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Software Testing
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Software Testing

Modelling the software environment
Selecting test scenarios
Running and evaluating the test scenarios
Measuring testing progress
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V Model
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Unit Testing Environment

Test cases
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local data structures
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error handling paths
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Top Down Integration
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top module is tested with
stubs

stubs are replaced one at
a time, “depth or breadth first”

as new modules are integrated,
some subset of tests is re-run
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High-Order Testing

Validation test
System test
Alpha and beta test
Other specialized testing
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Debugging: Symptoms & Causessymptom and cause may be 
geographically separated

symptom may disappear when 
another problem is fixed

cause may be due to a 
combination of non-
errors

cause may be due to a system or 
compiler error

cause may be due to assump–
tions that everyone 
believes

symptom may be intermittent

cause
symptom
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What Testing Shows

errors
requirements conformance

performance

an indication
of quality
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Who Tests the Software?

developer independent tester

Understands the system 
but, will test "gently"
and, is driven by "delivery"

Must learn about the system,
but, will attempt to break it
and, is driven by quality
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White-Box Testing

... our goal is to ensure that all 
statements and conditions have 
been executed at least once ...
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Basis Path Testing

First, we compute the cyclomatic complexity:
number of simple decisions + 1

or
number of enclosed areas + 1

In this case, V(G) = 4
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Next, we derive the independent 
paths:

Since V(G) = 4, there are up to 
four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8
Path 4: 1,2,4,7,2,4, …7,8

Finally, we derive test cases to 
exercise these paths.

Basis Path Testing
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Black-Box Testing

requirements

eventsinput

output
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Equivalence Partitioning

user
queries

mouse
picks

output
formats

prompts

FK
input

data



16Peter Dolog, SOE, Testing and XP

Sample Equivalence Classes

user supplied commands
responses to system prompts
file names
computational data

physical parameters    
bounding values
initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

data outside bounds of the program 
physically impossible data
proper value supplied in wrong place

Valid data

Invalid data

data
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Product Size per Iteration

(c)IEEE; Source: Talby at. al. 2007
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Testing and Defect Repair

(c)IEEE; Source: Talby at. al. 2007
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Average Net Time to Fix a Defect

(c)IEEE; Source: Talby at. al. 2007
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A Defect Average Longevity

(c)IEEE; Source: Talby at. al. 2007
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XP II

Larman Ch. 8
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The 12 XP Practices

Planning Coding

1. Planning Game 5. Pair Programming

2. Small Releases 6. Continuous Integration

3. On-site Customer 7. Collective Code Ownership

4. Sustainable Pace 8. Coding Standards

Designing Quality Assurance

9. Simple Design

10. Test Driven Design

11. Refactoring

12. System Metaphor
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Supporting each other

The Planning Game

Small releases

Metaphor

Simple design

Testing

Refactoring

Pair programming

Collective ownership Continuous integration

Sustainable pace

Whole team

Coding standards
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Traditional Cost of Change

Source: Brad Jensen, Sabre Airline Solutions

Cost of 
Change $

Analysis     Design     Code     Test     Install     Maintenance

Product Life Cycle
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Lowering the Cost of Change

Source: Brad Jensen, Sabre Airline Solutions

Cost of 
Change $

Analysis     Design     Code     Test     Install     Maintenance

Product Life Cycle

Traditional

XP
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On-site Customer
The “XP Customer” is a business expert who is empowered to decide product 

features.
At Sabre, this is a subject matter expert in Product 
Management.

XP Customer duties:
Determine product features
Prioritize the features
Write (or approve) a story for each feature
Write (or approve) acceptance criteria
Write (or approve) functional acceptance tests
“Sign off” on completion of features
Be available at all times to answer programmer’s 
questions

The XP Customer controls scope, and scope is very flexible.
Source: Brad Jensen, Sabre Airline Solutions
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Pair Programming

Although effort is higher, time-to-market improves

Extra effort hours are paid back by …
Reduced system testing time
Reduced maintenance after delivery
Start coding earlier

Pair Programming improves quality by preventing defects

Pair Programming enables Collective Ownership

Single Programmer Pair of Programmers
% Variance

Effort 400 hrs 480 hrs +20%

Duration 10 weeks 6 weeks (40)%

From studies conducted at Temple University, University of Utah, and North 
Carolina State University

Source: Sabre Airline Solutions
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“Test-First” and “Simple Design”

You must write automated tests before you write code!
You must run the tests and prove they fail before you write code!
If it is hard to write the test, then the design is poor!

Test First enforces Simple Design principles and enables 
Refactoring. It results in high quality code that is easy to change.

Traditional Waterfall Method:
Requirements Design Code Test

XP Method:
Requirements Test Design Code
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Simple Design

Changes in requirements are likely to supersede general solutions anyway

Refactor constantly ( Refactoring yields general solutions as they are required ).

Design in XP is not a one-time thing, or an up-front thing, it is an all-the-time thing - Ron 
Jefferies

Create the best design that can deliver the functionality today.

If you believe that the future is uncertain, and you believe that you can cheaply change your 
mind, then putting in functionality on speculation is crazy.  Put in what you need when 
you need it. – Kent Beck 
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Other Coding Practices
Continuous Integration

Code changes checked in at least daily

Automated Build

Continuous Build

Collective Code Ownership

Any developer can change any line of code at any 
time

No one “owns” any subsets
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Other Coding Practices

Coding Standards

Enables collective ownership and makes code easier to 
read and refactor

Sustainable Pace

Does not mean strict 40-hour weeks – work at a pace 
that prevents fatigue and burn-out
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Refactoring and Metaphor
Refactoring

Refactoring is changing the internal structure of the code 
without changing functionality

Examples: 
Remove duplicate code
Leverage existing code
Remove unused code

Refactoring mercilessly requires good unit tests and functional 
tests that can easily be executed

System Metaphor

All project team members use a common language to describe 
the functionality of the system
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XP Disciplines and Tools
XP Practice Supporting Tools

Pair Programming
IDE

Version Control

Collective Code Ownership Version Control

Test Driven Design
Unit Test Framework

Functional Test Framework
IDE

Simple Design Metrics tools

Refactoring
IDE

Version Control

Continuous Integration
Automated and Continuous Build

Version Control
IDE

Coding and Design Standards IDE
Metrics Tools
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