
Testing and XP
Thursday: A4-108; 8:15

Peter Dolog
dolog [at] cs [dot] aau [dot] dk
E2-201
Information Systems
February 20, 2007

2Peter Dolog, SOE, Testing and XP

Software Testing

3Peter Dolog, SOE, Testing and XP

Software Testing

Modelling the software environment
Selecting test scenarios
Running and evaluating the test scenarios
Measuring testing progress

4Peter Dolog, SOE, Testing and XP

V Model

Level of Detail

Project Time

Low

High

Requirements
Elicitation

System
Testing

Unit TestingObject Design

Integration Testing

Acceptance
Testing

Analysis

Design

5Peter Dolog, SOE, Testing and XP

Unit Testing Environment

Test cases

interface

local data structures

boundary conditions

independent paths

error handling paths

driver

module

stub stub

RESULTS

6Peter Dolog, SOE, Testing and XP

Top Down Integration

A

FB G

C

D E

top module is tested with
stubs

stubs are replaced one at
a time, “depth or breadth first”

as new modules are integrated,
some subset of tests is re-run

7Peter Dolog, SOE, Testing and XP

High-Order Testing

Validation test
System test
Alpha and beta test
Other specialized testing

8Peter Dolog, SOE, Testing and XP

Debugging: Symptoms & Causessymptom and cause may be
geographically separated

symptom may disappear when
another problem is fixed

cause may be due to a
combination of non-
errors

cause may be due to a system or
compiler error

cause may be due to assump–
tions that everyone
believes

symptom may be intermittent

cause
symptom

9Peter Dolog, SOE, Testing and XP

What Testing Shows

errors
requirements conformance

performance

an indication
of quality

10Peter Dolog, SOE, Testing and XP

Who Tests the Software?

developer independent tester

Understands the system
but, will test "gently"
and, is driven by "delivery"

Must learn about the system,
but, will attempt to break it
and, is driven by quality

11Peter Dolog, SOE, Testing and XP

White-Box Testing

... our goal is to ensure that all
statements and conditions have
been executed at least once ...

12Peter Dolog, SOE, Testing and XP

Basis Path Testing

First, we compute the cyclomatic complexity:
number of simple decisions + 1

or
number of enclosed areas + 1

In this case, V(G) = 4

13Peter Dolog, SOE, Testing and XP

Next, we derive the independent
paths:

Since V(G) = 4, there are up to
four paths

Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8
Path 4: 1,2,4,7,2,4, …7,8

Finally, we derive test cases to
exercise these paths.

Basis Path Testing

2

4

1

7

8

3
5 6

14Peter Dolog, SOE, Testing and XP

Black-Box Testing

requirements

eventsinput

output

15Peter Dolog, SOE, Testing and XP

Equivalence Partitioning

user
queries

mouse
picks

output
formats

prompts

FK
input

data

16Peter Dolog, SOE, Testing and XP

Sample Equivalence Classes

user supplied commands
responses to system prompts
file names
computational data

physical parameters
bounding values
initiation values

output data formatting
responses to error messages
graphical data (e.g., mouse picks)

data outside bounds of the program
physically impossible data
proper value supplied in wrong place

Valid data

Invalid data

data

17Peter Dolog, SOE, Testing and XP

Product Size per Iteration

(c)IEEE; Source: Talby at. al. 2007

18Peter Dolog, SOE, Testing and XP

Testing and Defect Repair

(c)IEEE; Source: Talby at. al. 2007

19Peter Dolog, SOE, Testing and XP

Average Net Time to Fix a Defect

(c)IEEE; Source: Talby at. al. 2007

20Peter Dolog, SOE, Testing and XP

A Defect Average Longevity

(c)IEEE; Source: Talby at. al. 2007

21Peter Dolog, SOE, Testing and XP

XP II

Larman Ch. 8

22Peter Dolog, SOE, Testing and XP

The 12 XP Practices

Planning Coding

1. Planning Game 5. Pair Programming

2. Small Releases 6. Continuous Integration

3. On-site Customer 7. Collective Code Ownership

4. Sustainable Pace 8. Coding Standards

Designing Quality Assurance

9. Simple Design

10. Test Driven Design

11. Refactoring

12. System Metaphor

23Peter Dolog, SOE, Testing and XP

Supporting each other

The Planning Game

Small releases

Metaphor

Simple design

Testing

Refactoring

Pair programming

Collective ownership Continuous integration

Sustainable pace

Whole team

Coding standards

24Peter Dolog, SOE, Testing and XP

Traditional Cost of Change

Source: Brad Jensen, Sabre Airline Solutions

Cost of
Change $

Analysis Design Code Test Install Maintenance

Product Life Cycle

25Peter Dolog, SOE, Testing and XP

Lowering the Cost of Change

Source: Brad Jensen, Sabre Airline Solutions

Cost of
Change $

Analysis Design Code Test Install Maintenance

Product Life Cycle

Traditional

XP

26Peter Dolog, SOE, Testing and XP

On-site Customer
The “XP Customer” is a business expert who is empowered to decide product

features.
At Sabre, this is a subject matter expert in Product
Management.

XP Customer duties:
Determine product features
Prioritize the features
Write (or approve) a story for each feature
Write (or approve) acceptance criteria
Write (or approve) functional acceptance tests
“Sign off” on completion of features
Be available at all times to answer programmer’s
questions

The XP Customer controls scope, and scope is very flexible.
Source: Brad Jensen, Sabre Airline Solutions

27Peter Dolog, SOE, Testing and XP

Pair Programming

Although effort is higher, time-to-market improves

Extra effort hours are paid back by …
Reduced system testing time
Reduced maintenance after delivery
Start coding earlier

Pair Programming improves quality by preventing defects

Pair Programming enables Collective Ownership

Single Programmer Pair of Programmers
% Variance

Effort 400 hrs 480 hrs +20%

Duration 10 weeks 6 weeks (40)%

From studies conducted at Temple University, University of Utah, and North
Carolina State University

Source: Sabre Airline Solutions

28Peter Dolog, SOE, Testing and XP

“Test-First” and “Simple Design”

You must write automated tests before you write code!
You must run the tests and prove they fail before you write code!
If it is hard to write the test, then the design is poor!

Test First enforces Simple Design principles and enables
Refactoring. It results in high quality code that is easy to change.

Traditional Waterfall Method:
Requirements Design Code Test

XP Method:
Requirements Test Design Code

29Peter Dolog, SOE, Testing and XP

Simple Design

Changes in requirements are likely to supersede general solutions anyway

Refactor constantly (Refactoring yields general solutions as they are required).

Design in XP is not a one-time thing, or an up-front thing, it is an all-the-time thing - Ron
Jefferies

Create the best design that can deliver the functionality today.

If you believe that the future is uncertain, and you believe that you can cheaply change your
mind, then putting in functionality on speculation is crazy. Put in what you need when
you need it. – Kent Beck

30Peter Dolog, SOE, Testing and XP

Other Coding Practices
Continuous Integration

Code changes checked in at least daily

Automated Build

Continuous Build

Collective Code Ownership

Any developer can change any line of code at any
time

No one “owns” any subsets

31Peter Dolog, SOE, Testing and XP

Other Coding Practices

Coding Standards

Enables collective ownership and makes code easier to
read and refactor

Sustainable Pace

Does not mean strict 40-hour weeks – work at a pace
that prevents fatigue and burn-out

32Peter Dolog, SOE, Testing and XP

Refactoring and Metaphor
Refactoring

Refactoring is changing the internal structure of the code
without changing functionality

Examples:
Remove duplicate code
Leverage existing code
Remove unused code

Refactoring mercilessly requires good unit tests and functional
tests that can easily be executed

System Metaphor

All project team members use a common language to describe
the functionality of the system

33Peter Dolog, SOE, Testing and XP

XP Disciplines and Tools
XP Practice Supporting Tools

Pair Programming
IDE

Version Control

Collective Code Ownership Version Control

Test Driven Design
Unit Test Framework

Functional Test Framework
IDE

Simple Design Metrics tools

Refactoring
IDE

Version Control

Continuous Integration
Automated and Continuous Build

Version Control
IDE

Coding and Design Standards IDE
Metrics Tools

	Testing and XP�Thursday: A4-108; 8:15
	Software Testing
	Software Testing
	V Model
	Unit Testing Environment
	Top Down Integration
	High-Order Testing
	Debugging: Symptoms & Causes
	What Testing Shows
	Who Tests the Software?
	White-Box Testing
	Basis Path Testing
	Basis Path Testing
	Black-Box Testing
	Equivalence Partitioning
	Sample Equivalence Classes
	Product Size per Iteration
	Testing and Defect Repair
	Average Net Time to Fix a Defect
	A Defect Average Longevity
	XP II
	The 12 XP Practices
	Supporting each other
	Traditional Cost of Change
	Lowering the Cost of Change
	On-site Customer
	Pair Programming
	“Test-First” and “Simple Design”
	Simple Design
	Other Coding Practices
	Other Coding Practices
	Refactoring and Metaphor
	XP Disciplines and Tools

