
ERP-systems, Aalborg University, Information Systems
Klemens Schwarz (Upper Austria University of Applied Sciences, Hagenberg)

ERP Systems

 Klemens Schwarz

 I studied Software Engineering for Medical Purposes at the Upper Austria
University of Applied Sciences, Hagenberg

 Now I teach technical lectures (Basics of Programming, Information
Systems, …) at the study course Communication and Knowledge Media
(Hagenberg)

kschwarz@fh-hagenberg.at 2

ERP Systems

3kschwarz@fh-hagenberg.at
Upper Austria University of Applied Sciences, Hagenberg

http://www.fh-ooe.at/campus-hagenberg/

http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/

ERP Systems

4kschwarz@fh-hagenberg.at

Source: http://www.opensourcestrategies.com/ofbiz/index.php

Java

ERP Systems

 Independent of platform and database

 Development style is agile and flexible

 Code re-use with Service Oriented Architecture

 New application can be plugged in easily (and often with little
effort)

5kschwarz@fh-hagenberg.at

ERP Systems

 Entity = a small unit of data model
 Declared in XML files, key/value pairs

 Found by delegator

Generic class with get, set, store methods

 Modelling the data within EntityModel.xml and
EntityGroup.xml

 Interfacing the database with EntityEngine.xml and
fieldtype.xml

6kschwarz@fh-hagenberg.at

ERP Systems

 Service = small unit of business logic
The Service Engine displays the business logic of the framework.

 Services are defined in services.xml files.

 Service Engine directly plugs into controller no parsing
needed

 Forms are automatically generated (and updated, if a service
was changed)

7kschwarz@fh-hagenberg.at

ERP Systems

 Consists of different technologies:
 JSP

 Freemarker (*.ftl), Beanshell (*.bsh), Jpublish

 Screen, Form, Menu, Widget

8kschwarz@fh-hagenberg.at

ERP Systems

 OFBiz is developed as a three layered architecture. For building an
application you build up these layers.

1. Data Layer:
1. Design the data tables

2. Build the data layer within the entitydef folder:

 entitygroup.xml for defining the tables

 entitymodel.xml for field types, primary keys and relationships

2. Business Logic Layer:
1. Decide which services you need

2. Build this layer:

 In the servicedef folder: here you have to define the services including
their types, invoked methods, in and out parameters, …

 Implement the services eitzer via Beanshell (/script) or Java (/src)

9kschwarz@fh-hagenberg.at

ERP Systems

3. Presentation Layer:
1. Decide what pages the user needs.
2. Build this layer:

 The webapp folder contains the forms that might be included in some
screens.

 The widget folder contains the screens the application pages present.

4. Controller:
 The Controller receives requests and forwards them to their location

(URLs are also contained in the controller files).
 The controller(s) is/are located in the WEB-INF folder of each web

application (e.g. C:\ofbiz\applications\product\webapp\catalog \WEB-
INF\controller.xml)

5. Don‘t forget to add your application to the component-load.xml
file (located e.g. in C:\ofbiz\hot-deploy)

10kschwarz@fh-hagenberg.at

ERP Systems



11kschwarz@fh-hagenberg.at

 Directory structure

 Important XML files

 Application composition

ERP Systems

1. Do NOT use minilang use Java, or a Java scripting language such as Beanshell,
JRuby, etc.

2. Do NOT use the form widget use the OFBiz form macro or just Freemarker and
HTML

3. Do NOT use constructs like <entity-and> or <entity-condition> in the screen widget
use Beanshell instead

4. Do NOT use the screen widget to layout your files use an FTL template
(Freemarker)

5. Do NOT use static Java methods in an FTL page prepare a seperate *.bsh file and
pass the result as list or map

6. Do NOT create new forms completely new use existing FTL files as much as
possible

7. Do NOT oversuse the service engine write a Java method for just looking up data
(it‘s much faster)

8. Do NOT oversuse transactions add a use-transaction="false" to your services XML
defiintion

9. Put in log messages whenever there is an unexpected behavior, e. g.
Debug.logWarning(“Failure in Moudle", module);

10. Always create demo data for testing purposes.

12kschwarz@fh-hagenberg.at

ERP Systems

 OFBiz Wiki: http://ofbizwiki.go-integral.com/Wiki.jsp

 Opentabs Home: http://www.opentaps.org/index.php

 OFBiz Apache site: http://ofbiz.apache.org/

 OFBiz documentation on opensourcestrategies:
http://www.opensourcestrategies.com/ofbiz/

 OFBiz Data Model:
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?fold
erID=236&expandFolder=236&folderID=0

(a little bit confusing, isn‘t it?!)

13kschwarz@fh-hagenberg.at

http://ofbizwiki.go-integral.com/Wiki.jsp
http://ofbizwiki.go-integral.com/Wiki.jsp
http://ofbizwiki.go-integral.com/Wiki.jsp
http://ofbizwiki.go-integral.com/Wiki.jsp
http://www.opentaps.org/index.php
http://www.opentaps.org/index.php
http://ofbiz.apache.org/
http://ofbiz.apache.org/
http://www.opensourcestrategies.com/ofbiz/
http://www.opensourcestrategies.com/ofbiz/
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236&expandFolder=236&folderID=0
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236&expandFolder=236&folderID=0
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236&expandFolder=236&folderID=0

