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Evaluating the Completeness of TSQL2

Michael H. Böhlen, Christian S. Jensen, and
Richard T. Snodgrass

The question of what is a well-designed temporal data model and query lan-
guage is a difficult, but also an important one. The consensus temporal query
language TSQL2 attempts to take advantage of the accumulated knowledge
gained from designing and studying many of the earlier models and languages.
In this sense, TSQL2 represents a constructive answer to this question. Others
have provided analytical answers by developing criteria, formulated as com-
pleteness properties, for what is a good model and language.

This paper applies important existing completeness notions to TSQL2 in
order to evaluate the design of TSQL2. It is shown that TSQL2 satisfies only a
subset of these completeness notions.
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1 Introduction

The temporal database community has been prolific in its production of temporal
data models and query languages. Over the past fifteen years, more than two dozen
temporal relational data models have been proposed, each with one or more associ-
ated query languages [24]. This has left the community with a wide, confusing—but
also challenging—variety of alternatives.

As one response to this state of affairs, a committee of eighteen temporal
database researchers has recently released the TSQL2 Language Specification [25],
which defines a temporal extension to the SQL–92 standard [22]. TSQL2 was cre-
ated partly in an attempt to consolidate, in a single consensual model and language,
the insights and experiences gained from the development of the previous data mod-
els and languages.

As a quite different approach, other efforts (e.g., [7, 21, 6, 5]) have put focus
on the properties of temporal data models and query languages, as well as on the de-
sign alternatives available when developing these. This has led to precise definitions
of model and language properties that can be used to characterize and evaluate the
many models and languages. In the spirit of Codd’s original definition of relational
completeness [11], some of these properties have been stated as different kinds of
completeness.

It then seems appropriate to use the body of work on model and language
properties to study the design of TSQL2—this paper does exactly that. It is a fun-
damental assumption of the paper that when evaluating a data model and query
language, both the functionality and the syntax for expressing a certain functional-
ity are important. The completeness notions that we adopt in the investigation thus
include both functionality-related and syntactical criteria.

Specifically, we formalize the notion of a data model beingupwards compat-
ible with another data model and show that TSQL2 is upwards compatible with
SQL–92. Briefly, this means that a smooth transition from SQL–92 to TSQL2 is
possible.

One of the most widely cited distinctions among temporal data models is that
between first normal form and non-first normal form models. This distinction has
been formally captured by the concepts oftemporally ungroupedandgroupeddata
models [7]. We show that TSQL2 is temporally ungrouped and not temporally
grouped. As this property is inherent in the model, we do not propose to change it.
Rather, we put focus on the implications of a model being ungrouped or grouped.

The last two completeness notions considered in this paper aretemporal semi-
completenessandtemporal completeness[5]. The former notion essentially states
that a temporal relational data model must contain temporal generalizations ofall
snapshot relations and queries. Further, temporally generalized queries must besyn-
tactically similar to the snapshot queries they generalize. Temporal completeness
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adds further functional and syntactical requirements, accounting for query language
aspects not covered by temporal semi-completeness. It is shown that TSQL2 does
not fully satisfy these completeness notions.

Related work on completeness has been primarily in the context of non-
temporal databases. It is possible to distinguish two basic approaches. The first
one takes a particular calculus (usually first order relational calculus) as a metric.
Any language having at least the expressive power of the calculus is said to be com-
plete. Original work along these lines was done by Codd for relational databases
[11]. There have been generalizations for entity-relationship databases [1] and for
temporal databases [30]. One inherent problem with these approaches is the degree
of appropriateness of the calculus that is used as a metric. There is no guarantee
that the calculus capturesall reasonable queries. For example, it has been shown
[3] that first order relational calculus cannot express the transitive closure of binary
relations.

The second approach is to define an appropriately large set of queries and re-
quire query languages to express all queries in this set. This kind of completeness
was investigated by Bancilhon [4] and Chandra and Harel [8]. The definitions of
temporal semi-completeness and temporal completeness are in this spirit. They (in
particular temporal semi-completeness) take the set of queries that are expressible
by a non-temporal language as a reference and ensure that temporal generalizations
of the non-temporal language can express all these queries. Additionally, they es-
tablish syntactic restrictions a temporal language must obey, which we belief is also
important.

Briefly, the contributions of the paper are twofold. First, the paper further
formalizes some existing definitions of completeness of relevance for temporal data
models and query languages, namely the notions of upwards compatibility, tempo-
ral semi-completeness and temporal completeness. Second, the paper explores the
design of TSQL2 by applying these completeness notions and the notion of tem-
poral (un)groupedness to TSQL2. It is shown that TSQL2 satisfies some of these
notions, but does not satisfy all of them.

The paper is structured as follows. Each of Sections 2–5 first defines a partic-
ular type of completeness. They then evaluate the completeness of TSQL2 in the
context of each completeness notion. During this investigation, some deficiencies
of TSQL2 are uncovered.1 Section 6 summarizes the paper and points to directions
for future research.

1To answer these deficiencies the design of Applied TSQL2 (ATSQL2) was initiated. An extended version
of this paper (ftp://ftp.cs.arizona.edu/reports/1995/TR95-11.ps.gz ) sketches syntax
and semantics of ATSQL2. A more comprehensive discussion as well as an implementation for public con-
sumption are under way and should be completed by Fall 1995.
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2 Upwards Compatibility

Completeness is generally a relative property of a data model or a query language.
Thus, a model or language satisfies some notion of “completeness” if it is related
to another model or query language in a certain way. In this section, we introduce
the first of the three types of completeness. Specifically, we formalize the notion
that a data model is upwards compatible with respect to another data model. We
subsequently consider the upwards compatibility of TSQL2 with respect to SQL–
92.

2.1 Definitions

When a new database management system, with an associated data model, is in-
troduced into an organization, often that system replaces an existing system, also
with an associated data model. For software engineering reasons, to be discussed
in more detail below, it is an important property that the existing data model be up-
wards (or, forwards) compatible with the new data model. Put differently, the new
data model should be a strict superset of the existing data model.

We will adopt the convention that a data model consists of two components,
namely a set of data structures and a language for querying the data structures. For
example, the central data structure of the relational model is the relation, and the
central, user-level query language is SQL. Notationally,M = (DS, QL)then denotes
a data model,M, consisting of a data structure component,DS, and a query language
component,QL. Thus,DSis the set of all databases expressible byM, andQL is the
set of all queries inM that may be formulated on some database inM. We will use
db to denote a database andq to denote a query.

Definition 1 (upwards compatibility) Let M2 = (DS2,QL2) andM1 = (DS1,

QL1) be two data models. ModelM2 is upwards compatible withmodelM1 if and
only if

• DS2 ⊇ DS1, and

• for each instancedb inDS2 and for each query expressionq inQL1, q is also
a legal query expression inQL2, and the results of evaluatingq on db is the
same inM1 andM2. 2

This concept captures the conditions that need to be satisfied in order to allow
a smooth transition from a current system, with data modelM1, to a new system,
with data modelM2. The first condition implies that all existing databases in the
old system are also legal databases in the new system and thus need not be modified
when the new system is adopted. The second condition guarantees that existing
queries will remain legal and will compute the same results in the new system as
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in the old system. Thus, the bulk of legacy application code is not affected by the
transition to a new system.

The definition of upwards compatibility is related to the traditional notion of
Codd completeness (Codd originally used the term relational completeness) [11],
as formulated in the context of the standard relational model. To see the similarity
and differences, we review that completeness notion.

Essentially, a relational or extended relational data model is Codd complete if
all queries that can be formulated on arbitrary conventional relations expressible in
the model are a superset of all relational algebra queries that can be formulated.

Definition 2 (Codd completeness)LetM = (DS,QL) be some data model, and
let (SR,RA) be the relational model with the relational algebra as its query lan-
guage. ModelM is Codd completeif and only ifDS containsSR and each query
in RA has an equivalent counterpart inQL when alldb in DS are considered. 2

Two query expressions are equivalent if they always yield mutually identical
results when supplied identical arguments. The relational algebra comes in nu-
merous versions2, and while the definition is dependent on the particular version
chosen, the choice is not important in the remainder of this paper.

The similarity between upwards compatibility and Codd completeness is ap-
parent, but there are also important differences. First, Codd completeness is re-
stricted to use the relational algebra as a yardstick for measuring the expressive
power of other query languages. Thus, the relevance of Codd completeness is de-
pendent on how “natural” or well-chosen the relational algebra is. On the other
hand, upwards compatibility is not tied to any particular data model.

Second, Codd completeness strictly concerns functionality while upwards
compatibility concerns both functionality and the syntax for expressing the func-
tionality. Specifically, Codd completeness is defined in terms of the existence of
equivalent, but possibly different, query expressions. Upwards compatibility re-
quires query expressions that yield identical results to also be syntacticallyidenti-
cal. Thus, a model being upwards compatible with the relational model/algebra is
a stronger criterion than the model being Codd complete.

2.2 Upwards Compatibility among SQL–92 and TSQL2

Clearly, it is an important property for a new data model, such as TSQL2, to be a
strict superset of the data model it is intended to supersede, i.e., SQL–92. We now
consider this issue.

2The relational algebra used in conjunction with the original definition of Codd completeness [11] in-
cluded “cartesian [sic] product,” “union,” “intersection,” “difference,” “projection,” “θ -join,” “division,” and
“restriction” (a special case of selection).
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In TSQL2, there are six kinds of relations3: snapshot relation, valid-time event
relation, valid-time state relation, transaction-time relation, bitemporal event rela-
tion, and bitemporal state relation. The first is the kind of relation found in the
relational model; the remaining five are temporal relations. As all the schema spec-
ification statements of SQL–92 are included in TSQL2, it follows that the data
structures of TSQL2 include those in SQL–92.

TSQL2 is also a strict superset of SQL–92 in its query facilities. In particular,
if an SQL–92 select statement does not incorporate any of the constructs added in
TSQL2 (e.g., the valid clause, theVALID() andTRANSACTION() expressions,
and extensions to the from and group by clauses), and mentions only snapshot rela-
tions in its from clause(s), then the language specification states explicitly that the
semantics of this statement is identical to its SQL–92 semantics.

It should be noted that the preliminary TSQL2 language specification released
in March, 1994 [25] did not have that property. In particular, SQL–92INTERVALs
were termedSPANs in the preliminary TSQL2 specification, and TSQL2INTER-
VALs were not present at all in SQL–92. The final TSQL2 language specification
[25] retained SQL–92INTERVALs and added thePERIODdata type, which was
previously calledINTERVAL in preliminary TSQL2 (confusing, isn’t it?). Addi-
tional changes to the datetime literals were also made to ensure that TSQL2 was a
strict superset of SQL–92.

Hence, both conditions are satisfied, demonstrating that TSQL2 is upwards
compatible with SQL–92.

As discussed previously, this directly implies that TSQL2 is Codd complete.
Finally note that, while upwards compatibility is a highly desirable property,

it says absolutely nothing about constructs added to a data model or query language
to support time. This notion of completeness is thus quite limited in scope, as seen
from a temporal data-model perspective.

3 Temporal Groupedness

In this section, we first review the previously proposed notions of temporally un-
grouped and grouped data models. We then investigate the temporal groupedness of
TSQL2. In contrast to upwards compatibility, temporal groupedness speaks directly
to the support of time-varying information in the temporal data model.

3.1 Definition

In temporal data modeling, an informal division among temporal relational data
models into first normal form (1NF) and non-first normal form (NFNF) models has

3In this paper, we use the terminology Codd introduced [10]: relation, tuple, and attribute, rather than the
more prosaic terminology used in SQL–92 and subsequently in TSQL2: table, row, and column.
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developed over the years, and each type of model has attracted its followers4.
With one objective being to clarify this distinction, Clifford et al. [7] have

recently given a formal definition of two types of relation structures, termed tem-
porally ungrouped and temporally grouped. While it is debatable whether the data
model of TSQL2 is strictly a 1NF model in the generic sense5, we will show that
the model is temporally ungrouped. To set the stage, we review the definition of a
temporally ungrouped data model.

A data model is temporally ungrouped if its data structure component is iso-
morphic to a particular canonical temporally ungrouped data structure, i.e., an onto
and 1–1 mapping must exist between the canonical structure and the structure of
the model to be proved temporally ungrouped. The canonical structure is defined
next.

Definition 3 (canonical temporally ungrouped relation structure) [7, pp. 69–
70] Let UD = {D1, D2, . . . , Dnd } be a set of non-empty value domains, and let
D = ∪ndi=1Di be the set of all values. LetT = {t0, t1, . . . , ti, . . . } be a non-empty,
finite or countably infinite set of times with “<” as the total order relation. Finally,
let UA = {A1, A2, . . . , An} be a set of attributes, and letTIME be a distinguished
time attribute.

A canonical temporally ungrouped (TU) relation schema is defined as a triple
< A,K ,DOM > where

(1) A ∪ {TIME} (A ⊆ UA) is the set of attributes of the schema.

(2) K ∪ {TIME} (K ⊆ A) is the key of the schema, i.e.,K ∪ {TIME} → A.

(3) DOM is a function fromA ∪ {TIME} toUD ∪ {T} that assigns domains inUD
to attributes inA andTIME to T.

A TU database schema is a finite set of TU relation schemas. A TU tuplet on
schema< A,K ,DOM > is a function fromA ∪ {TIME} to D ∪ T that assigns
a value inDOM(Ai) to each attributeAi in A and a value inTIME to T. A TU
relation is then a finite set of TU tuples that satisfy the key constraint in(2) above.
A TU database is a finite set of TU relations. 2

Example 1 The following is a sample TU database with one relation.

4In this particular context, the NFNFness is due tohow time is addedto the relational model, so most
NFNF temporal data models do not support general NFNF relations, and the distinction is different from the
distinction between the 1NF and the various general NFNF relational data models (e.g., [17]).

5First normal form (1NF) states that each attribute value isatomic[10]. This certainly holds for TSQL2’s
explicit attributes, which can have as types any of the SQL–92 data types or the new typePERIOD. Hence,
considering only values of explicit attributes, TSQL2 is a 1NF model. However, the timestamp associated
with each tuple in TSQL2 is atemporal element, a finite union of periods [15]. While the timestamp is not
an explicit attribute, it can be referenced within a query. We thus feel that timestamps should also satisfy the
property. Since the partitioning construct in the from clause of TSQL2 (designated “(PERIOD) ”) effectively
iterates over the maximal periods of a temporal element, timestamps are not treated as atomic. Thus, TSQL2
is not a 1NF model in this strict sense.
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A B TIME
a1 b1 1
a3 b2 1
a2 b1 2
a3 b3 2

The relation schema is the structure< {A,B}, {A,B}, f >, wheref assigns do-
mains{a1, a2, a3} and{b1, b2, b3} toA andB, respectively, and the natural numbers
to TIME. 2

A data model cannot be temporally ungrouped and temporally grouped (see
below), and as we will prove that the TSQL2 data model is isomorphic to TU,
we will not give a formal definition of a the canonical temporally grouped relation
structure, TG. Rather, we give an example and point to what makes TG grouped.

Example 2 The schema of a temporally grouped relation consists of the same three
components as that of an ungrouped relation, with the exception that the component
DOM assigns a domain of functions to each attribute inA. These functions map
times to some value domain. A tuple, then, consists of some specific function for
each attribute inA. In addition, a tuple has an associated lifespan, a set of times.
The functions of a tuple map each time in the tuple’s lifespan to some value.

For example, a TG relation schema may have attributesA andB. The key may
be the combination of these attributes, andDOM may assign functions toA andB
that map from the natural numbers to{a1, a2, a3} and{b1, b2, b3}, respectively. A
sample tuple may have lifespan{1, 2} and may have the mappings[1→ a1, 2→
a2] as itsA-value and[1→ b1, 2→ b1] as itsB-value. A relation instance with
this and one more tuple is given next.

A B lifespan
1→ a1 1→ b1

2→ a2 2→ b1 {1,2}
1→ a3 1→ b2

2→ a3 2→ b3 {1,2}
In comparison with the TU instance given before, this instance adds a grouping of
the temporal information. As before, there are four rows. However, these rows may
now be combined in several ways to form tuples. Other legal TG instances with the
same rows are the following ones.

A B lifespan
1→ a1 1→ b1 {1}
2→ a2 2→ b1 {2}
1→ a3 1→ b2

2→ a3 2→ b3 {1,2}

A B lifespan
1→ a1 1→ b1 {1}
2→ a2 2→ b1 {2}
1→ a3 1→ b2 {1}
2→ a3 2→ b3 {2}

Put informally, a TG structure contains more elements than a TU structure. This
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indicates why it is not possible for a relation structure to be both temporally un-
grouped and grouped. 2

3.2 TSQL2 and Temporal Groupedness/Ungroupedness

The canonical ungrouped relation structure TU is a quite simple one. The relation
structure of TSQL2 is more elaborate. TSQL2 relations come in several variations.
First, relations may support valid time, transaction time, or both. Second, valid-
time support may be for either state or event relations. While each of the resulting
six types of relations are important in practice, it is advantageous in this context
to consider only valid-time state relations. This permits a focus on the important
concepts and is consistent with existing work [7]6. With this restriction, the relation
structures of TSQL2 and TU are quite similar.

The central difference is that in TU, tuples are stamped with a singleTIME
value from domainT while in TSQL2, tuples are stamped with sets of times, valid-
time elements, from domainT. As we shall now demonstrate, this difference is not
essential when groupedness is considered.

To show that TSQL2 is temporally ungrouped, we devise an isomorphic map-
ping between TSQL2 and TU. This mapping takes as argument an arbitrary TSQL2
relation with schema(A1, A2, . . . , An||T) where theAi are explicit value attributes
and T is the implicit, set-valued time attribute (the vertical double-bar is used to
emphasize that theAi ’s are explicit attributes and that T is a distinguished, implicit
attribute). It maps each TSQL2 tuple in turn. A TSQL2 tuple

(a1, a2, . . . , an||{ti1, ti2, . . . , tik })
is mapped to the set

{(a1, a2, . . . , an||ti1), (a1, a2, . . . , an||ti2), . . . , (a1, a2, . . . , an||tik )}
of TU tuples. Note that one TU tuple is generated for each time in the timestamp
of the argument TSQL2 tuple. No duplicates are introduced as TSQL2 timestamps
are sets of times. Note also that no duplicate tuples are introduced between the
sets of tuples generated from individual TSQL2 tuples. This is so because TSQL2
relations do not contain value-equivalent tuples [18] (tuples arevalue-equivalentif
they agree on all explicit attribute values [15]).

It should be clear that this mapping is defined for all TSQL2 relations. Next,
for any TU relation instance, there exists an TSQL2 instance that maps to it, i.e.,
the mapping isonto the set of all TU relations. To see this, pick an arbitrary TU
relation. For each set of value-equivalent tuples, form a single TSQL2 tuple with the

6For simplicity, we also assume that the attribute domains of TU and TSQL2 are the same and that all the
domains, including the totally ordered time domain, are finite.
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same explicit values and with a timestamp that is the union of the timestamps of the
value-equivalent tuples. The result is a legal TSQL2 relation, and that relation maps
to the initial TU relation. Finally, there is exactly one TSQL2 relation that maps to
any TU relation, i.e., the mapping is 1–1. To see this, observe that two different
TSQL2 relations map to different TU relations. In conclusion, the mapping is an
isomorphism.

It is worth noting that TU and TSQL2 agree regarding duplicates. A TU re-
lation is defined as asetof tuples and thus excludes duplicates. TSQL2 relations
do not contain value-equivalent tuples, and a timestamp is asetof times. A version
of TSQL2 changed to allow value-equivalent tuples with overlapping timestamps
would contain more instances than the original TSQL2 and would thus not be tem-
porally ungrouped.

It may also be shown that if{Aj1, Aj2, . . . , Ajl } is a temporal key [19] of a
TSQL2 relation then{Aj1, Aj2, . . . , Ajl ||TIME} is a key of the corresponding TU
relation.

We have now seen that TSQL2 is temporally ungrouped and thus not tem-
porally grouped. It is then a natural question to ask whether it would be useful to
make TSQL2 grouped. It is our contention that it would not be useful to pursue
temporal groupedness in the context of TSQL2. One reason for this is that mak-
ing TSQL2 relations temporally grouped would change the data structures and thus
the query language fundamentally. Another reason is that groupedness does not
mix well with the restructuring capabilities of the TSQL2 query language. These
capabilities, inspired by, e.g., Gadia [13], have proven very useful [16, 26] when
formulating queries, but are meaningless in a grouped model. The following ex-
ample illustrates in what sense temporal groupedness and restructuring do not mix
well.

Example 3 In TSQL2 queries, it is possible to declare and use “tuple” variables
that range over groups of tuples. To illustrate this, consider the almost identical
TSQL2 version, termedrelationAB (see also below), of the TU instance in Ex-
ample 1. The TSQL2 from clause

FROM relationAB ( A ) AS relationA

declares a “tuple” variablerelationA that ranges over groups ofrelationAB
tuples with the sameA value. In the where clause, it is then possible to reference the
Avalue (usingrelationA.A ) and the timestamp (usingVALID(relationA) ),
but not theB value, of this variable.

Observe that the two instances (in Figure 1) essentially correspond to the last
two temporally grouped instances depicted in Example 2. However, restructuring as
in TSQL2 (and, e.g., TempSQL [14]) cannot produce the first instance depicted in
Example 2. This indicates that temporally groupedness and grouping as in TSQL2
do not coexist harmoniously. 2
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A T
a1 {1}
a2 {2}
a3 {1, 2}

A B T
a1 b1 {1}
a3 b2 {1}
a2 b1 {2}
a3 b3 {2}

relationA relationAB

Figure 1: Grouping Tuples in TSQL2

More generally, it is our contention that temporal ungroupedness versus grouped-
ness are fundamental design decisions to be made when designing a data model.

Ungroupedness and groupedness have relative advantages and weaknesses.
Clifford et al. [7] lucidly describe the advantages of groupedness. Others have
pointed to potential advantages of ungroupedness. To exemplify, assume that at-
tribute A records employee names and attribute B records department names. With
grouping, one must decide at schema definition time whether tuples in the relation
are intended to represent departments (i.e., one tuple records all employee names
for a department which may change its name over time) or employees (i.e., one
tuple records all department names for an employee which may change name over
time). Without grouping and assuming that departments and employees do not
change names over time, this decision may be deferred to when a query is formu-
lated, which is more flexible.

4 Temporal Semi-Completeness

This section first gives refined definitions oftemporal semi-completenessandtem-
poral completeness[5]. The definitions presented here add additional syntactical
requirements that were intended in the original definitions, but were not stated ex-
plicitly.

These notions reflect a belief that both functionality and syntactical require-
ments are important when evaluating a data model. Both types of requirements are
relative to some chosen non-temporal data model. While the definitions are appli-
cable to any pair of a temporal and a non-temporal data model, they are intended to
be applied to pairs of a temporal relational data model and the particular version of
the snapshot relational model that the temporal model extends.

The section ends with an evaluation of TSQL2 according to each definition.
We emphasize that the contribution is not in the definitions per se, but in their
application to TSQL2, yielding new insights into this language.
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4.1 Definition

To define temporal semi-completeness, we first introduce the auxiliary notion of a
snapshot reducible query. We will user andrv for denoting a snapshot and a valid-
time relation instance, respectively. Similarly,db anddbv are sets of snapshot and
valid-time relation instances, respectively.

The definition uses a valid-timeslice operatorτ
Mv,M
c (e.g., [27, 5]) which takes

as arguments a valid-time relationrv (in the data modelMv) and a valid-time instant
c and returns a snapshot relationr (in the data modelM) containing all tuples valid
at timec. In other words,r consists of all tuples ofrv whose valid time includes
the time instantc, but without the valid time. We assume that the valid timeslice
preserves duplicates, i.e., ifrv contains value-equivalent tuples that are valid at time
c thenτM

v,M
c (rv) will contain duplicates. This becomes important later, when we

consider SQL–92 relations with duplicates.

Definition 4 (snapshot reducibility) [28] Let M = (DS,QL) be a snapshot re-
lational data model, and letMv = (DSv,QLv) be a valid-time data model. Also,
let dbv be a database instance inDSv. A valid-time queryqv in QLv is snapshot
reducible with respect toa snapshot queryq in QL if and only if

∀dbv ∀c (τMv,M
c (qv(dbv)) = q(τMv,M

c (dbv))). 2

Graphically, snapshot reducibility implies that for alldbv and for allc, the commu-
tativity diagram shown in Figure 2 must hold.

?

-

?

-

dbv

τ
Mv,M
c (dbv)

qv(dbv)

q(τ
Mv,M
c (dbv)) = τMv,M

c (qv(dbv))

qv

q

timeslices atc timeslice atc

Figure 2: Snapshot Reducibility of Queryqv With Respect To Queryq

Temporal semi-completeness of a temporal data model with respect to a snap-
shot data model requires first that all relation instances in the snapshot data model
can be produced by taking timeslices of some relation instance in the temporal data
model. Further, it is required that each queryq in the snapshot model has a counter-
partqv in the temporal model that is snapshot reducible with respect to it. Observe
thatqv being snapshot reducible with respect toq poses no syntactical restrictions
on qv. It is thus possible forqv to be quite different fromq, andqv might be
very involved. This is undesirable, as we would like the temporal model to be a
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straight-forward extension of the snapshot model. Consequently, we add to the def-
inition of temporal semi-completeness the syntactical restriction thatqv andq be
syntactically similar.

Definition 5 (temporal semi-completeness)[5] Let M = (DS,QL) be a snap-
shot data model, and letMv = (DSv,QLv) be a valid-time data model. Data
modelMv is temporally semi-complete with respect tomodelM if and only if all
three of the following conditions hold.

1. For every relationr in DS, there exists a valid-time relationrv in DSv and a
time instantc such thatr = τMv,M

c (rv).

2. For every queryq in QL, there exists a queryqv in QLv that is snapshot
reducible with respect toq.

3. There exist two (possibly empty) text stringsS1 andS2 such that for all pairs
(q, qv) of queries, whereqv is snapshot reducible with respect toq, queryqv

is syntactically identical toS1qS2. 2

Note that the same two stringsS1 andS2 must apply to all(q, qv) pairs. The strings
represent particular syntactical constructs in the languageQLv.

If the valid-time data model treats valid-time relations as a new type of rela-
tion, as does TSQL2, it is possible to use the same syntactical constructs (i.e.,qv

andq are identical) for querying snapshot and valid-time relations. In this case, the
type of a relation determines the meaning of the syntactical construct.

Temporal semi-completeness of a valid-time data model with respect to a
snapshot data model guarantees that the temporal model is a straightforward ex-
tension of the snapshot model. Temporal semi-completeness is limited in the sense
that it covers only those queries in the temporal data model that are snapshot re-
ducible to a query in the snapshot data model. Most often, a temporal data model
allows for the formulation of other queries as well.

4.2 TSQL2 and Temporal Semi-Completeness with Respect to SQL–92

This section identifies where TSQL2 falls short in fulfilling the requirements of
temporal semi-completeness. The two related concepts of value-equivalent tuples
and duplicates will prove important in this section. The former concept applies only
to temporal relations; the latter applies to both valid-time relations and timeslices of
valid-time relations. To illustrate the interrelations among these concepts, consider
the valid-time relations depicted in Figure 3.

Relationr1 contains no duplicates and no value-equivalent tuples. Thus, no
timeslices ofr1 will contain duplicates. Relationr2 contains no duplicates, but
it does contain value-equivalent tuples. However, as the timestamps of the value-
equivalent tuples are disjoint, no timeslices will contain duplicates. Relationr3, like
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r1 r2 r3 r4

A T
a1 10−20
a2 15−50

A T
a1 10−17
a1 17−20
a2 15−50

A T
a1 10−20
a1 15−18
a2 15−50

A T
a1 10−20
a1 10−20
a2 15−50

Figure 3: Illustration of Value-equivalent Tuples and Duplicates

r2, contains no duplicates, but contains value-equivalent tuples. Unlike inr2, the
timestamps of the value-equivalent tuples are not disjoint and thus there are times-
lices ofr3 that contain duplicates. Finally, relationr4 contains duplicates and thus
non-disjoint value-equivalent tuples, leading again to timeslices with duplicates.
Note that allowing value-equivalent tuples does not necessarily yield duplicates in
timeslices. However, if we want to have duplicates in timeslices, we must allow
(non-disjoint) value-equivalent tuples.

Lack of Duplicates in TSQL2

One reason why TSQL2 is not temporally semi-complete with respect to SQL–92 is
that SQL–92 relations that contain duplicates have no counterparts in TSQL2 where
relations with value-equivalent tuples (and thus duplicates, either in a timeslice, or
in the temporal relation itself) are not allowed. Definition 5 requires that for every
SQL–92 relationr, there must exist a TSQL2 relationrv and a time instantc such
thatτTSQL2,SQL–92

c (rv) = r. However, it is not possible to find anrv in TSQL2 for
r ’s in SQL–92 that contain duplicates. An example illustrates this.

Example 4 Let salary relation,salary_entry, be given that records (current) monthly
incomes of persons. Assume that the person Tom has three incomes because he has
three jobs. In two jobs, he makes 1200, and in one he makes 800. This can be
represented in SQL–92 as follows.

salary_entry
Name Amount
Tom 1200
Tom 1200
Tom 800

No timeslice of a TSQL2 relation can yield this relation. The following is a rea-
sonable attempt at adding valid time to the SQL–92 relation to obtain a TSQL2
relation.
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salary_entry
Name Amount T
Tom 1200 1994/5−1995/3
Tom 1200 1994/8−1994/12
Tom 800 1994/11−1995/6

This relation records that from May 1994 to March 1995, Tom was on one payroll
and made a monthly salary of 1200; from August 1994 to December 1994 he was
on another payroll where he also made 1200 per month; and from November 1994
to June 1995 he made 800 in a third job. This is not a legal TSQL2 relation because
it contains value-equivalent tuples. 2

The merit of duplicates has already been discussed heatedly (see, e.g., [12,
p. 109]). Doubtlessly, SQL–92 would be cleaner in a mathematical sense without
duplicates. However, we cannot change SQL–92, so whether we like it or not, it
is necessary to deal with duplicates when designing a semi-complete successor to
SQL–92. Specifically, for TSQL2 to satisfy the first two criteria of temporal semi-
completeness with respect to SQL–92, it must support relations containing value-
equivalent tuples with non-disjoint timestamps, permitting duplicates in timeslices.

As a reminder, we note that duplicates may significantly impact the results of
queries. For example, the following statement computes a relation that associates
with every person that person’s total salary.

SELECT Name, SUM(Amount)
FROM salary_entry
GROUP BY Name

Evaluated over the initial nontemporalsalary_entry relation, the query computes
Tom’s salary to be $3200. Without duplicates, the result would have been $2000,
which is unintended.

Problems with Subqueries

Temporal semi-completeness requires that for every snapshot query, it is possible to
formulate a valid-time query that is snapshot reducible and syntactically similar to
it. TSQL2 tries to achieve this goal with a carefully designed default valid clause.
This works fine for many simple queries, but it does not work for subqueries.

Ignoring duplicates, the following two SQL–92-statements are equivalent [23,
p.117].

SELECT r5.a
FROM r5,r6
WHERE r5.a=r6.a

SELECT r5.a
FROM r5
WHERE EXISTS (SELECT *

FROM r6
WHERE r5.a=r6.a)
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If TSQL2 is to be semi-complete with respect to SQL–92, there must be valid-time
queries in TSQL2 that are snapshot reducible with respect to the two queries above
and are similar to them. Indeed, the default valid clause of TSQL2 was designed
to make those two valid-time queries be identical to the two queries above. The
valid-time queries are given below, with the implicit default valid clauses shown.

SELECT r5.a
VALID INTER-

SECT(VALID(r5),VALID(r6))
FROM r5,r6
WHERE r5.a=r6.a

SELECT r5.a
VALID VALID(r5)
FROM r5
WHERE EXISTS (SELECT *

VALID VALID(r6)
FROM r6
WHERE r5.a=r6.a)

The query to the left behaves as expected. The valid clause states that the valid time
of a result tuple is the intersection of the valid times of the argument tuples from
r5 andr6. This means that the left-hand-side valid-time query is snapshot reducible
with respect to the left-hand-side snapshot query. The result (result1) of the query
for two sample instances ofr5 and r6 is shown in Figure 4. The situation gets

r5 r6 result1 result2
A T
a1 5−9

A T
a1 7−10

A T
a1 7−9

A T
a1 5−9

Figure 4: Computing a Valid-time Join Without or With a Subquery

more complicated when we consider the query to the right. The outermost valid
clause implies that the valid time of a result tuples is equivalent to the valid time
of the argument tuple fromr5 (seeresult2 in Figure 4 for an example). This means
that the right-hand-side valid-time query is not snapshot reducible with respect to
the right-hand-side snapshot query. TSQL2 thus lacks a valid-time query that is
snapshot reducible with respect to and is a simple syntactic extension of the right-
hand-side snapshot query. Consequently, TSQL2 is not temporally semi-complete
with respect to SQL–92.

Summary

We have identified two reasons why TSQL2 is not temporally semi-complete with
respect to SQL–92. The first is that, while duplicates are allowed in SQL–92, value-
equivalent tuples are not allowed in TSQL2. The second reason is that the valid
clause in TSQL2 is not sufficiently powerful to ensure that all SQL–92 queries
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have similar, snapshot reducible counterparts in TSQL2. We showed this for nested
queries. We conjecture that there are also some problems with aggregation, group-
ing, and ordering.

5 Temporal Completeness

Temporal semi-completeness poses useful restrictions on temporal data models.
However, temporal semi-completeness poses restrictions on only a subset of the
queries that are generally expressible in temporal data models. For example, it does
not cover queries that retrieve information concerning relationships between per-
ceived states of the world atdifferentpoints in time. Furthermore, temporal semi-
completeness does not say anything about the format of valid time. Both aspects
are accounted for by the notion of a temporally complete data model.

5.1 Definition

Definition 6 (temporal completeness)[5] A valid-time data modelMv = (DSv,
QLv) is temporally complete with respect toa snapshot data modelM = (DS,QL)
if and only if all five of the following conditions hold.

1. Mv is temporally semi-complete with respect toM.

2. For every snapshot reducible queryqv in QLv, it is possible to override
snapshot reducibility, either by dropping the syntactic extensions that enforce
snapshot reducibility (c.f., Definition 5) or by modifyingqv syntactically to
S1qS2, whereS1 andS2 are (possibly empty) text strings that depend onQLv

but not onqv. Overriding snapshot reducibility means to evaluate a query
without interpreting valid times.

3. The name of a valid-time relation within a statement can be syntactically sub-
stituted (perhaps with other syntactic modifications and additions, such as
parentheses) with a queryqv in QLv that defines the respective valid-time
relation without changing the semantics of the statement. The syntactic mod-
ifications must depend onQLv only, not onqv.

4. Allen’s temporal relationships [2] can be used between (a) temporal attributes
of stored valid-time relations (i.e., valid time attributes and explicit temporal
attributes), (b) implicitly computed valid times associated with temporally
semi-complete (sub)queries, and (c) temporal constants.

5. It is possible to retrieve and constrain (a) maximal continuous valid-time pe-
riods and (b) valid times as specified by the user. 2

First, we require that temporally complete languages are temporally semi-complete.
This accounts for queries that can be answered by examining (sequences of) snap-
shots. Overriding snapshot reducibility accounts for a fundamental principle in
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databases, namely that a query should treat the elements of a database as uninter-
preted objects [8, p.158]. Section 5.2 provides an example that illustrates this. The
third condition ensures that the syntactic construct that is used to enforce snapshot
reducibility can be applied not only to whole queries, but also to subqueries. In
other words, a temporally complete query may consist of several temporally semi-
complete queries. Allen’s operators are necessary to state arbitrary temporal rela-
tionships. (They were proven to exhaustively describe the relationships between
periods [2]. However, other, equally expressive operators are possible as well.)
Note that there are different timestamps that are of interest in a temporal database:
temporal attributes of base relations, implicitly computed valid times, and temporal
constants. We require that all of them can be used together as operands to Allen’s
operators. Finally the database system has to support maximal continuous periods
and valid times as specified by the user. Both kinds of timestamps have been shown
necessary in answering temporal queries [29]. It must be possible to retrieve and
constrain (i.e., use as operands of functions and predicates) either kind of time-
stamp.

We emphasize that the notions of temporal semi-completeness and temporal
completeness go beyond approaches that define the completeness in terms of an
algebra (i.e., by requiring a temporal language to have the same expressive power
as an algebra). For example, temporal semi-completeness (and thus temporal com-
pleteness) may, depending on the language it is with respect to, cover aggregates,
grouping, null values, ordering, and duplicates.

5.2 TSQL2 and Temporal Completeness with Respect to SQL–92

In order to qualify for temporal completeness, a temporal query language must
fulfill the five requirements listed in Definition 6. We first must modify TSQL2 to
make it temporally semi-complete. To ensure temporal completeness, it must in
addition be possible to override snapshot reducibility. The valid clause in TSQL2
is intended for this purpose, but as its scope does not extend to set operations such
asEXCEPTandUNION, the clause cannot override snapshot reducibility for them,
either.

The third condition is that a temporal language must allow a valid-time query
to appear in a larger query everywhere a valid-time relation name may appear, so
that if the valid-time query computes the named relation, the two forms of the larger
queries compute the same result. This feature is provided by table expressions,
which were introduced in SQL–92 [22, p.178] and carried over to TSQL2.

The fourth requirement is satisfied by the where clause which is enhanced
with temporal predicates that have the same expressive power as Allen’s predi-
cates. Temporal attributes of base relations, implicitly computed valid times (e.g.,
valid times computed by table expressions), and temporal constants can be used as
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operands to these predicates.
Finally, a temporal language must support maximal continuous valid-time pe-

riods and valid times as specified by the user. In the second subsection we will see
that TSQL2 ignores the user-specified valid time format.

Overriding Snapshot Reducibility

In TSQL2, the valid clause can be used to override snapshot reducibility—if no
valid clause is specified, the semantics defaults to valid-time intersection. However,
the scope of the valid clause does not include set operations and, therefore, it is not
possible to override valid-time semantics associated with these operations. As an
example, suppose the valid-time relationsr5 andr6 of Figure 4. In TSQL2, it is
not possible to useEXCEPTto retrieve all tuples inr5 that are not inr6. Snapshot
reducibility is hard-wired intoEXCEPT, which means that TSQL2 always yields
result3 rather thanresult4, see next.

result3 result4
A T
a1 5−7

A T
a1 5−9

Beyond Coalescing

The last point of Definition 6 requires that a temporal query language be able to
retrieve and constrain (a) maximal continuous valid-time periods and (b) valid times
as specified by the user. First, TSQL2 falls short in doing this at the outermost level
of queries. The results of queries are always coalesced relations, i.e., relations
where value-equivalent tuples are eliminated by combining their valid timestamps.
This also holds for an individual select statement which may be part of a larger
query.

Second, TSQL2 relations are constrained to contain coalesced tuples. To ex-
emplify why this may be a problem, consider relationsr1 andr2 of Figure 3. We
may envision that it is significant to a user whether the explicit attribute valuea is
associated with one single timestamp, 10−20, or is associated with two separate
timestamps, 10−17 and 17−20. These two relations may mean different things
to a user. However,r2 is not a legal TSQL2 relation, and if the user inserts tuples
〈a1, 10−17〉 and〈a1, 17−20〉 into a TSQL2 relation, the tuples will be coalesced,
and relationr1 will be the result. Put differently, TSQL2 does not consider the dif-
ference betweenr1 andr2 (andr3 andr4) important and thus only admits coalesced
relations.

Temporal completeness requires that TSQL2 respects the valid times as pro-
vided by the user. If the user provides two intervals for attribute valuea, TSQL2
must maintain those two intervals and cannot simply coalesce them. Clearly, this
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matters for queries. For example, the query “Does there exist an entry with a valid
time identical to 10−17” should return “yes” if applied tor2 (because the user has
inserted a tuple with this valid time intor2) and “no” if applied tor1 (because the
user has not inserted a tuple with this valid time intor1).

Currently, TSQL2 is a point-based [9], or a snapshot-equivalence preserving
[20], temporal query language that uses time intervals at the representational level
to achieve a reasonable performance. Changing TSQL2 to respect the valid times
as specified by the users represents a substantial conceptual change to TSQL2. It
may be argued that admitting uncoalesced relations represents a complication, but
it also adds to its expressiveness. With implicit coalescing, users do not have to
be concerned with the valid times, but they also cannot associate special semantics
with valid times (c.f., Section 4.2).

Summary

Apart from not being temporally semi-complete, two aspects prevent TSQL2 from
being temporally complete. First, it is not possible to override the temporal seman-
tics of set operations. Second, implicit coalescing prevents TSQL2 from respecting
valid times as provided by the users.

6 Summary and Future Research

This paper has evaluated the consensus temporal query language TSQL2 using ex-
isting notions of completeness, some of which were further formalized in the paper.

In consistency with its design goals, TSQL2 was shown to be upwards com-
patible with SQL–92 and thus to be relationally complete. TSQL2 was also char-
acterized as temporally ungrouped and not temporally grouped. The evaluation of
the temporal semi-completeness of TSQL2 with respect to SQL–92 pointed to two
important deficiencies: not all SQL–92 relations can be produced taking timeslices
of TSQL2 temporal relations, and not all SQL–92 queries have a similar temporal
counterpart in TSQL2. Without these deficiencies, TSQL2 would be a “cleaner”
extension of SQL–92. The evaluation of temporal completeness of TSQL2 with re-
spect to SQL–92 pointed to two additional problems: with set operations in TSQL2
queries, it is not possible to freely control the valid timestamps of result tuples,
and TSQL2 does not respect the valid timestamps of tuples as entered by the users
(because value-equivalent tuples are coalesced).

As future research, it would be interesting to use additional completeness
notions in the evaluation of TSQL2. Also, a comparative study of completeness
notions for temporal databases that sheds light on their interrelations and practical
implications, and perhaps leads to new completeness notions, would be worthwhile.
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