
ERP-systems, Aalborg University, Information Systems
Klemens Schwarz (Upper Austria University of Applied Sciences, Hagenberg)

ERP Systems

 Klemens Schwarz

 I studied Software Engineering for Medical Purposes at the Upper Austria
University of Applied Sciences, Hagenberg

 Now I teach technical lectures (Basics of Programming, Information
Systems, …) at the study course Communication and Knowledge Media
(Hagenberg)

kschwarz@fh-hagenberg.at 2

ERP Systems

3kschwarz@fh-hagenberg.at
Upper Austria University of Applied Sciences, Hagenberg

http://www.fh-ooe.at/campus-hagenberg/

http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/
http://www.fh-ooe.at/campus-hagenberg/

ERP Systems

4kschwarz@fh-hagenberg.at

Source: http://www.opensourcestrategies.com/ofbiz/index.php

Java

ERP Systems

 Independent of platform and database

 Development style is agile and flexible

 Code re-use with Service Oriented Architecture

 New application can be plugged in easily (and often with little
effort)

5kschwarz@fh-hagenberg.at

ERP Systems

 Entity = a small unit of data model
 Declared in XML files, key/value pairs

 Found by delegator

Generic class with get, set, store methods

 Modelling the data within EntityModel.xml and
EntityGroup.xml

 Interfacing the database with EntityEngine.xml and
fieldtype.xml

6kschwarz@fh-hagenberg.at

ERP Systems

 Service = small unit of business logic
The Service Engine displays the business logic of the framework.

 Services are defined in services.xml files.

 Service Engine directly plugs into controller no parsing
needed

 Forms are automatically generated (and updated, if a service
was changed)

7kschwarz@fh-hagenberg.at

ERP Systems

 Consists of different technologies:
 JSP

 Freemarker (*.ftl), Beanshell (*.bsh), Jpublish

 Screen, Form, Menu, Widget

8kschwarz@fh-hagenberg.at

ERP Systems

 OFBiz is developed as a three layered architecture. For building an
application you build up these layers.

1. Data Layer:
1. Design the data tables

2. Build the data layer within the entitydef folder:

 entitygroup.xml for defining the tables

 entitymodel.xml for field types, primary keys and relationships

2. Business Logic Layer:
1. Decide which services you need

2. Build this layer:

 In the servicedef folder: here you have to define the services including
their types, invoked methods, in and out parameters, …

 Implement the services eitzer via Beanshell (/script) or Java (/src)

9kschwarz@fh-hagenberg.at

ERP Systems

3. Presentation Layer:
1. Decide what pages the user needs.
2. Build this layer:

 The webapp folder contains the forms that might be included in some
screens.

 The widget folder contains the screens the application pages present.

4. Controller:
 The Controller receives requests and forwards them to their location

(URLs are also contained in the controller files).
 The controller(s) is/are located in the WEB-INF folder of each web

application (e.g. C:\ofbiz\applications\product\webapp\catalog \WEB-
INF\controller.xml)

5. Don‘t forget to add your application to the component-load.xml
file (located e.g. in C:\ofbiz\hot-deploy)

10kschwarz@fh-hagenberg.at

ERP Systems

11kschwarz@fh-hagenberg.at

 Directory structure

 Important XML files

 Application composition

ERP Systems

1. Do NOT use minilang use Java, or a Java scripting language such as Beanshell,
JRuby, etc.

2. Do NOT use the form widget use the OFBiz form macro or just Freemarker and
HTML

3. Do NOT use constructs like <entity-and> or <entity-condition> in the screen widget
use Beanshell instead

4. Do NOT use the screen widget to layout your files use an FTL template
(Freemarker)

5. Do NOT use static Java methods in an FTL page prepare a seperate *.bsh file and
pass the result as list or map

6. Do NOT create new forms completely new use existing FTL files as much as
possible

7. Do NOT oversuse the service engine write a Java method for just looking up data
(it‘s much faster)

8. Do NOT oversuse transactions add a use-transaction="false" to your services XML
defiintion

9. Put in log messages whenever there is an unexpected behavior, e. g.
Debug.logWarning(“Failure in Moudle", module);

10. Always create demo data for testing purposes.

12kschwarz@fh-hagenberg.at

ERP Systems

 OFBiz Wiki: http://ofbizwiki.go-integral.com/Wiki.jsp

 Opentabs Home: http://www.opentaps.org/index.php

 OFBiz Apache site: http://ofbiz.apache.org/

 OFBiz documentation on opensourcestrategies:
http://www.opensourcestrategies.com/ofbiz/

 OFBiz Data Model:
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?fold
erID=236&expandFolder=236&folderID=0

(a little bit confusing, isn‘t it?!)

13kschwarz@fh-hagenberg.at

http://ofbizwiki.go-integral.com/Wiki.jsp
http://ofbizwiki.go-integral.com/Wiki.jsp
http://ofbizwiki.go-integral.com/Wiki.jsp
http://ofbizwiki.go-integral.com/Wiki.jsp
http://www.opentaps.org/index.php
http://www.opentaps.org/index.php
http://ofbiz.apache.org/
http://ofbiz.apache.org/
http://www.opensourcestrategies.com/ofbiz/
http://www.opensourcestrategies.com/ofbiz/
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236&expandFolder=236&folderID=0
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236&expandFolder=236&folderID=0
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236&expandFolder=236&folderID=0

