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Transaction-time databases support access to not only the current database state,
but also previous database states. Supporting access to previous database states
requires large quantities of data and necessitates efficient temporal query pro-
cessing techniques.

In previous work, we have presented a log-based storage structure and
algorithms for the differential computation of previous database states. Times-
lices, i.e., previous database states, are computed by traversing a log of database
changes, using previously computed and cached timeslices as outsets. When
computing a new timeslice, the cache will contain two candidate outsets: an
earlier outset and a later outset. The new timeslice can be computed by ei-
ther incrementally updating the earlier outset or decrementally “downdating”
the later outset using the log. The cost of this computation is determined by the
size of the log between the outset and the new timeslice.

This paper proposes an efficient algorithm that identifies the cheaper out-
set for the differential computation. The basic idea is to compute the sizes of
the two pieces of the log by maintaining and using a tree structure on the times-
tamps of the database changes in the log. The lack of a homogeneous node
structure, a controllable and high fill-factor for nodes, and of appropriate node
allocation in existing tree structures, e.g., B+-trees, Monotonic B+-trees, and
Append-only trees, render existing tree structures unsuited for our use. Conse-
quently, a specialized tree structure, the Pointer-less Insertion tree, is developed
to support the algorithm. As a proof of concept, we have implemented a main
memory version of the algorithm and its tree structure.

Keywords: transaction-time, data models, snapshots, timeslice, incremental
computation
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1 Introduction

A transaction-time database records the history of the database [9, 27] Database
systems supporting transaction time are useful in a wide range of applications, in-
cluding accounting and banking, where transactions on accounts are stored, as well
as in many other systems where audit trails are important [6] Applications also in-
clude the management of medical records [5].

Recent and continuing advances in hardware have made the storage of ever-
growing and potentially huge transaction-time databases a practical possibility. In
order to make transaction-time systems practical, the hardware advances must be
combined with advances in query processing techniques. Research focus has spread
from conceptual data modeling aspects to also include implementation-related as-
pects [15, 16, 29], and significant effort has recently been devoted to implemen-
tation-related topics (e.g., see [18, 21, 28, 32]).

The timeslice operator [1, 25] is one of the central operators in temporal data-
base systems. Indeed, most temporal relational algebras [19] proposed to date con-
tain a variation of this operator, and user-level, temporal query language proposals
frequently provide special syntax for timeslice queries. Further, a substantial por-
tion of the natural-language queries in a recent consensus test suite for temporal
query languages [10] may be implemented using the timeslice operator. The times-
lice, R(t), of a relationRat a time,t, not exceeding the current time, is the snapshot
state of the relationRas of timet.

The transaction-time data model used in this paper isthe backlog model[11].
In this model, a backlog is generated and maintained by the system for each relation
defined in the database schema. The change requests (i.e., insertions and deletions)
to a relation are appended to its backlog. A relation is derived from a backlog by
using the timeslice operator. In addition to the attributes of the associated relation,
each tuple in a backlog contains attributes, e.g., a transaction timestamp, that make
the implementation of the timeslice operator possible.

Data is, at least in principle, never deleted from a transaction-time database,
meaning that it may eventually contain very large amounts of data. For transaction-
time databases to be useful, queries must be processed efficiently. One way to im-
prove efficiency is to usedifferential computation, i.e., incremental or decremental
computation of queries from the cached results of similar and previously computed
queries [2, 3, 4, 13, 14, 22].

When given a timetx for which a new timesliceR(tx) of relationR is re-
quested, the timestx−1 andtx+1 of the nearest earlier and later cached timeslices,
R(tx−1) andR(tx+1), respectively, are identified. Identifying the timestx−1 and
tx+1 together with the page position in the backlog corresponding to these times is
done through a very small memory-resident binary tree on the timestamps of the
timeslices that have been previously cached. The Pointer-less Insertion tree (PLI-
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tree) is then used to compute page positions for the timetx in the backlog. The
three resulting page positions can be used to predict whether it is going to be more
efficient to incrementally computeR(tx) from R(tx−1) or decrementally compute
R(tx) fromR(tx+1).

The PLI-tree is a degenerate, sparse B+-tree designed for append-only rela-
tions, such as backlogs where data is inserted in transaction timestamp order. Thus,
insertions are done in the right-most leaf only, and nodes are packed completely
because node splitting never occurs. The PLI-tree contains no stored pointers; they
are replaced by computation.

We maintain a PLI-tree on the transaction timestamps in a backlog. The tree
is updated every time a new page of change requests is allocated for the backlog.
Given a transaction timestamp, the tree efficiently locates the disk pages containing
the change request(s) with that timestamp or the most recent earlier timestamp. This
ability of the PLI-tree to find the page position of a change request corresponding
to a given timestamp value, is exploited during timeslice computation. The most
efficient outset for differential computation of the timeslice operator can be chosen
with little overhead, and the cost of computing the timeslice can also be predicted
precisely and efficiently, which is useful in, e.g., real-time applications.

The paper is organized as follows. Section 2 first describes the data struc-
tures in the backlog model. It then defines the timeslice operator, introduces the
concept of differential computation, and provides a top-level differential timeslice
algorithm. The remainder of the paper fleshes out this algorithm. Section 3 defines
the PLI-tree and covers insertion, search, and implementation aspects. Section 4
shows how a PLI-tree is used during timeslice computation to decide whether in-
cremental or decremental computation is most efficient. Section 5 describes related
work and includes a comparison of the PLI-tree with the AP-tree [8], a related in-
dex structure. Finally, Section 6 summarizes the paper and points to directions for
future research.

2 Implementation Model for Transaction-Time Databases

A number of data models support transaction-time; for a survey, see [20, 26]. We
use the backlog model [11, 13] as the basis for this work. This model is quite simple
in that it stores temporal data in append-only logs. In addition, its query language
is simple and has a formal semantics based on the relational algebra [26].

This section introduces the problem of differential timeslice computation and
describes the general solution to the problem. To do so, we initially present the
backlog transaction-time data model, with an emphasis on its storage structures and
the timeslice operator.
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2.1 Relations and Backlogs

In the backlog model, all base data is stored in backlogs. Here, we describe their
format and how they are updated.

For each relation,R, defined by the user, the database system generates and
maintains a backlog,BR. The backlogBR for relationR is simply a relation which
contains the entire history of change requests toR. Specifically, assume thatR
has schemaR(A1 : D1, A2 : D2, . . . , An : Dn). The backlogBR then has
schemaBR(Id : Surrogate,Operation: {Ins,Del},Time : TTime, A1 : D1, A2 :
D2, . . . , An : Dn). Thus, a backlog contains three attributes in addition to those
defined in its corresponding relation. The attribute “Id” is surrogate-valued and is
used as a tuple identifier for backlog tuples, termed change requests. Next, “Op-
eration” is an indicator of whether the tuple is an insertion or a deletion request.
Updates are modeled as a deletion/insertion pair with the same transaction time-
stamp. Finally, “Time,” is an instant-valued transaction timestamp that records the
time when the transaction that inserted the change request commited. It is assumed
that each change request has a unique transaction timestamp (except updates) and
that the backlog is stored in transaction-time order.

Table 1 shows how insertion, deletion, and update operations on user-defined
relations are translated into insertions into the corresponding backlogs. Additional
explanation follows.

operation onR Effect onBR
insertR(“tuple”) insertBR(new-id(), Ins, current-timestamp(), “tuple”)
deleteR(k) insertBR(new-id(), Del, current-timestamp(), tuple(k))
updateR(k, “new values”) insertBR(new-id(), Del, current-timestamp(), tuple(k))

insertBR(new-id(), Ins, current-timestamp(), k, “new values”)

Table 1: Operations on a Relation and Their Effect on the Backlog

The insertion of a tuple intoR has the effect that an insertion change request
is appended toBR . The functions new-id() and current-timestamp() return a previ-
ously unused surrogate value and the time when the insertion transaction commits,
respectively. The deletion of a tuple with key value k fromR results in a deletion
change request being appended toBR. The function tuple() returns the tuple inR
identified by k. We shall later introduce data structures that allow for the efficient
computation of this function. An update of a tuple with key value k leads to two
change requests being appended toBR , namely a deletion request for the tuple with
the key value k and an insertion request for the tuple with key value k and with the
new attribute values.

The storage space requirements areO(n) wheren is the total number of dif-
ferent versions of all tuples. The insertion or deletion of a tuple results in a single
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change request being appended to the backlog, and the update of an existing tuple
results in two change requests being appended.

2.2 The Timeslice Operator

The five basic relational operators are retained in the algebra for the backlog model.
Before any of these operators can be applied to a relation, the relation must first be
timesliced. The timeslice at timetx of relationR is denotedR(tx) and intuitively
computes the state ofR current at timetx . Only time arguments between when the
relation was created,tinitialization, and the current time,now, are permitted.

A formal definition of the timeslice operator is given next [13]. Let relation
R have attributesA1, A2, . . . , An, with Key, a time-invariant key value, being one
of these. The timesliceR(tx) is then defined as follows.

R(tx) =
{y(n) | ∃s (s ∈ BR ∧ y[A1] = s[A1] ∧

y[A2] = s[A2] ∧ · · · ∧ y[An] = s[An] ∧
s[Time] ≤ tx ∧ s[Operation] = Ins∧
¬∃u(u ∈ BR ∧ s[Key] = u[Key] ∧

s[Time] < u[Time] ≤ tx))}
As can be seen, the timeslice is computed from the backlog. In the first two lines,
the attributes of the result are selected. In the third line, all insertions that are
done before the timeslice time are identified. Line four and five serve to eliminate
all those insertions that have been countered by deletions before the time of the
timeslice.

2.3 Incremental and Decremental Computation of Timeslices

Having defined the timeslice operator and the underlying data structure, the next
step is to consider the computation of timeslices. As a foundation for achieving
efficiency, results of applying the timeslice operator, termed timeslices, are cached
and subsequently reused for the computation of other timeslices. These results
may be saved in a so-calledview-pointer caches[22], which are disk-based data
structures from which the results may be materialized. A view-pointer cache,cR,
for relationR, has the format described next.

record of (
change-request-pointers: list of ( record of (

PID : Pointer,
list of ( TID : Surrogate) ) ) ,

slice-time: TTime,
offset: Integer)



1140 IMPLEMENTATION TECHNIQUES

In the data structure, values of attributePID point to pages in the backlog where
change requests necessary for materialization of the view are stored. TheTID val-
ues associated with aPID value identify the exact change requests within the partic-
ular page. The timeslice represented as a view-pointer cache is materialized using
the backlog records thus identified. Finally, the attributeslice-timerecords the time
when the timeslice was current, andoffsetindicates the number of disk pages occu-
pied by change requests with a transaction time not exceedingslice-time. Their use
will be explained in Section 2.4.

It is obvious that if a view-pointer cache is stored every single time a new
timeslice is computed, then eventually the disk-space requirements will be pro-
hibitive. To solve this problem, we assume that a fixed amount of disk-space is
allocated for storing view-pointer caches. The finite set of all view-pointer caches
for a relationR is denotedCR . The choice of an appropriate cache replacement
strategy is an orthogonal issue that is not addressed here.

Differential timeslice computations use view-pointer caches as outsets. Thus,
the timeslice at a timetx can be computed using any cached timeslice, earlier or
later thantx , as the outset. Initially, the outset is materialized. Starting from the
outset, the change requests in the backlog are then reflected in turn in the outset
until the desired timeslice is obtained, see Figure 1. With an earlier timeslice as the
outset, we are in the incremental (“do” or “update”) case, and with a later timeslice
as the outset, we are in the decremental (“undo” or “downdate”) case. Algorithms
for incremental and decremental computation of timeslices have been described
previously [12, 13].

2.4 The Problem of Starting From the Best Outset

We have now seen how a new timeslice, e.g.,R(tx), may be computed with any
cached timeslice as the outset. The problem addressed in this paper is how to ef-
ficiently select the best outset available in the cache. Making the reasonable as-
sumption that a view-pointer cache forR(now) is always present, there are always
precisely two candidate outsets, namely the currently closest earlier and closest later
cached timeslices. Note that the timesliceR(tinitialization), which is empty, is triv-
ially in the cache and will always qualify as an earlier timeslice. The view-pointer
cache forR(now) makes it possible to compute the function tuple(), introduced in
Table 1, without scanning the backlog.

Locating these two outsets in the cache is quite easy. We simply assume that
a (small) binary tree, referencing the cached timeslices based on theirslice-time
values, is maintained in main memory. The candidate outsets are located by doing
a nearest-neighbor search in the tree with the time of the timeslice to be computed
as the search argument.
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Figure 1: A) Incremental Computation B) Decremental Computation

The problem that remains is to decide which of the two outsets at hand is
the better one to use. We will base our decision on the numbers of pages of change
requests in the backlog that need to be processed when using one of the outsets. This
yields the following conceptual, top-level algorithm for differential computation of
the timesliceR(tx), which in addition to the timeslice timetx takes as arguments
a backlogBR , and a corresponding cacheCR . Additional explanations follow the
algorithm.

differentialTimeslice(tx, BR, CR)
tx−1← max({cR.slice-time|cR ∈ CR ∧

cR.slice-time≤ tx}) (1)
tx+1← min({cR.slice-time|cR ∈ CR ∧

cR.slice-time≥ tx}) (2)

Ptx−1 ← pagePosition(tx−1, CR) (3)
Ptx ← pagePosition(tx, BR) (4)
Ptx+1 ← pagePosition(tx+1, CR) (5)

if | Ptx − Ptx−1 | ≤ | Ptx+1 − Ptx | then (6)
incrementalTimeslice(tx−1, tx, BR, CR) (7)

else
decrementalTimeslice(tx+1, tx, BR, CR) (8)
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Steps 1–2 locate the times of the closest earlier and later cached timeslices, as al-
ready outlined above. Steps 3–5 compute page positions of the three timeslice
times. The page positions corresponding to timestx−1 and tx+1 are recorded in
the view-pointer caches asoffsetvalues and are easily obtained during Steps 1 and
2, respectively. Step 4 will be addressed later. With page positions for all three
times, the number of backlog pages between the requested timeslice and the earlier
and later cached timeslices, respectively, are compared in Step 6. The intermediate
backlog pages are the ones that must be read to compute the timeslice. On the ba-
sis of the comparison, the timeslice is computed incrementally or decrementally, as
outlined in Section 2.3.

In order to efficiently compute a timeslice, only one problem remains, namely
that of computing the page position in the backlog of an arbitrary timeslice time,
i.e., Step 4.

It is a fundamental requirement to a solution is that it be efficient. This rules
out a solution where the backlog betweentinitialization and tx (or the part between
tx−1 andtx and the part betweentx andtx+1) is scanned. With that solution, always
simply computing either incrementalTimeslice or decrementalTimeslice is more ef-
ficient than computing differentialTimeslice. Rather, the solution should require
only a few disk accesses. Also observe that using the temporal proximity among
the three timestx−1, tx , andtx+1 as the basis for computing the two page counts in
Step 6 is not a good solution. This is so because it cannot be assumed that change
requests are inserted into the backlog at a constant frequency. In many applications,
e.g., financial applications such as stock trading, insertions occur at highly irregular
rates.

In the remainder of the paper, we present a precise and efficient solution
to the problem. With this solution, we have effectively added high-performance
transaction-time support to incremental database systems such as ADMS [22].

3 PLI-trees

In this section, we describe the PLI-tree. For expository reasons, we introduce PLI-
trees in two steps. First, we present a structure similar to the B+-tree, with pointers
between nodes, the I-tree. Second, we present a structure similar to the I-tree, with
no explicit pointers between nodes, the PLI-tree.

3.1 I-trees, a Precursor to PLI-trees

The structure of an I-tree is described first. Then, updates are considered.
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The I-tree Structure

The I-tree is essentially a degenerate B+-tree designed to index append-only data
on a sequential key, e.g., change requests in a backlog on their timestamps. An
example of an I-tree is shown in Figure 2.

0 1
6 5 Array

13 23

28 31 36

31

9 13 17 23
1 2

3

4 5

6

Level , l = 0

Level, l = 1

Level, l = 2

Figure 2: An I-tree of Heighth = 2 and Orderd = 3

The tree shown is of heighth = 2 and orderd = 3. As can be seen the
structure of the nodes is identical to the structure of nodes in a B+-tree. Both
internal nodes and leaf nodes have the same structure, and leaf nodes are connected
in search-key order.

The chain of pointers and nodes to the right is called theright-most chain.
In Figure 2, the right-most chain consists of the root, the boldface pointer, and the
right-most leaf, termed thecurrent node.

Insertions are only made into the current node, and node splitting does not
occur. The I-tree grows from the bottom and up in the right most subtree of the root,
and internal nodes are not allocated before they are needed. These characteristics
have three implications: First, all nodes, except nodes in the right-most chain, are
filled. Second, all subtrees of the root, except the right-most subtree, are filled and
balanced. Finally, the right-most subtree needs not be balanced.

The array, in Figure 2, is a dynamic array containing pointers to all nodes
in the right-most chain [7]. These pointers are used when insertions are made to
the tree. In Figure 2 Position 0 of the array points to 6 and Position 1 points to 5.
The numbers 5 and 6 refer to the numbers shown above the right corner of each
node. These numbers indicate the allocation order of tree nodes and are used for
illustrating the dynamics of the index later in the paper; they are not part of the data
structure. Furthermore, for each position in the array, the level of the node is stored
along with an indication of whether the node is full or not. Figure 2 also shows that
the right-most subtree of the root needs not be balanced—there is no node at Level
1.
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Figure 3: Examples of Insertions into the I-tree
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Insertion into the I-tree

Next, we give a comprehensive description of insertion into the I-tree by means of
three examples that cover all possible combinations. The algorithms that formed
the basis for the implementation of the I-tree are listed in [31].

Figure 3A shows an example of the general case where the whole tree is com-
pletely full and balanced. The key value 17 must be inserted. A new leaf is created
and the new value inserted. A new root is created, and the last key value in the
old current node is inserted. The left-most pointer of the new root is set to point to
the old root, and the right-most pointer is set to point to the new leaf. The array is
properly updated.

Figure 3B shows an example of the general case where a non-full node is
found in the right-most chain. The number of levels between the closest non-full
node and the next node in the right-most chain is one. The key value 28 must be
inserted. A new leaf is created and the value 28 is inserted. The last key value in
the old current node is inserted in the non-full node, and a new right-most pointer
in the node is set to point to the new leaf. The array is updated to reflect the new
leaf node.

Figure 3C shows an example of the general case where all nodes in the right-
most subtree of the root are full, but the subtree is not balanced. This case also
covers the situation when the root is full, but the right-most subtree of the root is
not balanced. The key value 151 is to be inserted. A new leaf is created and the new
key value is inserted. The last key value of the old current node is inserted in a new
node created between the right-most node, found to point directly to a leaf, and the
new leaf. The array is properly updated.

3.2 PLI-trees

Next, we shall see that it is possible to eliminate all stored pointers from the I-
tree. This increases the number of key values that fit in a single node and reduces
the index size. Specifically, assuming that the nodes (disk pages) of an I-tree are
stored on disk in allocation order and consecutively, pointers may be replaced by
computation. The resulting data structure is the Pointer-less I-tree (PLI-tree).

First, we briefly cover the structure of the PLI-tree. Then, search using im-
plicit, computed pointers is described, and finally, implementation aspects are con-
sidered. As the PLI-tree insertion algorithm is almost identical to that of the I-tree,
it is not discussed here. Further, the insertion algorithm does not use the search
algorithm to locate the node where a new key value is to be inserted, as does the
B+-tree. For reference, the complete insertion algorithms for the I-tree and PLI-tree
are given elsewhere [31].
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PLI-tree Structure

An example of a PLI-tree of heighth = 2 and orderd = 3 is shown in Figure 4.
Compare this figure to Figure 2.

Level , l = 0

Level, l = 1

Level, l = 2

0 1
4 5 Array

13 23

28 31 36

31

9 13 17 23
0 2

1

3 5

4

Figure 4: A PLI-tree of Heighth = 2 and Orderd = 3

Compared to the I-tree, all explicit tree pointers are eliminated. The dynamic
array used in I-trees is retained and contains pointers to all nodes in the right-most
chain. As before, the numbers shown above each node are not part of the tree; they
indicate the allocation order of tree nodes and are used in the subsequent discus-
sions.

Search in the PLI-trees

The search algorithm for the PLI-tree islogically the same as for the B+ and I-trees.
The only difference is that all pointers are implicit and must be computed. When
we show how to compute the pointers in the following, we use “pointer” to mean
an “implicit pointer” between the nodes.

Figure 5A shows a PLI-tree. The node numbers above each node indicate the
allocation order, and it can be seen that the nodes are allocated in in-order. Figure
5B thus shows how the nodes are stored sequentially in a file. The start address of a
file is always known. The node numbers make searching without pointers possible
because they are the offset within the file.

To describe search in the PLI-tree, the parameters listed in Table 2 are needed;
see also Figure 5 for further explanation. The search algorithm is called with a key
value when the PLI-tree contains more than one node. First, the root and the level
of the root is found in the dynamic array. The node number of the root can be
computed as follows.

root number =
h−1∑
i=0

di

The PLI-tree is full except for the right-most subtree. When the nodes are allocated
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Figure 5: An Example of a PLI-tree and How Nodes are Stored in a File

Name Description

h height of the PLI-tree
d order of the PLI-tree
p pointer number in a node
l level number in the tree

Table 2: Parameters Used to Calculate Node Numbers

in in-order, a subtree of height one smaller than the height of the PLI-tree is alloca-
ted before the root. Notice the first node number is 0.

If the left-most pointer of a node is to be followed, we are going to a node that
was allocated earlier; we thus subtract all nodes that were allocated between the old
node and the new node. This number is computed as follows.

new number =
old number − ((d − 1)(6h−(l+2)

i=0 di)+ 1)
if l + 2≤ h

old number − 1 if l + 2> h

In this formula,d−1 is the number of subtrees of the new node that were allocated
between the old and the new node. The sum finds the number of nodes in a subtree
of the new node, thus theh− (l + 2). The second case is needed because the new
node may have no subtrees. The+1 accounts for the old node.

If the pointer followed is not the left-most pointer, we are going to a node that
was allocated later. Two possibilities exist. We are in the right-most subtree or we
are not in the right-most subtree. In the latter case, the new node number is found
by the formula below.
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new number =
old number + (pl − 1)6h−(l+1)

i=0 di +6h−(l+2)
i=0 di + 1

if l + 2≤ h
old number + (pl − 1)6h−(l+1)

i=0 di + 1 if l + 2> h

Here, we name the pointer number followed at levell, pl . Between the old and the
new node, we have allocatedpl − 1 subtrees of nodes of height one smaller than
the height of the old node; thus the first sum. We have also allocated the left-most
subtree of the new node and the old node itself, thus the second sum and the+1.
Again, two cases are needed to account for empty subtrees.

If we are in the right-most chain, the dynamic array must be used to find the
level of the new node. The number of the new node if found as follows.

new number =
old number + (d − 2)6h−(l+1)

i=0 di+
6
h−(l+jump+1)
i=0 di + 1 if l + jump + 1≤ h

old number + (d − 2)6h−(l+1)
i=0 di + 1

if l + jump + 1> h

The change from the previous formula is that the left-most subtree of the new node
may be a smaller tree depending on the number of levels between the old node and
the new node. Thus in the second sum, we use the number of levels between the
nodes, thejump. Notice that if the levels are only one apart then the sum yields the
same as in the previous formula.

From the node number calculated, the new node is retrieved from the file
containing the nodes of the PLI-tree, using the start address of the file and the node
number (the offset). This continues until a leaf is reached.

Implementing the PLI-tree Using Extents

In the design of the PLI-tree, we have assumed that nodes (disk pages) in the tree
are stored consecutively on disk. This makes it possible to access a node in a file
on disk by a start address and an offset. This assumption may be too restrictive
in a multi-user environment where nodes are allocated dynamically. Here, disk
space may be allocated in chunks, termedextents[23]. An extent is a number of
consecutive disk pages. All extents contain the same fixed number of disk pages.
Within an extent, disk pages can be accessed via a start address and an offset.

To make it possible to search a PLI-tree, without extra I/O-cost, an array con-
taining start addresses of all extents in which the PLI-tree is stored must be in main
memory. The first slot of thisextent arraystores the start address of the first extent
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allocated for the PLI-tree. Figure 6B shows how nodes of a PLI-tree are stored in
extents. In the figure, an extent consists of three disk pages. Compare this to Figure
5. The extent array in Figure 6A contains the start address of extents. Slot number
zero points to extent number zero, etc.

0 1 2

5 9 12 15 18 22 25 29 31 35 38 43 46

Pointer number: p

Level: l = 0

Level: l = 1

Level: l = 2

Height: h = 2
Number of pointers in node: d = 3

0 2

9 15
1

3 5

22 43
4

7

29 35
6

8 9

A

B
5 9 12 159 15

31 35 38 4329 35

18 22 25 2922 43

46

Extents 0

1

2

3

0 1 2

0 1
4 9Array

0 1
Extent Array

2 3
0 1 2 3

Figure 6: An Example of a PLI-tree and How Nodes are Stored in Extents

From the node number, the start address and the offset must be computed to
retrieve the node from disk. The start address can be found by computing in which
logical extent number the node is stored and then making a lookup in the extent
array. From the extent number, the number of pages in each extent,esize, and the
node number the offset can be found.

The extent number (start address) is given by the following formula.

extent number =
⌊
node number

esize

⌋
The offset of a node within an extent is given as follows.

offset = node number − extent number × esize

4 Using PLI-trees for Differential Timeslice Computation

In this section, we first describe how to find a page position in the backlog using
the PLI-tree. Second, we compare the performance of our algorithm to the only
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alternative, that of a linear scan. Finally, we estimate the size of the PLI-tree and
the I/O-cost of maintaining it.

4.1 Finding Page Positions Using the PLI-tree

The idea is to maintain a PLI-tree on the transaction-time attribute of the change
requests of a backlog. Figure 7 shows a PLI-tree on a backlog. When computing a
timeslice at timetx , the tree is used to find thepage positionof the corresponding
change request(s) in the backlog.

The following formula is used.

Page Position= (d − 1)
h−1∑
l=0

(dh−(l+1) · pl)+ ph

This formula uses four parameters, namelyh, d, p, andl, which are explained
in Table 2 and Figure 7. Thepl values and theph value are obtained by searching
the PLI-tree withtx as the search value. The valuepi denotes the pointer number to
be followed to the next level during the search in the PLI-tree node at leveli. Value
ph thus denotes the pointer number at the leaf level that points to the appropriate
backlog page.

The formula may then be explained as follows. The PLI-tree is balanced and
all nodes are full to the left. This means that each time a pointer is skipped in a node
at Levell, (d − 1) dh − (l + 1) pointers to disk pages of the backlog are passed at
the leaf level. The formula sums up the number of disk pages passed at each level
from the root to the level just above the leaf level. At the leaf level, one disk page
is passed each time the pointer numberp is increased by one—this isph.

The I/O-cost of computing a page position ish disk accesses, the height of the
tree. In summary, we are now able to efficiently choose the best outset for either
incremental or decremental computation of a timeslice. We have thus accounted for
Step 4 in the algorithm listed in Section 2.4. As this was the only remaining step to
account for, the full algorithm has now been covered.

4.2 Comparison with Linear Scan

With no PLI-tree available, theonly reasonable, existing way to find the cost of
computing a timeslice is to actually compute it. Therefore, to investigate if times-
lice computation using a PLI-tree is cost effective, we compare it to the timeslice
computed using a linear scan of the backlog fromPtx−1 to Ptx .

To find the two timeslices closest to the desired timetx , a lookup is done in
the cache. We assume that the cost for this is the same in both situations. The
cost of finding the page positionsPtx−1 andPtx+1 is zero because they can be found
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Figure 7: A PLI-tree Indexing Transaction Timestamps on a Backlog (the Pointers Shown are Implicit)
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by lookups in the main-memory binary tree that indexes the computed and cached
timeslices. The cost of finding the positionPtx in the PLI-tree ish disk accesses.

Figure 8 shows the general case, where the cost of computing a timeslice by
a linear scan is compared to the cost of computing a timeslice using differential
computation. The x-axis indicates the page positions oftx and the closest cached
timeslices; the y-axis indicates the number of disk accesses needed to compute the
timeslice. The dashed line assumes that the timesliceR(tx) is computed incremen-
tally from Ptx−1, while the solid curve assumes that the PLI-tree is being used to
determine whether to do either incremental or decremental update, from position
Ptx−1 orPtx+1, respectively.

Position in
backlog

Number of
Disk Accesses

PLI-tree

Linear Scan

Ptx-1
Ptx+1x

Pt

Figure 8: Cost Comparison of Timeslice Computation Using Linear Scans Versus
PLI-trees

The figure indicates that the PLI-tree is almost as fast as linear scan in ap-
proximately 50% of the cases. The difference ish disk accesses (in practice,h is
2 or 3). At the same time, it shows that in the other approximately 50% of the
cases, there can be very substantial efficiency gains when using the PLI-tree. For
realistic situations, this means that using the PLI-tree to choose the outset for the
differential computation, instead of using linear scan, never performs worse and in
approximately 50% of the cases performs significantly better.

4.3 Maintenance of the PLI-tree

In this section, we estimate the size of the PLI-tree and the I/O-cost for maintaining
the tree.
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PLI-tree Size versus Backlog Size

The PLI-tree does not need to record the transaction timestamps of all the change
requests in the backlog. Only approximately one transaction timestamp for each
disk page is needed—the PLI-tree is a sparse index. Two PLI-trees of the same
height are shown in Figure 9. For this height, Figure 9A shows a worst-case situ-
ation where the PLI-tree’s size is the largest possible compared to the size of the
backlog. The right-most leaf has just been allocated. For the same height, Figure
9B shows a best-case situation where the size of the PLI-tree is the smallest possible
compared to the size of the backlog. This PLI-tree is full and balanced.

A B

Figure 9: A) Worst-case Situation B) Best-case Situation

The following expression is valid for heighth ≥ 1 and orderd ≥ 2. In the
worst-case situation, the size of the PLI-tree compared with the size of the backlog
is given as follows.

Worst case:
((∑h−1

m=0 d
m
)
+ 2

) /(
(d − 1) dh−1 + 2

)

Examples of the worst-case and the best-case are shown in Table 3 for height,
h = 3 and order,d = 100 [23]. As can be seen, the backlog is approximatelyd times
larger than the PLI-tree. The size of the index is very small. The difference for the
worst-case and best-case is insignificant for realistic trees.

PLI-Tree Backlog PLI-Tree/Backlog (%)

Worst-case 10,103 990,002 1.0205
Best-case 1,010,101 99,000,001 1.0203

Table 3: Worst-Case and Best-Case for the Size of the Backlog vs. the Size of the
PLI-Tree
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I/O-Cost of Maintaining the PLI-tree

The I/O needed to maintain the backlog itself is independent of whether or not
there is a PLI-tree index defined on it, so we focus the attention on the extra I/O-
cost related to maintaining the PLI-tree on the backlog. We assume that the root,
the right-most leaf, and the dynamic array of the PLI-tree are in main memory; and
we assume that the costs for allocating, reading, and writing a disk page are all the
same.

There is an insertion into the PLI-tree each time a new disk page is allocated
for the backlog. Two cases should be distinguished: when the right-most leaf of the
PLI-tree is not full, and when that leaf is full. The latter situation is rare. It occurs
only once for each(d − 1) Nch appends to the backlog, whered is the order of the
PLI-tree andNch is the number of change requests which fit in one disk page. In
the frequent, first case, the I/O-cost for updating the PLI-tree is zero. In the second
case, the three possibilities shown in Figure 3 exist. Their I/O-costs are shown in
Table 4.

Description Fig. 3A Fig. 3B Fig. 3C

Allocate new leaf node
√ √ √

Allocate new root/node
√ √

Read internal node
√ √

Write internal node
√ √

Write old root
√

Write new node
√

Write current node
√ √ √

Total I/O-cost 4 4 6

Table 4: Number of Disk Accesses for Different Update Cases

In the worst case, it will require 6 disk access to update the PLI-tree when the
backlog is updated. (Note that the I/O-cost is independent of the height of the PLI-
tree.) The smallest (i.e., worst case) average number of change requests that can be
appended to a backlog per I/O operation needed to maintain the PLI-tree index is
given by((d − 1) Nch/6).

Table 5 shows examples of how many change requests can be appended to
the backlog for each PLI-tree I/O operation, for different realistic page sizes. It is
assumed that transaction timestamps occupy 64 bits [26], pointers (Unix) 32 bits,
and change requests 128 bytes.
The number of appends per extra disk access grows with the square of the page
size because bothd andNch depend on the page size. In conclusion the PLI-tree is
cheap to maintain for realistic page sizes.
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Page size (bytes)
512 1,024 2,048 4,096 8,192

Orderd 64 128 256 512 1,024

Nch 4 8 16 32 64

Appends per I/O 42 169 680 2,725 10,912

Table 5: Fanout of PLI-tree for Different Page Sizes

Page size (bytes)
512 1,024 2,048 4,096 8,192

Fanout PLI-tree 64 128 256 512 1,024
AP-tree 41 84 169 340 681

Height PLI-tree 3 2 2 2 1
AP-tree 3 3 2 2 2

No. of pages PLI-tree 15,876 7,876 3,924 1,959 978
AP-tree 25,002 12,050 5,954 2,952 1,471

Table 6: A Comparison of AP-trees and PLI-trees

5 Related Work and Comparison with the AP-tree

To the best of our knowledge, no other efficient algorithms exist that address the
problem of selecting the best outset for the differential computation of timeslices.
The algorithm presented in this paper makes essential use of a new tree structure,
the PLI-tree. In this section, we review the existing tree structures that are most
similar to the PLI-tree, and we explain why we have designed a new tree structure.
We then compare the PLI-tree in more detail to the structure that resembles it the
most, namely the AP-tree.

5.1 Related Tree Structures

The tree structures most closely related to the PLI-tree are the B+-tree, the Mono-
tonic B+-tree (MB-tree) [7] and the Append-only tree (AP-tree) [8].

For an overview of other, less related, structures, see [24, 30]. These structures
are all intended for a more general use than the PLI-tree which is designed for the
single specific purpose of indexing the timestamps of the entries in a log. For this
purpose, the PLI-tree is superior.

If a regular B+-tree was used in place of the PLI-tree, the nodes would only
be approximately 50% full [8].

There are primarily three reasons why we have chosen to not use the MB-
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tree. First, the internal nodes and the leaf nodes have different formats, and the leaf
nodes can be different in size. This lack of homogeneity is not desirable for our
purposes. Second, internal nodes in the right-most subtree are allocated before they
are needed, yielding an avoidable space overhead. Third, in the insertion algorithm
extra parameters are given to be able to implement aTime Index[7]. This extra gen-
erality, not needed for our use, unnecessarily complicates the insertion algorithm.

For the AP-tree, there are also three reasons why it is not well-suited for our
use. First, all pointers between nodes in the AP-tree are double pointers. For our
problem, single pointers will do. Second, not all pointers are used in the internal
nodes of the AP-tree, giving a slight waste of space. Third, when nodes in the right-
most subtree of the root are appended, the chain from the root to the right-most leaf
must be traversed. This requires that these nodes are stored in main memory or read
from secondary storage.

Being designed for a single purpose, the PLI-tree eliminates these problems.
In addition, the PLI-tree uses easily computed “pointers” while the three related
indices use stored pointers.

5.2 Comparison with the AP-tree

Being a more general index than the PLI-tree, the AP-tree allows both insertions
and deletions. The AP-tree favors insertions at the expense of more complicated
deletions. The PLI-tree takes the full step and completely sacrifices deletion. This
has yielded a more compact and regularly structured tree where it is feasible to
compute “pointers”.

Table 6 shows the fanout, the height, and the number of pages used to store
an AP-tree and a PLI-tree for different page sizes.

The fanout of the PLI-tree is larger compared to the fanout of the equivalent
AP-tree because the pointers in the nodes are eliminated. If it is assumed that
timestamps occupy 64 bits [26] and pointers (Unix) 32 bits then the fanout of a
PLI-tree is approximately 50% larger than that of an equivalent AP-tree. The height
of PLI-trees and AP-trees is calculated for an index on a backlog consisting of 1
million pages. As can be seen, the height of the PLI-tree is smaller than or the same
as the height of the equivalent AP-tree, depending on the page size. The number of
disk pages used for storing the PLI-tree and the AP-tree when indexing 1 million
pages, are also shown in Table 6 for different page sizes. As can be seen, the PLI-
tree is approximately 33% smaller than the AP-tree.

Finally, the maximum number of disk accesses for making an insertion into
an AP-tree is ten [8]. We have shown in Section 4.3, that the maximum number of
disk access to make an insertion into a PLI-tree is six.
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6 Summary and Future Research

In this paper, we have taken a step in the direction of realizing efficient timeslice
queries in transaction-time databases. We have presented an efficient algorithm
which can precisely predict whether it is going to be more efficient to incremen-
tally or decrementally compute atimeslicefrom a previously computed and cached
timeslice.

The algorithm uses aPointer-Less Insertion tree(PLI-tree) as an index on
the transaction timestamps of the entries of abacklog, a log-like storage structure
for transaction-time data. The algorithm improves, possibly quite substantially, the
performance of the timeslice operation in approximately 50% of all cases. In the
remaining cases, there is a very small, constant overhead.

The PLI-tree is similar to the B+-tree, but has been designed for the specific
purpose of being an ideal part of the algorithm. The tree has a regular node struc-
ture; all nodes, root, internal, and leaf, have the same format. Next, all nodes in
non-rightmost subtrees are completely filled, and no node is allocated before it is
used. With these properties, it has been relatively straightforward to also eliminate
all pointers from the tree and replace them by computation. This gives a maximum
fanout. Put together, the result is a very compact and flat index that does not waste
any space.

A main memory version of the PLI-tree has been implemented as a proof of
concept.

Several interesting directions for future research exist. First, it would be in-
teresting to implement the tree in an extensible database system. Second, it may
be observed that the proposed tree is not helpful for all queries. Extensions or new
indices are needed for, e.g., point and range queries. Specifically, the combined
use of other indices, e.g., the Time-Split B-tree [17], together with the PLI-tree is
an open problem. Third, we believe that further insight may be gained from more
elaborate performance studies with real data.
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