
34
Efficient Evaluation of the Valid-Time

Natural Join
Michael D. Soo, Richard T. Snodgrass, and

Christian S. Jensen

Joins are arguably the most important relational operators. Poor implementa-
tions are tantamount to computing the Cartesian product of the input relations.
In a temporal database, the problem is more acute for two reasons. First, con-
ventional techniques are designed for the optimization of joins with equality
predicates, rather than the inequality predicates prevalent in valid-time queries.
Second, the presence of temporally-varying data dramatically increases the size
of the database. These factors require new techniques to efficiently evaluate
valid-time joins.

We address this need for efficient join evaluation in databases support-
ing valid-time. A new temporal-join algorithm based on tuple partitioning is
introduced. This algorithm avoids the quadratic cost of nested-loop evalua-
tion methods; it also avoids sorting. Performance comparisons between the
partition-based algorithm and other evaluation methods are provided. While we
focus on the important valid-time natural join, the techniques presented are also
applicable to other valid-time joins.

1109

1110 IMPLEMENTATION TECHNIQUES

1 Introduction

Time is an attribute of all real-world phenomena. Consequently, efforts to incorpo-
rate the temporal domain into database management systems (DBMSs) have been
on-going for more than a decade [22, 24, 23]. The potential benefits of this research
include enhanced data modeling capabilities, and more conveniently expressed and
efficiently processed queries over time.

Whereas past work in temporal databases has concentrated on conceptual is-
sues such as data modeling and query languages, recent attention has focused on
implementation-related issues, most notably indexing and query processing strate-
gies. We consider in this paper an important subproblem of temporal query pro-
cessing, the evaluation of temporal join operations.

Joins are arguably the most important relational operators. They occur fre-
quently due to database normalization and are potentially expensive to compute.
Poor implementations are tantamount to computing the Cartesian product of the
input relations. In a temporal database, the problem is more acute. Conventional
techniques are aimed towards the optimization of joins with equality predicates,
rather than the inequality predicates prevalent in temporal queries [15]. Secondly,
the introduction of a time dimension may significantly increase the size of the data-
base. These factors require new techniques to efficiently evaluate valid-time joins.

Valid-time databasessupportvalid-time, the time when facts were true in the
real-world [20, 8]. In this paper, we consider strategies for evaluating thevalid-time
natural join [2, 16], which matches tuples with identical attribute values during
coincident time intervals. Other terms for the valid-time natural join include the
natural time-join[2] and thetime-equijoin(TE-join) [6]. Like its snapshot coun-
terpart, the valid-time natural join supports the reconstruction of normalized data
[11]. Efficient processing of this operation can greatly improve the performance of
a database management system.

Join evaluation algorithms fall into three basic categories, nested-loop, sort-
merge, or partition-based [19]. The majority of previous work in temporal join
evaluation has concentrated on refinements of the nested-loop [21, 6] and sort-
merge algorithms [15]. Comparatively little attention has been paid to partition-
based evaluation of temporal joins, the notable exception being Leung and Muntz
who considered such algorithms in a multiprocessor setting [18].

In this paper, we present a partition-based evaluation algorithm for valid-time
joins that clusters tuples with similar validity intervals. If the number of disk pages
occupied by the input relations isn then, in terms of I/O costs, our algorithm allows
anO(n) evaluation cost in many situations, thereby improving on theO(n2) cost
of nested-loop evaluation and theO(n · log(n)) cost of sort-merge evaluation. In

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1111

addition, our approach does not require sort orderings or auxiliary access paths,
each with additional update costs, and adapts easily to an incremental evaluation
framework [25].

The paper is organized as follows. Section 2 formally defines the valid-time
natural join in a common representational data model that is well-suited for query
evaluation. A new, partition-based algorithm for computing the valid-time natural
join is presented in Section 3. Performance comparisons between the partition-
based algorithm and previous valid-time join evaluation algorithms are made in
Section 4. Conclusions and future work are detailed in Section 5.

2 Valid-Time Natural Join

In this section, we define the valid-time natural join using the tuple relational cal-
culus. The definition we provide is for a 1NF tuple-timestamped data model. An
equivalent definition for a conceptual-level data model [12, 13] is given elsewhere
[25].

In the data model, tuples are stamped with intervals denoting their time of
validity. We assume that the time-line is partitioned into minimal-duration intervals,
termedchronons[5]. Timestamps are therefore single intervals denoted by inclusive
starting and ending chronons.

LetR andS be valid-time relation schemas

R = (A1, . . . , An, B1, . . . , Bk,Vs,Ve)

S = (A1, . . . , An, C1, . . . , Cm,Vs,Ve)

where theAi , 1≤ i ≤ n, are the explicit join attributes, theBi , 1≤ i ≤ k, andCi ,
1 ≤ i ≤ m, are additional, non-joining attributes, and Vs and Ve are the valid-time
start and end attributes. We use V as a shorthand for the interval[Vs,Ve]. Also, we
definer ands to be instances ofR andS, respectively.

In the valid-time natural join, two tuplesx andy join if they satisfy the snap-
shot equi-join condition (i.e., they match on the explicit join attributes), and if they
have overlapping valid-time intervals. The attribute values of the resulting tuplez

are as in the snapshot natural join, with the addition that the valid-time interval is
the maximal overlap of the valid-time intervals ofx andy. We formalize this with
the following definitions.

Definition 1 The functionoverlap(U, V) returns the maximal interval contained
in both of the intervalsU andV . We provide a procedural definition ofoverlap.
The auxiliary functionsmin andmax return the smallest chronon and largest chro-
nons, respectively, in their argument sets.

1112 IMPLEMENTATION TECHNIQUES

overlap(U ,V):
common← ∅;
for each chronont fromUs toUe

if Vs ≤ t ≤ Ve common← common∪ {t};
if common = ∅ result ←⊥;
else result ← [min(common),max(common)];
returnresult ; 2

Definition 2 The valid-time natural join ofr ands, r 1V s, is defined as follows.

r 1V s = {z(n+m+k+2) | ∃x ∈ r ∃y ∈ s
(x[A] = y[A] ∧ z[A] = x[A]∧
z[B] = x[B] ∧ z[C] = y[C]∧
z[V] = overlap(x[V], y[V])∧ z[V] 6=⊥)} 2

3 Valid-Time Partition Join

In this section, we show how partitioning can be used to evaluate the valid-time
natural join. We begin by describing, in Section 3.1, the general characteristics of
partition joins. In Sections 3.2 to 3.4, we show how valid-time can be supported in
a partition-based framework.

3.1 Overview of Partition Joins

Partition joinscluster tuples with similar join attribute values, thereby reducing the
amount of unnecessary comparison needed to find matching tuples [19]. Both input
relations are partitioned so that tuples in a particular partition of one relation can
only match with tuples in a corresponding partition of the other relation. A primary
goal is to perform the partitioning so that joins between corresponding partitions
can be efficiently evaluated.

Partition-join evaluation consists of three phases. First, the attribute values
delimiting partition boundaries are determined. The partition boundaries are chosen
to minimize the evaluation cost—disk I/O is usually the dominant factor. Second,
these attribute values are used to physically partition the input relations. In the
ideal case, this involves linearly scanning both input relations and placing tuples
into the appropriate partition. Lastly, the joins of corresponding partitions of the
input relations are computed. In the ideal case, the partitions are small enough to fit
in the available main memory and can be accessed with a single random disk seek
followed by relatively inexpensive sequential reads. Ignoring the cost of operations
performed in main memory, any simple evaluation algorithm, such as nested-loops
or sort-merge, can be used to join the partitions once in memory. If the partitioning
satisfies the given buffer constraints, the join can be computed with a linear I/O
cost, thereby avoiding the quadratic complexity of the brute force implementation.

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1113

Figure 1 shows how partitioning is used to computer 1 s for two snapshot
relationsr ands. Relationsr ands are initially scanned and tuples are placed into
partitionsri andsi , 1 ≤ i ≤ n, depending on their joining attribute values. The
partitioning guarantees that, for any tuplex ∈ ri , x can only join with tuples insi .
The result,r 1 s, is produced by unioning the joinsri 1 si .

↓ ↓ ↓↓

1 1 1 1

r1 r2 r3 rn

s1 s2 s3 sn

r1 1 s1 r2 1 s2 r3 1 s3 rn 1 sn

· · ·

· · ·

· · ·

Figure 1: Partition Join ofr 1 s

Suppose thatbuffSizepages of buffer space are available in main memory. If a
partitionri occupiesbuffSize−2 pages or less then it is possible to computeri 1 si
by readingri into main memory and joining it with each page ofsi one at a time.
(The remaining page of main memory is used to hold result tuples.) Therefore,
a single linear scan ofr ands suffices to computer 1 s. Also, the partitioning
provides a natural clustering mechanism on tuples with similar attribute values. If
partitions are stored on consecutive disk pages then, after an initial disk seek to the
first page of a partition, its remaining pages are read sequentially. Last, it is easy
to see how the algorithm can be adapted to an incremental mode of operation. For
example, suppose thatr 1 s is materialized as a view, and an update happens tor

in partitionri . As tuples inri can only join with tuples insi , the consistency of the
view is insured by recomputing onlyri 1 si .

3.2 Supporting Valid-Time

We now present a partition-join algorithm to compute the valid-time natural join
r 1V s of two valid time relationsr ands in the tuple-timestamped representation
of Section 2.

1114 IMPLEMENTATION TECHNIQUES

Our approach is to partition the input relations using a tuple’s interval of va-
lidity. For the corresponding partitionsri andsi , the partitioning guarantees that for
eachx ∈ ri , x can only join with tuples insi , and, similarly,y ∈ si can join only
with tuples inri .

Tuple timestamping with intervals adds an interesting complication to the par-
titioning problem. Since tuples can conceivably overlap multiple partitions, these
tuples, termedlong-lived tuples, must be present in each partition they overlap when
the join of that partition is being computed. That is, the tuple must be present in
main memory when the join of an overlapping partition is being computed. Notice
that this problem does not occur in the partition join of snapshot relations since, in
general, the joining attributes are not range values such as intervals.

A straightforward solution to this problem simply replicates the tuple across
all overlapping partitions [18]. However, replication requires additional secondary
storage space and complicates update operations.

We propose a different solution that guarantees the presence of the tuple in
each overlapping partition when the join of that partition is computed, while avoid-
ing replication of the tuple in secondary storage. Simply, we choose a single over-
lapping partition to contain the tuple on disk and dynamically migrate the tuple to
the remaining partitions as the join is being evaluated.

The evaluation algorithm is shown in Figure 2. As with partition-join algo-
rithms for conventional databases, three steps are performed. First, the attribute
values that determine partition boundaries are determined. This is performed by
proceduredeterminePartIntervals. Next the relations are partitioned by procedure
doPartitioning, and lastly, the partitioned relations are joined by procedurejoinPar-
titions.

partitionJoin(r, s):
partIntervals←

determinePartIntervals(buffSize, |r|, |s|);
r ← doPartitioning(r, partIntervals);
s ← doPartitioning(s, partIntervals);
returnjoinPartitions(r, s, partIntervals);

Figure 2: Evaluation ofr 1V s

We assume that Grace partitioning [14, 19] is used in proceduredoPartition-
ing. We reserve a single buffer page to hold a page of the input relation, and divide
the remaining buffer space evenly among the partitions. Each tuple inr ands is ex-
amined and placed in a page belonging to the appropriate partition; when the pages
for a given partition become filled they are flushed to disk. We assume that the
number of partitions is small, and therefore, that sufficient main memory is avail-

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1115

able to perform the partitioning. This assumption held true for all experiments we
performed. As partitioning is straightforward, we concentrate on the remaining al-
gorithms. The following section describes how two partitioned relations are joined
in procedurejoinPartitions. For the time being, we assume thatr ands are divided
into n equal sized partitions and postpone until Section 3.4 the details of procedure
determinePartIntervals.

3.3 Joining Partitions

Let P be a partitioning of valid time, i.e.,P is a set ofn non-overlapping intervals
pi , 1 ≤ i ≤ n, that completely covers the valid-time line. Associated with eachpi
is a partitionri of r. We assume, for the purposes of this section, that eachri has
approximately the same number of tuples.

We assume that a tuplex is in the partitionri if and only if overlap(x[V], pi)
6=⊥, and similarly fory ∈ si . Tuples are physically stored in the last partition they
overlap, that is, a tuplex is physically stored in partitionri if overlap(x[V], pi) 6=⊥
and¬∃j such thatj > i andoverlap(x[V], pj) 6=⊥.1 The computation proceeds
from rn 1

V sn to r1 1V s1. For a givenri , all tuplesx ∈ ri that overlappi−1 are re-
tained and added tori−1 prior to computingri−1 1

V si−1, and similarly forsi−1. As
tuples are initially placed in their last overlapping partition, this algorithm ensures
that tuples are present in each partition they overlap, and does so without introduc-
ing unnecessary redundancy in secondary storage. Notice also that if a given tuple
x overlaps partitionspj , . . . , pi−1, pi thenx must be present inrj , . . . , ri−1, ri
when their corresponding join is computed; therefore, no unnecessary comparisons
are performed.

The buffer allocation strategy used in this algorithm is shown in Figure 3.
Space is allocated to hold an entire partitionri of the outer relationr, a page of the
corresponding partitionsi of the inner relation, a page, thetuple cache, to hold the
long-lived tuples ofs, and a page to hold the result tuples. For a detailed description
of the movement of tuples between the buffers, see Appendix A.1.

3.4 Partitioning Strategies

In the previous section, we described how the join of two previously partitioned re-
lations was computed, assuming that each partition of the outer relationr, contained
approximately equal numbers of tuples. We show in this section how to determine a
partitioning of the input relations that satisfies this property with relatively small I/O

1An equivalent strategy is to place tuples in their first partition and propagate long-lived tuples towards the
last partition during evaluation. We chose the given strategy with consideration for incremental adaptations
described elsewhere [25].

11
16

IM
P

LE
M

E
N

TA
T

IO
N

T
E

C
H

N
IQ

U
E

S

r

Tuple cache

s

Inner relation
page

Tuple cache
page

Result relationResult relation
page

Main memory

Outer relation
partition area

Figure 3: Buffer Allocation forr 1V s Evaluation

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1117

cost. Our method is inspired by the partition-size estimation technique originally
developed for the evaluation ofband-joins[4].

In Figure 3, a single buffer page is allocated to each of the inner relation
buffer, tuple cache, and result relation, andbuffSizepages are allocated to hold a
partition of the outer relation. Our goal is to ensure that eachri fits in the available
buffSizepages with high probability, while minimizing the I/O cost of ensuring this
important property.

The task at hand is to construct a set ofpartitioning intervalsthat covers
the valid-time line. Tuples belong to a partition if they overlap, in valid time, the
corresponding partitioning interval. Note that the length of a partitioning interval
pi determines the cardinality of the resulting partitionri .

A simple strategy to construct thepi is to sortr on Ve or Vs , and then choose
the partitioning chronons in a subsequent linear scan. While this yields an optimal
solution, it is prohibitively expensive.

A better solution is to choose partitioning intervals that with high probability
are close to those that would have been chosen with the exact method. To do this,
we randomly sample tuples fromr, and, based on this sample set, choose a set of
partitioning chronons, from which the partitioning intervals are constructed. As
our partitioning is only approximate, some portion of thebuffSizepages must be
reserved to accommodate errors in the chronon choices that would likely result in
overflow of the outer relation partition area. We note that should such errors occur,
that is, a partition is created that is bigger thanbuffSizepages, the correctness of the
join algorithm is not affected—only performance will suffer due to buffer thrashing.

Samples drawn from the outer relation are used to determine the intervals used
to partition both the outer and inner relations. In addition, this same sample set is
used to estimate the caching costs associated with long-lived tuples in the inner
relation. We make the implicit assumption that the distribution, over valid time, of
tuples in the outer and inner relations is similar, thereby allowing us to use a single
sample set for both purposes. We provide justification for this assumption later.

The cost of evaluatingr 1V s has the following three components (c.f., Fig-
ure 2).

• Csample—the cost of samplingr,

• Cpartition—the cost of creating the partitionsri andsi , 1≤ i ≤ n, and

• Cjoin—the cost of joining the partitionsri andsi , 1≤ i ≤ n.

The total I/O costCtotal is the sum of these,

Ctotal = Csample + Cpartition + Cjoin.
Our goal, then, is to choose a set of partitioning intervals so that the estimated
evaluation cost,Ctotal , is minimized. Since the cost of Grace partitioning is not
affected by the chosen partition size (it is dependent only on the amount of available

1118 IMPLEMENTATION TECHNIQUES

main memory), we need only consider the sumCsample + Cjoin. In the following,
we show how to compute the set of partitioning intervals that minimizesCsample +
Cjoin.

Let partSize≤ buffSizebe the estimated size of an outer relation partition. We
want to find apartSizethat minimizesCsample + Cjoin. Let errorSize= buffSize
− partSizebe the amount of buffer space available to handle overflow if a partition
exceeds the estimated size. IfpartSizeis large thenerrorSizeis small. The effect
of a smallerrorSizeis to increaseCsample since, in order to prevent overflowing
the smaller error space, higher accuracy is needed when choosing the partitioning
intervals. However, a largepartSizedecreasesCjoin since tuples are less likely
to overlap many partitions when the partitioning intervals are large, resulting in
a decrease in tuple-cache paging. Alternatively, consider the effects of a small
partSize, and, hence, largeerrorSize. Since more overflow space is available, fewer
samples need to be drawn, andCsample decreases. However, the smallerpartSize
increasesCjoin since tuples are more likely to overlap multiple partitions, if the
partitioning intervals are small.

In summary, a cost tradeoff occurs between the amount of sampling per-
formed on the outer relation, a component ofCsample, and the amount of paging
performed on the tuple cache, a component ofCjoin. The optimal solution mini-
mizes the sumCsample + Cjoin.

Partition size

Cost

Csample

Cjoin

Csample Cjoin+

I/O

(partSize)

Figure 4: I/O Cost for Partition Size

Figure 4 plots sampling and tuple-cache paging costs for increasing partition
sizes. As seen from the figure, as the expected partition sizepartSizeincreases,
sampling costs (Csample) increase monotonically and tuple-cache paging costs (and

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1119

henceCjoin) decrease monotonically. In order to minimize the evaluation cost, the
sum of the sampling cost and the tuple-cache paging cost (shown as a dotted line in
the figure) must be minimized.

This minimal sum is determined by computing, given the buffer constraint
buffSize, Csample + Cjoin for each possiblepartSize. If few long-lived tuples are
present inr then the tuple-cache paging cost will decrease very quickly, and the
minimal cost will be obtained at a larger partition size. Conversely, if many long-
lived tuples are present inr then the tuple-cache paging cost will decrease slowly,
and the minimal cost will be obtained at smaller partition sizes.

The number of samples to draw is determined using the Kolmogorov test
statistic [3, 4]. The Kolmogorov test is a non-parametric test which makes no
assumptions about the underlying distribution of tuples. With 99% certainty, the
percentile of each chosen partitioning chronon will differ from an exactly cho-
sen partitioning chronon by at most 1.63/

√
m, wherem is the number of samples

drawn fromr [3]. Since 1.63/
√
m represents a percentage difference from an ex-

act partitioning, we know that(1.63× |r|)/√m is the number of necessary error
pages should a partition overflow the allottedpartSizepages. Hence, we must have
(1.63× |r|)/√m ≤ errorSizewhich implies thatm ≥ ((1.63× |r|)/errorSize)2

samples must be drawn.2

The algorithmdeterminePartIntervals, shown in Appendix A.2, determines,
for a givenbuffSize, thepartSizethat minimizesCsample+Cjoin. The corresponding
set of partitioning intervals is returned as its result. It uses an additional procedure
chooseIntervals, shown in Appendix A.3 that chooses partitioning intervals from
a set of partitioning chronons.

From the sample set, and its derived partitioning, the tuple cache paging costs
are estimated. For a given partition, the estimated size of its tuple cache is the num-
ber of sampled tuples that overlap its partitioning interval scaled by the percentage
of the relation sampled. This simple strategy suffices since accurately estimating
the amount of tuple cache paging is not as critical as estimating the size of the outer
relation partition. Partitions are large; therefore, rereading of partitions will incur
a large expense. However, for any given partition, the size of its tuple cache is
small, being bounded by the partition size; for many applications the tuple cache
will contain a relatively small percentage of the partition. The expense of apply-
ing a sophisticated technique such as the Kolmogorov test, or directly sampling the
inner relation, is not justified.

The algorithmestimateCacheSizes, shown in Appendix A.4, performs the
tuple cache size estimation described here.

2It is interesting to note that the number of samples required is independent of|r|. SinceerrorSizeis some
number of pages we can expresserrorSizeas a percentage of|r|, errorSize= |r|/l, wherel is some integer.
Substituting this expression forerrorSizeinto the formula form yields an expression independent of|r|.

1120 IMPLEMENTATION TECHNIQUES

4 Performance

In this section, we describe performance experiments involving the partition-join
algorithm. We first describe, in Section 4.1, previous work in valid-time join eval-
uation and the general setting for the experiments. Sections 4.2 to 4.4 describe in
detail the experiments we performed. Conclusions are offered in Section 4.5.

4.1 General Considerations

A wide variety of valid-time joins have been defined, including thetime-join, event-
join, TE-outerjoin[21], contain-join, contain-semijoin, intersect-join, overlap-join
[17], andcontain-semijoin[16]. Refinements to the nested-loops algorithm were
proposed by Gunadhi and Segev to evaluate several temporal join variants [21, 7].
This work assumed that temporal data was “append-only,” i.e., tuples are inserted in
timestamp order into a relation, and once inserted into a relation are never deleted.
With the append-only assumption, a new access path, theappend-only tree, was
developed that provides a temporal index on the relation. Simple extensions to
sort-merge were also considered where, again, tuples were assumed to be inserted
into a relation in timestamp order [21, 7]. Leung and Muntz extended this work
to accommodate additional temporal join predicates, mainly those defined by Allen
[1], and to incorporate various ascending and descending sort orders on either valid-
start or valid-end time [15].

Simply stated, our work differs from most previous work in that we adapt
the third and remaining join evaluation strategy, partitioning, to the evaluation of
valid-time joins. Our approach does not require sort orderings or auxiliary access
paths, each with additional update costs, and it adapts easily to an incremental eval-
uation framework. Partition-based evaluation of valid-time joins was investigated
by Leung and Muntz in the context of parallel join evaluation, but their strategy
required the replication of tuples across processors. We avoided replication for two
reasons: to save on secondary storage costs and to easily adapt the algorithm to an
incremental framework.

In order to evaluate the relative performance of our algorithm, we imple-
mented main-memory simulations of partition join and sort-merge join, and calcu-
lated analytical results for nested-loops join. To obtain a fair comparison, we made
the weakest assumptions possible about the input relations. That is, we do not as-
sume any sort ordering of input tuples, nor the presence of additional data structures
or access paths, where the incremental cost of maintaining a sort order or an access
path is hidden from the query evaluation. However, the sort-merge algorithm was
optimized to make best use of the available main memory size, and similar remarks
apply to the analytical results generated for nested-loops. We measured cost as the
number of I/O operations performed by an algorithm, distinguishing between the

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1121

higher cost of random access and the lower cost of sequential access. The parame-
ters used in all of the experiments are shown in Figure 5.

Parameter Value
Page size 4K bytes
Tuple size 128 bytes
Tuples per relation 262,144 tuples
Size of inner relation|r| 8192 pages (32 Mb)
Size of outer relation|s| 8192 pages (32 Mb)
Relation lifespan 1 million chronons

Figure 5: Global Parameter Values

We have attempted to choose realistic values for the example databases. If ten
tuples are present for each object in the database, that is, ten pieces of information
are recorded for each real-world entity, then the database contains approximately
26,000 objects. For most of the experiments, we are concerned more with ratios
of certain parameters as opposed to their absolute values, and so choosing realistic
values is less critical.

4.2 Sensitivity to Main Memory Buffer Size

In Section 3.4, we argued that the performance of the partition-join algorithm was
dependent on the ratio of main memory buffer size to database size. That is, we
expected that with larger memory sizes, the performance of the partition-join al-
gorithm would improve. We designed an experiment to empirically investigate
this tradeoff, and to simultaneously compare the partition-join algorithm with sort-
merge join, at varying main memory allocations.

The tuples in the database were randomly distributed over the lifespan of the
relation. In order to evaluate only the effect of memory size on the join evaluation,
we eliminated the possibility of long-lived tuples by having each tuple’s valid-time
interval be exactly one chronon long. Long-lived tuples cause paging of the tuple
cache in the partition-join algorithm and “backing-up” during the matching phase
of the sort-merge algorithm. In addition, we were interested in the relative cost of
random access versus sequential access since this varies among different hardware
devices.

The allotted main memory was varied from 1 megabyte to 32 megabytes, and
three trials were run for each of the join algorithms, where the random to sequential
access cost was varied as 2:1, 5:1, and 10:1. The results of the experiments are
shown in Figure 6. Note that thex-axis in the figure is log-scaled. Each curve
represents the evaluation cost of an algorithm, either sort-merge, partition join, or
nested-loops, for a given random/sequential cost ratio over varying main memory
sizes.

1122 IMPLEMENTATION TECHNIQUES

0

100000

200000

300000

400000

500000

600000

1 2 4 8 16 32

I/O
 T

im
e

Main Memory (Megabytes)

Nested-Loops (10,5,2:1)
Sort-Merge (10:1)
Sort-Merge (5:1)
Sort-Merge (2:1)

Partition Join (10,5,2:1)

Figure 6: Performance Effects of Main Memory

The graph shows an interesting property of the partition-join algorithm. In
contrast to nested-loops and sort-merge, the partition-join algorithm shows rela-
tively good performance at all memory sizes, and, as expected, the performance of
the algorithm improves as memory increases. Nested loops performs quite poorly
at small memory allocations since few pages of the outer relation can be stored in
memory, requiring many scans of the inner relation. At large memory allocations,
e.g., 32 megabytes, the performance of nested-loops is quite good since a large por-
tion of the outer relation remains resident in memory reducing the number of scans
of the inner relation. We note also that the cost of reading the outer relation is quite
low since ifi pages of the outer relation are read, this requires a single random read
followed by ai − 1 sequential reads.

Comparing the partition join to sort-merge, we see that the partition join is
approximately twice as fast as sort-merge at all memory sizes. As no backing up is
performed by the sort-merge algorithm, we attribute this to the cost of sorting. At
small memory sizes, the sort-merge algorithm must use more runs with fewer pages
in each run, with a random access required by each run.

Similarly, when little main memory is available, partition sizes are necessarily
small, and higher random access cost is incurred by the partition-join algorithm dur-
ing both the sampling and partitioning phases. That is, not only are more samples
required when the partitioning intervals are being determined, but, since less buffer

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1123

space is available, the in-memory “buckets” must be flushed more often, requiring
more random I/O. However, the effect on performance is not as drastic as for sort-
merge since the partitioning phase requires only one pass through the relations, and
we discovered an optimization that can reduce sampling costs.

We initially assumed that a random access is required for each sample. At
large partition sizes, the effect is to perform a large number of random accesses
during sampling, sometimes exceeding the number of pages in the outer relation.
The algorithm instead sequentially scans the outer relation, drawing samples ran-
domly when a page of the relation is brought into main memory. For example, at a
random/sequential cost ratio of 10:1, only 819 random samples (3% of the relation)
must be drawn before the entire outer relation can be scanned for the same cost.
This requires only a single random access to read first page of the relation, followed
by sequential reads of the remaining pages of the relation. The sampling cost is
therefore proportional to the number of pages of the outer relation, as opposed to
the number of sampled tuples which may be quite large.

4.3 Effects of Long-Lived Tuples

The presence of long-lived tuples adds another cost dimension to both the partition-
join and sort-merge algorithms. The partition-join algorithm may incur paging of
the tuple cache when many long-lived tuples are present, and the sort-merge algo-
rithm may back-up to previously processed pages of the input relations to match
overlapping tuples. Long-lived tuples do not affect the performance of the nested-
loops algorithm, but it is included here for completeness.

We designed an experiment to empirically investigate the cost effect that long-
lived tuples have on both strategies. A series of databases were generated with
increasing numbers of long-lived tuples. Each database contained 32 megabytes
(262144 tuples); we varied the number of long-lived tuples from 8000 to 128,000
in 8000 tuple steps. Non-long-lived tuples were randomly distributed throughout
the relation lifespan with a one chronon long validity interval. Long-lived tuples
had their starting chronon randomly distributed over the first 1/2 of the relation
lifespan, and their ending chronon equal to the starting chronon plus 1/2 of the rela-
tion lifespan. To not influence the performance of the algorithms via main memory
effects, we fixed the main memory allocation at 8 megabytes, the memory size at
which all three algorithms performed most closely in the previous experiment. Ad-
ditionally, the random to sequential I/O cost ratio was fixed at 5:1. The results of
the experiment are shown in Figure 7.

As can be seen from the figure, the partition-join algorithm outperformed the
sort-merge algorithm at all long-lived tuple densities. We expected this result. The
tuple caching cost incurred by the partition-join algorithm is relatively low—the
tuple cache size is small (it cannot exceed the size of a partition), and it is fairly

1124 IMPLEMENTATION TECHNIQUES

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

I
/
O

T
i
m
e

% of Long-Lived Tuples

Sort-Merge
Nested-Loops

Partition join

Figure 7: Performance Effects of Long-Lived Tuples

inexpensive to read or write (a random access for the first page followed by se-
quential accesses for the remaining pages). Furthermore, many long-lived tuples do
not significantly increase this cost since they merely cause additional pages to be
appended to the tuple cache, and these pages incur an inexpensive sequential I/O
cost.

In contrast, the presence of long-lived tuples greatly increases the cost of the
sort-merge algorithm. To see this, consider what happens when a long-lived tuple
is encountered during the matching phase. The tuple must be joined with all tuples
that overlap it, some of these tuples may, unfortunately, have already been read,
requiring the algorithm to re-read these pages. For tuples with lifespans of 1/2 the
relation lifespan, this incurs a significant cost. Furthermore, the percentage of long-
lived tuples is less significant to the sort-merge algorithm. While a higher density of
long-lived tuples may require the algorithm to back-up more often, the presence of
only a single long-lived tuple will still cause the sort-merge algorithm to back-up.

4.4 Main Memory vs. Long-Lived Tuples

The previous two experiments showed that the partition join exhibits better perfor-
mance when more main memory is available, and incurs a performance penalty at
increasing densities of long-lived tuples.

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1125

We desired to determine whether the allotted main memory size or the density
of long-lived tuples played a larger effect on the performance of the partition-join
algorithm, and designed an experiment to investigate this. Eight 262,144 tuple data-
bases were generated with increasing numbers of long-lived tuples, from 16,000 to
128,000 in 16,000 tuple steps. A trial was run for each database at 1, 2, 4, 16, and
32 megabyte main memory allocations. The results are shown in Figure 8. (The
x-axis is log-scaled in the figure.)

30000

35000

40000

45000

50000

55000

60000

65000

70000

1 2 4 8 16 32

I/O
 T

im
e

Main Memory (Megabytes)

128000 Long-Lived Tuples
112000 Long-Lived Tuples
96000 Long-Lived Tuples
80000 Long-Lived Tuples
64000 Long-Lived Tuples
48000 Long-Lived Tuples
32000 Long-Lived Tuples
16000 Long-Lived Tuples

Figure 8: Relative Effects of Main Memory Size and Tuple Caching

The graph shows that at large memory sizes (16 and 32 megabytes) the eval-
uation cost for all databases becomes fairly equal, hence the relative cost of tuple
caching is small due to the large memory size. At smaller memory sizes, there is
a more pronounced difference between the evaluation costs over the different data-
bases. This was expected. When the allotted memory sizes are small the cost of
tuple caching is significant since partition sizes are necessarily smaller and more
tuples are likely to overlap multiple partitions. Again, the conclusion to be drawn
is that main memory availability is necessary for the partition join to be efficient.
When sufficient main memory is available, the effects of tuple caching become in-
significant, but when insufficient main memory is available, the performance impact
of tuple caching is significant.

1126 IMPLEMENTATION TECHNIQUES

4.5 Summary

We expected that the partition-join algorithm would be sensitive to the amount of
main memory available during evaluation. The experiment of Section 4.2 confirms
this hypothesis. The algorithm performed better at larger memory sizes, mainly
due to the decreased random I/O during partitioning and the fewer samples required
to determine the partitioning intervals. Furthermore, the partition join shows uni-
formly good performance at all memory sizes, unlike nested-loops which performs
well at large memory sizes, but quite poorly at small memory sizes.

Relative to sort merge, the partition-join algorithm compares favorably. When
long-lived tuples are present, the partition join outperforms sort-merge significantly,
as shown in Section 4.3. Tuple caching in the partition join incurs a low cost relative
to the high cost of backing-up in sort-merge.

Finally, in Section 4.4, we compared the relative costs of tuple caching and
main memory availability. For the partition join, the density of long-lived tuples did
not greatly increase the evaluation cost when sufficient main memory was available.
Given that sufficient main memory is available, our conclusion is that the partition-
join algorithm performs well relative to both nested-loops and sort-merge, both in
the presence, and absence, of long-lived tuples.

5 Conclusions and Future Work

The contributions of this work are summarized as follows.

• We formally defined the valid-time natural join, the operator used to recon-
struct normalized valid-time databases.

• We presented a new algorithm for valid-time join evaluation, improving on
theO(n2) cost of nested-loop join while avoiding theO(n · log(n)) cost of
sorting.

• Our approach is based on tuple partitioning, but still avoids replication of
tuples in multiple partitions, thereby allowing simple base relation updates.

• We compared the performance of the partition-join algorithm with both nested-
loop and sort-merge, and showed that with adequate main memory our algo-
rithm exhibits almost uniformly better performance, especially in the presence
of long-lived tuples.

As relatively little work has appeared on temporal query evaluation, there are
many directions in which this work can be expanded. First, many important prob-
lems remain to be solved with valid-time natural join evaluation. We made the
simplifying assumption in Section 3.4 that the distribution of tuples over valid time
was approximately the same for both the inner and outer relations. Obviously, this
assumption may not be valid for many applications since gross mis-estimation of

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1127

tuple caching costs may result. Secondly, while tuple caching is a relatively inex-
pensive operation, the paging cost associated with it can be reduced if sufficient
buffer space is allocated to retain, with high probability, the entire tuple cache in
main memory. Trading off outer relation partition space for tuple cache space is a
possible solution to this problem. Lastly, while we have distinguished between the
higher cost of random access and the lower cost of sequential access, we have ig-
nored the cost of main-memory operations. Incorporating main-memory operations
into the cost model would allow us to more accurately choose partitioning intervals
through better estimates of evaluation costs.

More globally, this work can be considered as the first step towards the con-
struction of an incremental evaluation system for a bitemporal database manage-
ment system, that is, a DBMS that supports both valid and transaction time [20, 8].
Elsewhere we motivate the importance of incremental evaluation to temporal data-
base management systems and show how our partition-based approach is easily
adapted to incremental evaluation [25].

Acknowledgements

Support for this work was provided the IBM Corporation through Contract #1124,
the National Science Foundation through grants IRI-8902707 and IRI-9302244,
and the Danish Natural Science Research Council through grant 11-9675-1 SE.
We thank Nick Kline for providing the aggregation tree implementation used in the
simulations.

A Appendix

We describe in detail the algorithms used in Sections 3.3 and 3.4.

A.1 Algorithm joinPartitions

Algorithm joinPartitions, shown in Figure 9, computesr 1V s, assuming thatr and
s have been previously partitioned. For eachi, 1≤ i ≤ n, the algorithm constructs
the next outer relation partitionri by purging tuples in the outer relation partition
buffer that do not overlappi and reading in the physical partitionri from disk. ri
is then joined with the long-lived tuple cache. Tuples in the tuple cache that do not
overlappi−1 are purged afterri and the tuple cache are joined. We check this by
comparing a tuple’s validity interval with the partitioning intervals. Finally,ri is
then joined with each page ofsi . Tuples in the current page ofsi that overlappi−1

are inserted into the tuple cache to be available for the computation ofri−1 1
V si−1.

In preparation for the next partition, tuples inri that overlappi−1 are retained in the

1128 IMPLEMENTATION TECHNIQUES

joinPartitions(r,s,partIntervals):
cachePage← ∅;
outerPart ← ∅;
tupleCache← ∅;
for i from n to 1

for each tuplex ∈ outerPart
if overlap(x[V], partIntervalsi) =⊥

outerPart ← outerPart − {x};
outerPart ← outerPart ∪ {read (ri)};
resulti ← resulti ∪ outerPart 1V cachePage};
for each tuplex ∈ cachePage

if overlap(x[V], partIntervalsi−1) 6=⊥
newCachePage← newCachePage ∪ {x};

if filled(newCachePage)
write(newCachePage);

for each flushed pagec of tupleCache
cachePage← read (c);
resulti ← resulti ∪ {outerPart 1V cachePage};
for each tuplex ∈ cachePage

if overlap(x[V], partIntervalsi−1) 6=⊥
newCachePage← newCachePage ∪ {x};

if filled(newCachePage)
write(newCachePage);

for each pageo of si
innerPage← read (o);
resulti ← resulti ∪ {outerPart 1V o};
for each tuplex ∈ o

if overlap(x[V], partIntervalsi−1) 6=⊥
newCachePage← newCachePage ∪ {x};
if filled(newCachePage)

write(newCachePage);

returnresult1 ∪ . . . ∪ resultn;

Figure 9: AlgorithmjoinPartitions

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1129

outer relation partition for the subsequent computation ofri−1 1
V si−1. We assume

that the tuple cache is paged in and out of memory as necessary to compute the join.
The ordering of operations in algorithmjoinPartitionsattempts to minimize

the amount of I/O, both random and sequential, performed during the evaluation.
Each partition fetch of the outer relation requires a random seek, but subsequent
pages are read with sequentially. Similarly, each page of the tuple cache and the
inner partition are, after an initial seek, read nearly sequentially except when the
result buffer requires flushing. The result buffer requires random writes in most
cases. In all cases, reading of either the outer relation partition, inner relation par-
tition, or the tuple cache normally requires only a single random seek followed by
i − 1 sequential reads, wherei is the number of pages in the item of interest.

Different orderings of the operations in algorithmjoinPartitionsare possible,
but these alternatives result in higher evaluation cost through more random access,
rereading of pages, or more complex bookkeeping. For example, prior to joiningri
with the tuple cache, we could join eachri with each page ofsi , moving long-lived
tuples insi to the tuple cache as pages ofsi are brought into main memory. Since
ri 1

V si is computed prior to the join ofri and the tuple cache, the tuple cache con-
tains tuples fromsi that have already been processed and, to prevent recomputation,
more complex tuple management is required.

Other variations include migrating long-lived tuples fromsi to the tuple cache
prior to performing any joins, and purging “dead” tuples from the tuple cache prior
to joining it with the ri . Both of these variants suffer from repeated reading of
tuples. The former requires thatsi be read twice, first to migrate live tuples, then
to join the remaining tuples withri . This requires an additional random access
and|s| − 1 sequential reads. The latter requires that the tuple cache be read twice
for each partition. While reading the tuple cache is not as expensive as reading a
partition, this is unnecessary and should be avoided.

A.2 Algorithm determinePartIntervals

Algorithm determinePartIntervals, shown in Figure 10, determines the lowest cost
partitioning of two input relationsr ands given the buffer constraintbuffSize.

The algorithm differentiates between the higher cost of random disk access,
as incurred during sampling, and sequential disk access, as incurred while reading
the second to last pages of an outer relation partition.

Csample is dependent only onerrorSize= buffSize− partSize. For a given
partition sizepartSize, Csample is computed using the Kolmogorov statistic, and a
sample set is drawn. Since the number of samples increases with partition size, we
incrementally draw samples fromr and add them to the sample set for increasing
partSize. Sampling incurs a random I/O cost, and tuples are sampled without re-
placement; each tuple in the relation is equally likely to be drawn, and at most one

1130 IMPLEMENTATION TECHNIQUES

determinePartIntervals(buffSize,r,s):
mincost←∞;
oldSampleCount← 0;
samples←∅;
for eachpartSizefrom 1 tobuffSize

errorSize← buffSize− partSize;
newSampleCount ← (1.63× |r|/errorSize)2;
Csample ← newSampleCount × IOran;
numPartitions← |r|/partSize;
samples ← samples ∪

drawSamples(r, newSampleCount− oldSampleCount);
partIntervals← chooseIntervals(samples, numPartitions);
cachePagesPerPartition←

estimateCacheSizes(samples, |r|,
partIntervals, numPartitions);

Cjoin← 2× (numPartitions × IOran+
(partSize− 1)× numPartitions × IOseq);

for eachm in cachePagesPerPartition
Cjoin← Cjoin + 2× (IOran + IOseq × (m− 1));

cost ← Csample + Cjoin;
if cost ≤ mincost

mincost ← cost ;
result ← partIntervals;

returnresult ;

Figure 10: AlgorithmdeterminePartIntervals

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1131

time. The samples are used to determine the partitioning intervals, using proce-
durechooseIntervals, described in Appendix A.3, and estimate the tuple cache size
for each partition, using procedureestimateCacheSizes, described in Appendix A.4.
This estimate is a component ofCjoin, the cost of joining partitions. The cost of
writing the result relation is omitted since this cost is incurred by all evaluation
algorithms.

The set of partitioning intervals associated with thepartSizeminimizing the
sumCsample + Cjoin is returned.

A.3 Algorithm chooseIntervals

Using the set of sampled tuples and the desired number of partitions, we can derive
a set of partitioning intervals. This is the function of algorithmchooseIntervals,
shown in Figure 11.

chooseIntervals(samples, numPartitions):
chronons← ∅;
for each tuplex ∈ samples

for each chronont ∈ x[V]
chronons← chronons ∪ t ;

lif espan← max(chronons)−min(chronons);
chronons← sort (chronons);
partChronons← ∅;
m← lif espan/numPartitions;

whilem ≤ lif espan
partChronons← partChronons ∪ chrononm;
m← m+ (lif espan/numPartitions);

partIntervals← ∅;
for i from 1 to |partitionChronons| − 1

partIntervals← partIntervals∪
{[partChrononsi, partChrononsi+1]};

returnpartIntervals;

Figure 11: AlgorithmchooseIntervals

For a given sample set, the chronons covered by any tuple in the sample set
are collected,3 and the range of time covered by the sample set is computed. If
numPartitionsis the computed number of partitions then the chosen chronons are

3In the algorithm,chrononsis a multiset. Hence the union operation used to add chronons to the multiset
is not strict set union.

1132 IMPLEMENTATION TECHNIQUES

those that appear in a sorting of the sample set at everynumPartitionsposition.
Adjacent pairs of the chosen chronons are then used to construct the partitioning
intervals.

A.4 Algorithm estimateCacheSizes

Having determined the partitioning of the input relations, we are able to estimate
the size of the tuple cache for each partitionsi of s. This is the function of procedure
estimateCacheSizes, shown in Figure 12. Using the sampled tuples and the set of
partitioning chronons, we can determine how many of these tuples overlap the given
partition boundaries. For any partition, its estimated tuple cache size is simply
the number of sampled tuples that overlap that partition with a scaling factor to
account for the percentage of the relation sampled. The functionsearliestOverlap
and latestOverlapsimply return the indexes of the earliest and latest partitions,
respectively, that overlap the given tuple.

estimateCacheSizes(samples, |r|, partIntervals,
numPartitions):

for each intervalp ∈ partIntervals
cntp ← 0;

for each tuplex ∈ samples
min← earliestOverlap(partIntervals, x[V]);
max ← latestOverlap(partIntervals, x[V]);
for each intervalp frompmin to pmax − 1

cntp ← cntp + 1;

for each intervalp ∈ partIntervals
cachePagesp← cntp × (|samples|/|r|);

returncachePages;

Figure 12: AlgorithmestimateCacheSizes

References

[1] J. F. Allen. Maintaining Knowledge about Temporal Intervals.Communica-
tions of the Association for Computing Machinery, 26(11):832–843, Novem-
ber 1983.

[2] J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) and
Algebra Based on Lifespans. InProceedings of the International Conference
on Data Engineering, pages 528–537, Los Angeles, CA, February 1987.

EFFICIENT EVALUATION OF THE VALID-TIME NATURAL JOIN 1133

[3] W. J. Conover.Practical Nonparametric Statistics. John Wiley & Sons, 1971.

[4] D. DeWitt, J. Naughton, and D. Schneider. An Evaluation of Non-Equijoin
Algorithms. InProceedings of the Conference on Very Large Databases, pages
443–452, 1991.

[5] C. E. Dyreson and R. T. Snodgrass. Timestamp Semantics and Representation.
Information Systems, 18(3), September 1993.

[6] H. Gunadhi and A. Segev. A Framework for Query Optimization in Temporal
Databases. InProceeding of the Fifth International Conference on Statistical
and Scientific Database Management, pages 131–147, Charlotte, NC, April
1990.

[7] H. Gunadhi and A. Segev. Query Processing Algorithms for Temporal Inter-
section Joins. InProceedings of the 7th International Conference on Data
Engineering, Kobe, Japan, 1991.

[8] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. T. Snodgrass. A
Glossary of Temporal Database Concepts.ACM SIGMOD Record, 21(3):35–
43, September 1992.

[9] C. S. Jensen, L. Mark, N. Roussopoulos, and T. Sellis. Using Caching,
Cache Indexing, and Differential Techniques to Efficiently Support Transac-
tion Time. VLDB Journal, 2(1):75–111, 1992.

[10] C. S. Jensen and R. Snodgrass. Temporal Specialization. InProceedings of
the International Conference on Data Engineering, pages 594–603, Tempe,
AZ, February 1992.

[11] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending Normal Forms to
Temporal Relations. TR 92-17, Computer Science Department, University of
Arizona, July 1992.

[12] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unification of Temporal Rela-
tions. InProceedings of the International Conference on Data Engineering,
Vienna, Austria, pages 262–271, April 1993.

[13] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Data Mod-
els via a Conceptual Model. TR 93-31, Department of Computer Science,
University of Arizona, September 1993.

[14] M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Application of Hash to Data-
base Machine and its Architecture.New Generation Computing, 1(1), 1983.

[15] T. Y. Leung and R. Muntz. Query Processing for Temporal Databases. In
Proceedings of the 6th International Conference on Data Engineering, Los
Angeles, California, February 1990.

[16] T. Y. Leung and R. Muntz. Generalized Data Stream Indexing and Temporal
Query Processing. InSecond International Workshop on Research Issues in
Data Engineering: Transaction and Query Processing, February 1992.

1134 IMPLEMENTATION TECHNIQUES

[17] T. Y. Leung and R. Muntz. Stream Processing: Temporal Query Processing
and Optimization. Chapter 14 ofTemporal Databases: Theory, Design, and
Implementation, Benjamim/Cummings, pp. 329–355, 1993.

[18] T. Y. Leung and R. Muntz. Temporal Query Processing and Optimization in
Multiprocessor Database Machines. InProceedings of the Conference on Very
Large Databases, August 1992.

[19] P. Mishra and M. Eich. Join Processing in Relational Databases.ACM Com-
puting Surveys, 24(1):63–113, March 1992.

[20] R. T. Snodgrass and I. Ahn. Temporal Databases.IEEE Computer, 19(9):35–
42, September 1986.

[21] A. Segev and H. Gunadhi. Event-Join Optimization in Temporal Relational
Databases. InProceedings of the Conference on Very Large Databases, pages
205–215, August 1989.

[22] R. T. Snodgrass. Temporal Databases: Status and Research Directions.ACM
SIGMOD Record, 19(4):83–89, December 1990.

[23] R. T. Snodgrass.Temporal Databases, Volume 639 ofLecture Notes in Com-
puter Science, pages 22–64. Springer-Verlag, September 1992.

[24] M. D. Soo. Bibliography on Temporal Databases.ACM SIGMOD Record,
20(1):14–23, March 1991.

[25] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of the
Valid-Time Natural Join. TR 93-17, Department of Computer Science, Uni-
versity of Arizona, June 1993.

