
Patterns and Refactoring

Peter Dolog
dolog [at] cs [dot] aau [dot] dk
E2-201
Information Systems
March 1, 2007

2Peter Dolog, SOE, Evidence and Experience

Patterns

3Peter Dolog, SOE, Evidence and Experience

What is a Pattern?

A pattern addresses a recurring problem that arises in specific
situations.

Patterns document existing, well-proven design experience.
Patterns identify and specify abstractions that are above the

level of single classes and instances.

4Peter Dolog, SOE, Evidence and Experience

What is a Pattern ?

Patterns provide a common vocabulary and understanding for design principles.
Patterns are a means of documenting software architectures.
Patterns support the construction of software with defined properties.
Patterns help you build complex and heterogeneous software architectures.
Patterns help you manage software complexity.

5Peter Dolog, SOE, Evidence and Experience

Types of Patterns

Design Patterns
Analysis patterns
Software architecture patterns
Process patterns
Organizational patterns
...

6Peter Dolog, SOE, Evidence and Experience

Design Patterns

Design patterns provide abstract, reusable “micro-
architectures” that can be applied (“instantiated”) to
resolve specific design issues (forces) in previously-used,
high-quality ways

GoF (Gang of Four – Gamma, Helm, Johnson, Vlissides) defined
widely used 23 design patterns like Factory, Observer,
Visitor, State, Strategy etc.

7Peter Dolog, SOE, Evidence and Experience

Analysis Patterns

By Martin Fowler :
Patterns that reflect conceptual structures of business

processes rather than actual software implementations.
Fowler uses a simple, specialized notation (very similar to

entity-relationship diagram notation) to depict graphical
models of analysis patterns.

8Peter Dolog, SOE, Evidence and Experience

Software Architecture Patterns

Architectural patterns are templates for concrete software
architectures. They specify the system-wide structural
properties of an application, and have an impact on the
architecture of its subsystems.

9Peter Dolog, SOE, Evidence and Experience

Other Pattern Types

Process Patterns

patterns that deal with software development process issues

work by Scott Ambler

Organizational Patterns

patterns that deal with organizational issues that arise in
software development teams, groups and departments

these can often be related to software process patterns

10Peter Dolog, SOE, Evidence and Experience

Other Pattern Types

Pedagogical Patterns
patterns that deal with best practice solutions to software

technology education and training (object-oriented
software development in particular)

see work by Mary Lynn Manns et al.
http://www-lifia.info.unlp.edu.ar/ppp/

http://www-lifia.info.unlp.edu.ar/ppp/

11Peter Dolog, SOE, Evidence and Experience

Potential benefits of Patterns

Provides a common vocabulary and understanding of design elements for
software designers

Increases productivity in design process due to “design reuse”

Promotes consistency and high quality of system designs and architectures due
to application of tested design expertise and solutions embodied by
patterns

12Peter Dolog, SOE, Evidence and Experience

Benefits of Patterns

allows all levels of designers, from novice to expert, to gain
these productivity, quality and consistency benefits

13Peter Dolog, SOE, Evidence and Experience

Concerns

Training and education in common and proprietary patterns
benefits are dependent upon architects, analysts and designers
understanding the patterns to be used
benefits are enhanced significantly only if ALL software development
personnel understand the patterns as a common “design
vocabulary”
such training can be costly, and in many cases is proprietary and
cannot be obtained externally

14Peter Dolog, SOE, Evidence and Experience

Concerns

Evolution and maintenance to insure continued value

specific funding and effort must be directed toward maintenance and
evolution of patterns as reusable assets or they tend to devolve into
project/application-specific artifacts with dramatically reduced
reusability characteristics

the necessary funding, technical or organizational infrastructure
supports may not exist to allow effective maintenance and evolution of
patterns within an organization to insure continued high benefits

15Peter Dolog, SOE, Evidence and Experience

AntiPatterns (from Brown, et al.)

An AntiPattern is a literary form that describes a commonly
occurring solution to a problem that generates decidedly
negative consequences.

16Peter Dolog, SOE, Evidence and Experience

Primal Forces

AntiPatterns, like other patterns, deal with forces (concerns,
issues) that exist in a specific problem setting

Vertical forces are problem domain-specific
Horizontal forces are applicable across multiple domains or

problem settings

17Peter Dolog, SOE, Evidence and Experience

Primal Forces

Primal Forces are horizontal forces that are pervasive in software architecture and
development. They include:

Management of functionality: meeting the requirements

Management of performance: meeting required speed of operation

Management of complexity: defining abstractions

Management of change: controlling the evolution of software

Management of IT resources: controlling the use and implementation of
people and IT artifacts

Management of technology transfer: controlling technology change

18Peter Dolog, SOE, Evidence and Experience

Refactoring

A disciplined approach to rework for better design

19Peter Dolog, SOE, Evidence and Experience

Refactoring: duplicated code
case 0:

activePiece = RightHook.getRightHook();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 1:
activePiece = LeftHook.getLeftHook();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 2:
activePiece = RightRise.getRightRise();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 3:
activePiece = LeftRise.getLeftRise();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break; //more

Source: Daniel
H Steinberg

20Peter Dolog, SOE, Evidence and Experience

Refactoring: duplicated code

case 4:
activePiece = Hill.getHill();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 5:
activePiece = StraightPiece.getStraightPiece();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 6:
activePiece = Square.getSquare();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break; //...

Source: Daniel H Steinberg

21Peter Dolog, SOE, Evidence and Experience

Refactoring: duplicated code
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

22Peter Dolog, SOE, Evidence and Experience

Could create an array
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

Piece [] pieceList = {RightHook.getRightHook(),

LeftHook.GetLeftHook(), RightRise.getRightRise(),

LeftRise.getLeftRise(), Hill.getHill(),

StraightPiece.getStraightPiece(), Square.getSquare()};

23Peter Dolog, SOE, Evidence and Experience

Now your switch statement becomes
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

public void letsRoll(){
activePiece =

pieceList[(int)(Math.random()*7)]
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

}

24Peter Dolog, SOE, Evidence and Experience

Introduce a new method

Source: Daniel H Steinberg

public void letsRoll(){
activePiece = pieceList[(int)(Math.random()*7)]
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

} public void letsRoll(){

activePiece = selectNextActivePiece();

ml = new MoveListener(activePiece);

gameBoard.addKeyListener(ml);

}

private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];

}

25Peter Dolog, SOE, Evidence and Experience

Introduce a new method
We don't need to create a new Move Listener...(and what's ml?)

public void letsRoll(){

activePiece = selectNextActivePiece();

ml = new MoveListener(activePiece);

gameBoard.addKeyListener(ml);

}

private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];

}

Source: Daniel H Steinberg

26Peter Dolog, SOE, Evidence and Experience

Introduce a new method
We don't need to create a new Move Listener...(and what's ml?)

Source: Daniel H Steinberg

public void letsRoll(){
activePiece = selectNextActivePiece();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

}
private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];
}

public void letsRoll(){
activePiece = selectNextActivePiece();
moveListener.setActivePiece(activePiece);

}

private Piece selectNextActivePiece(){
return pieceList[(int) Math.random()*7)];

}

27Peter Dolog, SOE, Evidence and Experience

public void letsRoll(){
activePiece = selectNextActivePiece();
moveListener.setActivePiece(activePiece);

}

private Piece selectNextActivePiece(){
return pieceList[(int) Math.random()*7)];

}

Eliminate the variable activePiece

public void letsRoll(){

moveListener.setActivePiece(

selectNextActivePiece());

}

private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];

}

Source: Daniel H Steinberg

28Peter Dolog, SOE, Evidence and Experience

Accountability

A relationship of responsibility between responsee and
responsible

Organizational structures
Employments
Contracts

29Peter Dolog, SOE, Evidence and Experience

Address Book

Analysis Patterns book: Martin Fowler

30Peter Dolog, SOE, Evidence and Experience

Party

Analysis Patterns book: Martin Fowler

31Peter Dolog, SOE, Evidence and Experience

Refactoring

Martin Fowler (and Kent Beck, John Brant, William Opdyke, Don Roberts),
Refactoring- Improving the Design of Existing Code, Addison Wesley, 1999.

Refactoring (noun):

a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behavior.

Refactor (verb):

to restructure software by applying a series of refactorings.

32Peter Dolog, SOE, Evidence and Experience

Why should refactoring be done?

Argument 1
Refactoring Improves the Design of Software.
Without refactoring, the design of the program will decay. As
people change code - changes to realize short-term goals or
changes made without a full comprehension of the design of
the code - the code loses its structure.

33Peter Dolog, SOE, Evidence and Experience

When should refactoring be done?

Argument 2
Refactoring makes software easier to understand.
There are users of your code. The computer, the writer, and
the updater. The most important is the updater. Who cares
if the compiler takes a few more cycles to compile your code.
If it takes someone 3 weeks to update your code that is a
problem.

34Peter Dolog, SOE, Evidence and Experience

Who should be doing refactoring?

Argument 3
Refactoring helps you find bugs.
Part of refactoring code is understanding the code and putting
that understanding back into the code. In that process a
clarification takes place. In that clarification bugs will be found.

35Peter Dolog, SOE, Evidence and Experience

Who should be doing refactoring?

Argument 4
Refactoring Helps you Program Faster.
Without a good design, you can progress quickly for a while,
but soon poor design start to slow you down. You spend time
finding and fixing bugs and understanding the system instead of
adding new function. New features need more coding as you
patch over a patches...

36Peter Dolog, SOE, Evidence and Experience

Bad smells

Knowing how to refactor something does not tell you when to refactor and
how much to refactor.

Kent Beck and Martin Fowler coined a phrase ‘Bad Smells’ to describe the
hint of when to refactor.

This phrase was meant to reflect the ability and experience gained over time
by a programmer that is needed to recognize bad coding structure.

37Peter Dolog, SOE, Evidence and Experience

Bad Smell Examples

Duplicate Code

Long Methods

Large Classes

Long Parameter Lists

Feature Envy

Data Clumps

Primitive Obsession

38Peter Dolog, SOE, Evidence and Experience

Bad smells: Duplicated code

“The #1 bad smell”

Same expression in two methods in the same class?

Make it a private ancillary routine and parameterize it - gather duplicated code
(Extract method)

Same code in two related classes?

•Push commonalities into closest mutual ancestor and parameterize

•Use template method DP for variation in subtasks - gather similar parts, leaving
holes (Form template method)

39Peter Dolog, SOE, Evidence and Experience

Bad smells: Duplicated code

Same code in two unrelated classes?
Ought they be related?

• Introduce abstract parent (Extract class, Pull up
method)
Does the code really belongs to just one class?

• Make the other class into a client (Extract method)

40Peter Dolog, SOE, Evidence and Experience

Bad smells: Long method

Often a sign of:

Trying to do too many things

Poorly thought out abstractions and boundaries

Best to think carefully about the major tasks and how they inter-relate.

Break up into smaller private methods within the class (Extract method)

Delegate subtasks to subobjects that “know best” (i.e., template method DP)
(Extract class/method, Replace data value with object)

41Peter Dolog, SOE, Evidence and Experience

Bad smells in code: Long method

Fowler’s heuristic:

When you see a comment, make a method.

Often, a comment indicates:

• The next major step

• Something non-obvious whose details detract from the
clarity of the routine as a whole.

In either case, this is a good spot to “break it up”.

42Peter Dolog, SOE, Evidence and Experience

Bad smells: Feature envy

A method seems more interested in another class than the one it’s defined in e.g., a
method
A::m() calls lots of get/set methods of class B

Solution:

Move m() (or part of it) into B!

(Move method/field, extract method)

Exceptions:

Visitor/iterator/strategy DP where the whole point is to decouple the data from the
algorithm
Feature envy is more of an issue when both A and B have interesting data

43Peter Dolog, SOE, Evidence and Experience

void Scene::setTitle (string titleText,
int titleX, int titleY,
Colour titleColour){…}

void Scene::getTitle (string& titleText,
int& titleX, int& titleY,
Colour& titleColour){…}

You see a set of variables that seem to “hang out” together

e.g., passed as parameters, changed/accessed at the same time

Usually, this means that there’s a coherent subobject just waiting to be
recognized and encapsulated

Bad smells: Data clumps

44Peter Dolog, SOE, Evidence and Experience

Bad smells: Data clumps

In the example, a Title class is dying to be born

If a client knows how to change a title’s x, y, text, and colour,
then it knows enough to be able to “roll its own” Title
objects.

However, this does mean that the client now has to talk to
another class.

This will greatly shorten and simplify your parameter lists
(which aids understanding) and makes your class
conceptually simpler too.

Moving the data may create feature envy initially

45Peter Dolog, SOE, Evidence and Experience

Bad smells: Primitive obsession

All subparts of an object are instances of primitive types

(int, string, bool, double, etc.)
e.g., dates, currency, SIN, tel.#, ISBN, special string values

Often, these small objects have interesting and non-trivial constraints that can be
modelled

e.g., fixed number of digits/chars, check digits, special values

Solution:

Create some “small classes” that can validate and enforce the constraints.
This makes your system more strongly typed.

46Peter Dolog, SOE, Evidence and Experience

Why not refactor?

Conventional wisdom would discourage

modifying a design

You might break something in the code

You have to update the documentation

Both expensive

But, there are longer term concerns: sticking with an inappropriate design

Makes the code harder to change

Makes the code harder to understand and maintain

Very expensive in the long run

47Peter Dolog, SOE, Evidence and Experience

Refactoring Philosophy

Make all changes small and methodical
Follow design patterns

Retest the system after each change
By rerunning all of your unit tests
If something breaks, it’s easy to see what caused the
failure

48Peter Dolog, SOE, Evidence and Experience

Principles of Refactoring

In general, each refactoring aims to

decompose large objects into smaller ones

distribute responsibility

Like design patterns

Adds composition and delegation

In some sense, refactorings are ways of applying
design patterns to existing code

49Peter Dolog, SOE, Evidence and Experience

Obstacles to Refactoring

Complexity

Changing design is hard, understanding code is hard

Possibility to introduce errors

Mitigated by testing

Clean first Then add new functionality

Cultural Issues

Producing negative lines of code, what an idea!

We pay you to add new features, not to improve the code!

If it ain t broke, don’t fix it

We do not have a problem, this is our software!

50Peter Dolog, SOE, Evidence and Experience

RefactorIT - www.refactorit.com

Rename Renames a method, field, type, package or prefix. Updates all references.

Move Class Moves a class or interface into another package.

Encapsulate Field Replaces direct field usage with corresponding accessor
methods.

Extract Method Analyzes the selected piece of code and extracts it into a separate
method.

Extract Superclass/Interface Extracts selected methods and fields into new
superclass or interface.

http://www.refactorit.com/

	Patterns and Refactoring
	Patterns
	What is a Pattern?
	What is a Pattern ?
	Types of Patterns
	Design Patterns
	Analysis Patterns
	Software Architecture Patterns
	Other Pattern Types
	Other Pattern Types
	Potential benefits of Patterns
	Benefits of Patterns
	Concerns
	Concerns
	AntiPatterns (from Brown, et al.)
	Primal Forces
	Primal Forces
	Refactoring
	Refactoring: duplicated code
	Refactoring: duplicated code
	Refactoring: duplicated code
	Could create an array
	Now your switch statement becomes
	Introduce a new method
	Introduce a new method
	Introduce a new method
	Eliminate the variable activePiece
	Accountability
	Address Book
	Party
	Refactoring
	Why should refactoring be done?
	When should refactoring be done?
	Who should be doing refactoring?
	Who should be doing refactoring?
	Bad smells
	Bad Smell Examples
	Bad smells: Duplicated code
	Bad smells: Duplicated code
	Bad smells: Long method
	Bad smells in code: Long method
	Bad smells: Feature envy
	Bad smells: Data clumps
	Bad smells: Data clumps
	Bad smells: Primitive obsession
	Why not refactor?
	Refactoring Philosophy
	Principles of Refactoring
	Obstacles to Refactoring
	RefactorIT - www.refactorit.com

