tom, Shipping), the timestamp includes
the bitemporal chronons (5, 10), (5, 11), through (5, 15), as well as the chronons
(6, 10) through (6, 15), etc., totaling 140 bitemporal chronons. A graphical illus-
tration of theempDep relation is shown in Figure 3(b). The axes are transaction
time (horizontal) and valid time (vertical), abbreviated in the figure as TT and VT,
respectively. Right-pointing arrows in the graph and the special valueUC in the
relation signify that the containing tuple is still current in the database and that
new chronons will be added to the timestamps as time passes and until the tuple is
logically deleted.

The relation shows the employment information for two employees, Tom and
Sam, contained in three tuples. The first two tuples indicate when Tom worked for
the Shipping and Loading departments, respectively. These two tuples are shown
in the graph as the regions labeled “(Tom, Ship),” and “(Tom, Load),” respectively.
The last tuple indicates when Sam worked for the Shipping department, and corre-
sponds to the region of the graph labeled “(Sam, Ship).” 2

Valid-time relations and transaction-time relations are special cases of bitem-
poral relations that support only valid time or transaction time, respectively. Thus
a valid-time tuple has associated a set of valid-time chronons (termed avalid-
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EName Dept T

Tom Shipping {(5,10), . . . , (5,15), . . . , (9,10), . . . , (9,15),
(10,5), . . . , (10, 20), . . . , (14,5), . . . , (14,20),
(15,10), . . . , (15,15) . . . , (19,10), . . . , (19,15)}

Tom Loading {(UC,10), . . . , (UC,15)}
Sam Shipping {(UC,25), . . . , (UC,30)}
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Figure 3: A Bitemporal Conceptual Relation

time elementand denotedtv), and a transaction-time tuple has associated a set of
transaction-time chronons (termed atransaction-time elementand denotedt t ). For
clarity, we use the termsnapshot relationfor a conventional relation. Snapshot
relations support neither valid time nor transaction time.

As evidence of the simplicity of the relations in the BCDM, it should be noted
that, unlike in other models, there is exactly one tuple per fact. We shall also see
that BCDM relation instances that are syntactically different have different informa-
tion content, and vice versa. This conceptual cleanliness is generally not obtained
by other bitemporal models where syntactically different instances may record the
same information.

7 Algebraic Operators in the BCDM

We have so far described the objects in the bitemporal conceptual data model—
relations of tuples timestamped with bitemporal elements. We now define some
algebraic operators on these objects that will be used later. A complete algebra for
the BCDM is defined elsewhere [50].

We first define bitemporal analogues of some of the snapshot relational oper-
ators, to be denoted with the superscript “B”.

Define a relation schemaR = (A1, . . . , An|T), and letr be an instance of
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this schema. We will useA as a shorthand for all attributesAi of R. LetD be an
arbitrary set of explicit (i.e., non-timestamp) attributes of relation schemaR. The
projection onD of r, πB

D(r), is defined as follows.

πB
D(r) = {z(|D|+1) | ∃x ∈ r (z[D] = x[D])∧

∀y ∈ r (y[D] = z[D] ⇒ y[T] ⊆ z[T])∧
∀t ∈ z[T] ∃y ∈ r (y[D] = z[D] ∧ t ∈ y[T])}

A new tuple variable,z, is used for holding the projected result tuples. The first
line ensures that no chronon in any value-equivalent tuple ofr is left unaccounted
for, and the second line ensures that no spurious chronons are introduced inz’s
timestamp. A bitemporal relation results.

Example 5 Consider theempDep relation shown in Figure 3(a). The following
result is produced byπB

Dept (empDep).

Dept T

Shipping {(5,10), . . . , (5,15), . . . , (9,10), . . . , (9,15), (10,5), . . . , (10,20), . . . ,
(14,5), . . . , (14,20), (15,10), . . . , (15,15) . . . , (19,10), . . . , (19,15),
(UC,25), . . . , (UC,30)}

Loading {(UC,10), . . . , (UC,15)}
All of the bitemporal chronons associated with a tuple with aDept of Shipping
are merged into one bitemporal element. Each chronon of this bitemporal element
must be in the timestamp of at least one of the Shipping tuples in the underlying
relation. 2

Let P be a predicate defined onA1, . . . , An. The selectionP on r, σB
P (r), is

defined as follows.

σB
P (r) = {z | z ∈ r ∧ P(z[A])}

As can be seen from the definition,σB
P (r) simply performs the familiar snapshot

selection, with the addition that each selected tuple carries along its timestamp, T.
Finally, we define two operators that select on valid time and transaction time.

They have no counterparts in the snapshot relational algebra. Letcv denote an ar-
bitrary valid-time chronon and letct denote a transaction-time chronon. Thevalid-
timesliceoperator (τ B) yields a transaction-time relation; thetransaction-timeslice
operator (ρB) evaluates to a valid-time relation3.

τ B
cv (r) = {z(n+1) | ∃x ∈ r(z[A] = x[A] ∧ z[T] = {ct |(ct , cv) ∈ x[T]} ∧ z[T] 6= ∅)}
ρB

ct
(r) = {z(n+1) | ∃x ∈ r(z[A] = x[A] ∧ z[T] = {cv|(ct , cv) ∈ x[T]} ∧ z[T] 6= ∅)}

Thus, τ B
cv (r) simply returns all tuples inr that were valid during the valid-time

chrononcv. The timestamp of a returned tuple is all transaction-time chronons as-
sociated withcv. Next,ρB

ct
(r) performs the same operation, except the selection is

performed on the transaction timect . Note that the type of the result is different

3Operatorρ was originally termed therollback operator, hence the choice of symbol.
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from the type of the argument relation. Here, a time dimension has been removed
while for projection, a number of explicit attributes were removed. Thus, the def-
initions must again employ a separate tuple variable (i.e., variablez) in order to
construct the result tuples.

Example 6 Consider theempDep relation shown in Figure 3(a). The following
result is produced byτ B

12(empDep).

EName Dept T
Tom Shipping {5, . . . ,19}
Tom Loading {UC}

Using the graphical representation, valid timeslice can be visualized by drawing a
horizontal line through the graph at the given valid time. The tuples returned are
those that overlap with the drawn line. The timestamps of the returned tuples are
set to the segments of transaction time corresponding to the overlapped regions.2

The operators above apply only to bitemporal relations. Similar operators for
valid-time and transaction-time relations are simpler special cases and are omitted
for brevity. We will use superscripts “T” and “V” for the transaction and valid-time
counterparts, respectively.

To extract fromr the tuples valid at timecv and current in the database during
ct (termed asnapshotof r), eitherτ V

cv (ρ
B

ct
(r)) orρT

ct
(τ B

cv (r))may be used; these two
expressions evaluate to the same snapshot relation [28]. While other temporal data
models often do not provide exact counterparts of these timeslice operators, models
generally include functionality that permits this extraction of snapshots.

Note that since relations in the data model arehomogeneous, i.e., all attribute
values in a tuple are associated with the same timestamp [14], the valid or transac-
tion timeslice of a relation will not introduce any nulls into the resulting relation.

8 Representational Models

A bitemporal conceptual relation is structurally simple—it is a set of facts, each
timestamped with a bitemporal element, which is a set of bitemporal chronons. Os-
tensibly, it is modeling the same time-varying reality that the many other temporal
data models capture. How can we characterize this interaction between the models?
We need to emphasize the notion of “information content.” Specifically, a BCDM
database, in a simple and straightforward manner, captures a portion of reality. If
a database in another data model captures that same portion, then that database has
the same information content as the BCDM database.

Central to this comparison of databases is the concept of snapshot equiva-
lence. Two relation instances with the same non-temporal attributes aresnapshot
equivalentif for all valid and transaction-time pairs, their snapshots are identical.
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The snapshots are produced using timeslice operators or other language constructs,
as described in the previous section. Snapshot equivalence is thus a formalization
of the notion that two temporal relations have the same information content. This
fundamental insight is due to Gadia, who characterized the information content of
individual relations by stating that two relations areweakly equalif they are snap-
shot equivalent [13]. We extended this notion to apply to relations of different data
models, thereby providing a natural means of comparing structurally diverse data-
bases.

We developed precise mappings, respecting snapshot equivalence, between
instances of the BCDM and instances of each of the existing bitemporal relational
data models that have been previously proposed [28]. These data models fall into
the class of temporally ungrouped bitemporal models [5] and constitute all such
models proposed to date, to our knowledge. We also showed how the relational
algebraic operators defined in the previous section induced analogous operators in
each of the representational models, and how updates of bitemporal conceptual
relations could be mapped into updates on relations in the representation. This
provides an explicit homomorphism between the BCDM and the six bitemporal
data models, emphasizing their similarities (in terms of information content) and
abstracting out their differences, which can be argued concern more efficiency and
data presentation than semantics.

This homomorphism has wide-ranging implications, some yet to be explored
adequately, for temporal database design and implementation. A database designer
could design the conceptual schema of the database as a (normalized) collection
of BCDM relation schemas. This approach yields guidelines for the design of the
logical database schema, also to be discussed in detail, that are independent of any
particular representation of a temporal relation. A temporal DBMS may use any
of the existing temporal data models as physical data models. The query language,
again focusing on semantics, would be based on the BCDM (an example is the
consensual query language TSQL2 [46]). Queries against the BCDM would be
mapped into algebraic expressions against the representational data model(s) by the
DBMS, to be evaluated in an efficient manner. Physical database design would also
be in terms of the representational data model. Snapshot equivalence is the central
underpinning of this entire framework.

9 Implications of the BCDM

With its accompanying separation of information content and particular encodings
of the information content, the BCDM allowed us to answer some of the funda-
mental questions we began with. Should data be stored as events (state transitions)
or as states? Our answer is that at alogical level, the natural extension of a con-
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ventional relation to a temporal relation, the BCDM relation, encodes states rather
than events. An event would be fleeting in a conventional relation: A tuple would
appear for a single chronon, then disappear. Only states have persistence in the
(conventional) relational model. As events and states are duals, the BCDM relation
is sufficient.

Relations capturing events are still useful. A database designer might decide
that focusing on the events in a particular corner of the design is more natural than
focusing on the states induced by those events.

At a physicallevel, the answer to whether data should be stored as events or
states is: It depends on which representational model one feels is most appropriate
to achieve good performance for the application at hand. Five of the representa-
tional models are state-based; the sixth, Jensen’s backlog-based scheme, is event-
based. Applications may be identified for which each representation is suitable.

Is 1NF versus N1NF really a fundamental distinction? Our reply becomes:
yes, at a representational level, but no at a conceptual level. Two of the represen-
tational models are attribute timestamped; the other four are tuple-timestamped.
The distinction is not one of semantics. Rather, the distinction may be relevant for
performance.

What is the relationship between POSTGRES’ two timestamps, TQuel’s four
timestamps, and Ben-Zvi’s five timestamps? We showed in Section 3 that POST-
GRES was a degenerate bitemporal data model, and thus a tuple’s two timestamps
Tmin and Tmax [51] serve as both valid and transaction time, equal to TQuel’s
four timestamps, two valid (begin= Tmin andend= Tmax) and two transaction
(start = Tmin andstop= Tmax). Using the BCDM, and in particular its spatial
metaphor (cf. Figure 3b), we see that POSTGRES tuples are timestamped with
rectangles, with the bottom-left and top-right corners constrained to be on the 45◦
line of T T = V T .

We then considered Ben-Zvi’s five tuple timestamps [2]. Again, the question
was, was the timestamp format chosen to reflect the semantics of data, or for presen-
tation, or for query language reasons? To review, Ben-Zvi’s Temporal Relational
Model is a tuple-timestamped model, supporting both valid and transaction time.
Let a bitemporal relation schemaR have the attributesA1, . . . , An,T where T is
the timestamp attribute defined on the domain of bitemporal elements. ThenR is
represented by a relation schemaR in Ben-Zvi’s data model as follows.

R = (A1, . . . , An,Tes ,Trs,Tee,Tre,Td)

In a tuple, the value of attribute Tes (effective start) is the time when the explicit
attribute values of the tuple start being true. The value for Trs (registration start)
indicates when the Tes value was stored. Similarly, the value for Tee (effective
end) indicates when the information recorded by the tuple ceased to be true, and
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Tre (registration end) contains the time when the Tee value was recorded. The last
implicit attribute, Td (deletion), indicates the time when the information in the tuple
was logically deleted from the database.

It is not necessary that Tee be recorded when the Tes value is recorded (i.e.,
when a tuple is inserted). The symbol ‘–’ indicates an unrecorded Tee value (and
Tre value). Also, the symbol ‘–’, when used in the Td field, indicates that a tuple
contains current information.

The different updates possible in this model lead to six different types of tu-
ples, as illustrated in Figure 4. Let’s examine each resulting tuple in terms of the
BCDM two-dimensional graphical metaphor, cf. Figure 3. Tuple (5) corresponds
to a rectangle, with bottom left coordinate (Trs , Tes ) and top right coordinate (Td ,
Tee). The bitemporal elements of the remaining five tuples are open-ended. If Tee is
not recorded, the bitemporal element is open-ended at the top; if Td is not recorded,
it is open at the right.
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Figure 4: Ben-Zvi’s Tuples as Bitemporal Elements

The different ways the various data models have adopted for timestamping
tuples may be explained as the models having adopted differentcovering functions
that encode the regions in a bitemporal element using one or more graphical enti-
ties. POSTGRES uses two timestamps to encode a rectangle with two corners on
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the 45◦ line; TQuel uses four timestamps to encode arbitrary rectangles, as well
as open rectangles (regions 1, 2, and 4 of Figure 4); and Ben-Zvi uses five times-
tamps to encode the six shapes of Figure 4. From a semantic point of view, all can
encode (snapshot-) equivalent information. Their differences are more of an issue
of data presentation (how users want to see the temporal information) and storage
efficiency. For example, to encode regions 3 and 6 of Figure 4 each require two
TQuel tuples. On the other hand, TQuel’s data model can encode regions 1, 2, 4,
and 5 with one fewer timestamp than Ben-Zvi’s data model.

Ben-Zvi’s model illustrates another issue, that of what transaction time is.
Some authors define the transaction time of a tuple as what is the transaction-time
start attribute in TQuel (i.e.,start) and emphasize that the transaction time of a tuple
is a single time instant (e.g., [10, 36]). This contrasts the definition that we use [21].
In TQuel terms, the transaction time of a tuple is the time from thestart to thestop
attribute value, an interval. With our definition, it is not hard to characterize the
transaction time of tuples in Ben-Zvi’s model. With the other definition (as a single
time instant), we wonder what the transaction time is of each of the six types of
tuples (see also [15] whereTre is said to be the end of transaction time!).

10 Coalescing and Repetition of Information

It turns out that even within a single representational data model, there often is
flexibility in representing a bitemporal element. To see this, we use TQuel’s four-
timestamp rectangles and examine two transformations that can change the covering
in a representation without affecting the results of queries, as the transformations
preserve snapshot equivalence [28].

The first transformation is termedcoalescing. Informally, it states that two
temporally overlapping or adjacent, value-equivalent tuples may be collapsed into a
single tuple [44]. We say that a bitemporal relation instance iscoalescedif no pair
of tuples may be coalesced. Coalescing may reduce the number of tuples necessary
for representing a bitemporal relation, and, as such, is a space optimization.
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Figure 5: Coalescing

Coalescing of overlapping, value-equivalent tuples is illustrated in Figure 5.
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The figure shows how rectangles may be combined when overlap or adjacency oc-
curs in transaction time (a) or valid time (b). Note that it is only possible to coa-
lesce rectangles when the result is a bitemporal rectangle. Compared to valid-time
relations with only one time dimension, this severely restricts the applicability of
coalescing.

As a precursor to explaining the other transformation, we first describe the
notion that a relation may have repeated information among its tuples. Specifi-
cally, a bitemporal relation instance hasrepetition of informationif it contains two
distinct tuples that are value-equivalent (i.e., have identical non-temporal attribute
values) and have timestamps that encode overlapping regions in bitemporal space.
A relation with no such tuples has no repetition of information.

While coalescing may both reduce the number of rectangles and reduce rep-
etition of information, its applicability is restricted. The next transformation may
be employed to completely eliminate temporally redundant information, possibly at
the expense of adding extra tuples. The transformation maps two value-equivalent
tuples with overlapping bitemporal rectangles to three value-equivalent tuples with
non-overlapping bitemporal rectangles.

The transformation may partition the regions covered by the argument rectan-
gles on either transaction time or valid time. These two possibilities are illustrated
in parts (a) and (b), respectively, of Figure 6.
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Figure 6: Eliminating Representational Repetition of Information

The transformation is well-behaved. First, it does eliminate repetition among
two tuples. Second, the result of an application of the transformation produces at
most one additional tuple. Third, repeated application produces a relation instance
with no repetition of information. The elimination of repetition of information may
thus increase the number of tuples in a representation. The transformation may still
be desirable because subsequent coalescing may be possible and, more importantly,
because certain modification operations are simplified. (See [28] for a formalization
and proofs of these properties.)
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11 Now and Forever

The next aspect of temporal data that drew our attention was the arrows in Figures 3
and 4. One question was, does the particular semantics of valid time and transac-
tion time imply any differences between upward-pointing arrows and right-pointing
arrows? Do open rectangles and L-shaped regions capture the semantics we desire?

Let us return to the employment example. Figure 3 contains only right-
pointing arrows, indicating information that is still thought to be true, i.e., that has
not been logically deleted. Because we cannot know what is stored in the database
in the future, the right arrow is always at a transaction time of the current time, or
NOW.

The figure does not contain upward-pointing arrows because the interval of
employment for both Tom and Sam was always known (though not always known
correctly, for Tom).

Upward-pointing arrows are illustrated in regions 1, 3, 4, and 6 of Figure 4.
These are cases where the terminating time (Tee in Ben-Zvi’s model) is not known.
We do not know when a fact ceased or ceases being true in reality, so we model it
as being forever true. For example, to model the fact that Tom was hired on June 10
in the Loading department, with an unknown termination date, an open rectangle
shaped as region 1 of Figure 4 would be used.

If the valid-time domain is bounded, say at some time way in the future, then
‘–’ in Ben-Zvi’s model and ‘∞’ in TQuel’s model (other data models are similar)
are simply shorthands for this maximum valid time. In this sense, in Figure 4, tuples
(1) and (2), and (4) and (5), are identical. Tuple (1) is merely a special case of tuple
(2) in whichTee is fixed to a particular value; the same applies for tuples (4) and
(5).

Modeling Tom’s employment as continuing forever is an overly optimistic
assumption, and one that is certainly false. We do not know Tom’s termination
date, but it is certainly within the next 150 years, and probably within the next 10–
20 years. In fact, all that we feel that we know for certain is that Tom was in the
Loading department from June 10 to June 10 (now), assuming that whenever reality
changes (such as Tom resigning), the database is immediately updated. Tomorrow
(June 11), if Tom does not resign in the meantime, we will know that Tom was in
the Loading department from June 10 to June 11.

In the BCDM, we handled the concept ofNOW in transaction name by using
a special marker,UC, that indicated where to add bitemporal chronons to the tu-
ples’ timestamps every time the clock advances a tick. This approach is not useful
in a practical representation of temporal data. Instead, our solution to being able
to model the dependence on the current time is to allow the model to includevari-
ablesas well as ground facts in the stored data [6].NOW is one such variable that
evaluates to the current time. Including such variables increases the fidelity of the
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data model considerably. To understand its impact, it is useful to consider another
kind of time, thereference time, which is the time of the database observer’s “frame
of reference.” Reference time is a concept analogous to theindicesor “points of
reference” in intensional logic [34], and discussed more recently in the context of
valid-time databases [12]. The reference time facilitates a kind of “time travel” by
means of which we may observe the database at times other than the present.

A related time is thequery time. It is the time at which a query is processed.
The reference time and query time are independent concepts. In general, the time
when a query is initiated is always the current time, while the reference time is
the time at which an observer “observes” the database. In many queries, the user
“observes” the database with respect to the frame of reference in which the query
was initiated, so the reference time and the query time are the same. But the user
may choose to “observe” the database from a previous perspective; for this kind of
query, the reference time is earlier than the query time. For example, if today is
June 19 and we wish to observe the database from the perspective of a week ago,
then the current time (and the query time) is June 19 and the reference time is June
12.

So, how may we visualize a tuple’s timestamp when it contains a variable
such asNOW in transaction and valid time? As the reference time increases, say
from June 12 to June 13, the region of the temporal element grows. Only when
NOW is replaced with a ground value (for valid time, this means that the fact is
known to have terminated, and for transaction time, this means that the fact is log-
ically deleted), does the temporal element not grow, in valid time or transaction
time, respectively. Illustrating this behavior requires three dimensions: valid time,
transaction time, and reference time. In Figure 7, the dimension that goes into the
page illustrates reference time. Here, the fact being recorded is “Tom was in the
loading department.” Initially, at a reference time of June 10, the database records
that the information was valid on June 10.

Finally, we would also like to model facts such as “Tom is definitely employed
from June 10 until now, and will probably be employed until the end of the summer,
when he will return to school.” If we know that changes in reality take two days
to make it into the database, we would amend that to “Tom is definitely employed
from June 12 until now minus two days, and. . . ” These facts can be modeled using
a refinement of now variables, specifically indeterminate now-relative variables [6].

12 Summary

Our focus has been on the association of facts with times. We have seen that while
the semantics of valid time and transaction time are orthogonal, their usage within
an application may exhibit interactions, such as the valid time always preceding the
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Figure 7: A Rectangle with a Transaction Stop Time and a Valid To Time ofNOW

transaction time in the case of a retroactive relation. A fact may be timestamped
with multiple transaction times, if it is copied several times between relations or
databases. A fact has typically one valid time, specifying when it was true in reality.
The decision time(s) of a fact were seen to be valid times of different, closely related
facts.

We have seen that there can be no ideal temporal data model, but that by
focusing only on the semantics of time-varying data, and ignoring other possible
criteria, a simple data model, the Bitemporal Conceptual Data Model, is quite satis-
factory. The BCDM provides insights into the expressiveness of existing temporal
data models. Specifically, using snapshot equivalence as the measure, all such mod-
els encode the same information; they just break up the bitemporal elements, which
are sets of regions in bitemporal chronon space, in different ways, sometimes in-
cluding the bitemporal chronons in the timestamps of two or more value-equivalent
tuples. As another difference, the various models enter the times at different levels
(e.g., tuples, attribute values) in the temporal relations.

The right and upward pointing arrows of bitemporal regions represented with
timestamps in these models suggested the addition of now-relative variables to the
stored data, thereby increasing the modeling power of these data models
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