
Management and MDD

Peter Dolog
dolog [at] cs [dot] aau [dot] dk
E2-201
Information Systems
March 6, 2007

2Peter Dolog, SOE, Management and MDD

Management

Software Engineering Management

3Peter Dolog, SOE, Management and MDD

Req.

Design

Const.

Test

Iterations

Management

4Peter Dolog, SOE, Management and MDD

5Peter Dolog, SOE, Management and MDD

6Peter Dolog, SOE, Management and MDD

7Peter Dolog, SOE, Management and MDD

8Peter Dolog, SOE, Management and MDD

9Peter Dolog, SOE, Management and MDD

10Peter Dolog, SOE, Management and MDD

11Peter Dolog, SOE, Management and MDD

Function
Performance
Constraints
Interfaces, and
Reliability

Understand the customers needs

Understand the business context

Understand the project boundaries

Understand the customer’s motivation

Understand the likely paths for change

Determination of software scope

12Peter Dolog, SOE, Management and MDD

The Purpose of Planning

Reduce uncertainty of the future.

All estimates are wrong, but any estimate is better
than no idea at all.

To ensure that resources are being used as profitably as
possible at all times.

To provide an objective measure of how well a project is
progressing.

If we have made an estimate it will be clear if we have
not achieved it.

13Peter Dolog, SOE, Management and MDD

The Steps

Scoping—understand the problem and the work that must be done

Estimation—how much effort? how much time?

Risk—what can go wrong? how can we avoid it? what can we do about it?

Schedule—how do we allocate resources along the timeline? what are the
milestones?

Control strategy—how do we control quality? how do we control change?

14Peter Dolog, SOE, Management and MDD

Write it Down!

Software
Project

Plan

Project Scope
Estimates
Risks
Schedule
Control strategy

15Peter Dolog, SOE, Management and MDD

Functional Decomposition

perform
a

"grammatical

parse"

functional
decompositionStatement

of Scope

16Peter Dolog, SOE, Management and MDD

Estimation of resources

People

Reusable Software Components

Off-the-shelf components

Full-experience components

Partial-experience components

New components

Environment (Hardware/Software Tools)

17Peter Dolog, SOE, Management and MDD

The Make-Buy Decision

system X
reuse

simple (0.30)

difficult (0.70)

minor changes

(0.40)

major

changes

(0.60)

simple (0.20)

complex (0.80)

major changes (0.30)

minor changes

(0.70)

$380,000

$450,000

$275,000

$310,000

$490,000

$210,000

$400,000

buy

contract

without changes (0.60)

with changes (0.40)

$350,000

$500,000

build

18Peter Dolog, SOE, Management and MDD

Computing Expected Cost

(path probability) x (estimated path cost) i i

For example, the expected cost to build is:
expected cost = 0.30($380K)+0.70($450K)

Similarly,
expected cost = $382K
expected cost = $267K
expected cost = $410K

build

reuse

buy

contr

expected cost =

= $429 K

19Peter Dolog, SOE, Management and MDD

Estimation Techniques

Past (similar) project experience

Conventional estimation techniques

Task breakdown and effort estimates

Size (e.g., FP) estimates

Tools

20Peter Dolog, SOE, Management and MDD

Estimation: Implicit Techniques

Characteristics:
Based on implicit relation of experience, knowledge,
expectations and estimate
Mainly based on tacit knowledge

Typical examples:
Expert-judgement
Wideband Delphi

21Peter Dolog, SOE, Management and MDD

Estimation: Explicit Techniques

Decomposition techniques:

Software sizing

“Fuzzy-logic” sizing

Function point sizing

Standard component sizing

Change sizing

22Peter Dolog, SOE, Management and MDD

Estimation: Explicit Techniques

Decomposition techniques:

Problem-based estimation

Estimate size by functional decomposition

Combine the size estimate with historical data
relating size with effort and costs

23Peter Dolog, SOE, Management and MDD

Process-Based Estimation

Bases its estimate on the process that will be used
The process is decomposed into a relatively small set of activities or
tasks
Problem functions and process activities are melded, then the
planner estimates the effort that will be required to accomplish
each software process activity for each software function
Finally, costs and effort for each function and software process
activity are computed

24Peter Dolog, SOE, Management and MDD

Problem-based Example: LOC

Functions

UICF

2DGA

3DGA

DSM

CGDF

PCF

DAM

Totals

estimated LOC $/LOC Cost Effort (months)LOC/pm

2340

5380

6800

3350

4950

2140

8400

33,360

14

20

20

18

22

28

18

315

220

220

240

200

140

300

32,000

107,000

136,000

60,000

109,000

60,000

151,000

655,000

7.4

24.4

30.9

13.9

24.7

15.2

28.0

145.0

25Peter Dolog, SOE, Management and MDD

Problem-based Example : FP

number of user inputs

number of user outputs

number of user inquiries

number of files

number of ext.interfaces

algorithms

measurement parameter

4

5

4

7

7

3

count

x

x

x

x

x

x

count-total

=

=

=

=

=

=

weight

complexity multiplier

feature points

0.25 p-m / FP = 120 p-m

40

25

12

4

4

60

160

125

48

28

28

180

569

.84

478

26Peter Dolog, SOE, Management and MDD

Framework activities
work tasks
work products
milestones & deliverables
QA checkpoints

Umbrella Activities

A Common Process Framework

27Peter Dolog, SOE, Management and MDD

Process-based Estimation

Obtained from “process framework”

application
functions

framework activities

Effort required to
accomplish
each framework activity
for each application
function

28Peter Dolog, SOE, Management and MDD

Process-Based Estimation

Software Engineering Tasks

pl
an

ni
ng

ris
k

an
al

ys
is

en
gi

ne
er

in
g

Product Functions
Text input

Editing and formating

Automatic copy edit

Page layout capability

Automatic indexing and TOC

File management

Document production

cu
st

om
er

co
m

m
un

ic
at

io
n

COMMON PROCESS
FRAMEWORK ACTIVITIES

The Task Matrix

29Peter Dolog, SOE, Management and MDD

Empirical Estimation Models

General form:

effort = tuning coefficient * size
exponent

usually derived
as person-months
of effort required

either a constant or
a number derived based
on complexity of project

usually LOC but
may also be
function point

empirically
derived

30Peter Dolog, SOE, Management and MDD

Basic COCOMO 1981 Model

The Basic COCOMO equations:

• E = ab*(KLOC)bb

• D = cb*(E)db

E is the effort applied in person-months
D is the development time in
chronological months
KLOC is the estimated number of
delivered lines of code (in thousands).

Software Project ab bb cb db
Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

Organic: relatively small teams developing
software in a highly familiar, in-house
environment.
Semi-Detached: team members have some
experience related to some aspects of the
system under development but not others and
the team is composed of experienced and
inexperienced people.
Embedded: the project must operate within a
strongly coupled complex of hardware,
software, regulations, and operational
procedures, such as real-time systems.

31Peter Dolog, SOE, Management and MDD

The COCOMO II model

Offers estimating capability at three levels of granularity, capturing three stages of software
development activity, and providing three levels of model precision:

Prototyping: Applications Composition model, input sized in Object Points.

Early Design: input sized in source statements or Function Points, with 7 cost drivers.

Post-architecture: input sized in source statements or Function Points, with 17 cost
drivers.

Five Scale Factors based upon 1) project precedentedness, 2) development flexibility, 3)
architecture/risk resolution, 4) team cohesion, and 5) development process maturity

Multiplicative Cost Drivers applied at the component level.

32Peter Dolog, SOE, Management and MDD

Estimation: Empirical Models

Terminated
projects

Actual
project

Actual
effort

Factor-
values

Charac-
teristics Factor

values

Estimation
formulaFormula

derivation

Factor
assessment

Evaluation of
formula Estimate

33Peter Dolog, SOE, Management and MDD

Estimation Guidelines

Estimate using at least two techniques
Get estimates from independent sources
Avoid over-optimism, assume difficulties
You've arrived at an estimate, sleep on it
Adjust for the people who'll be doing the job —they have the

highest impact

34Peter Dolog, SOE, Management and MDD

Programmer Productivity Variations

In 1968, a study by Sackman, Erikson, and Grant revealed that programmers
with the same level of experience exhibit variations of more than 20
to 1 in the time required to solve particular programming problems.

More recent studies [Curtis 1981, DeMarco and Lister 1985, Brian 1997]
confirm this high variability.

Many employers in Silicon Valley argue that this productivity variance is
even higher today, perhaps as much as 100 to 1.

35Peter Dolog, SOE, Management and MDD

Sackman et al’s Study

36Peter Dolog, SOE, Management and MDD

Maturity vs. productivity & quality

37Peter Dolog, SOE, Management and MDD

MDD

Model Driven Development

38Peter Dolog, SOE, Management and MDD

Definitions of “Architecture”

... the highest level concept of a system in its environment

a shared understanding of the system design ... a social construct

things that people perceive as hard to change

one of an architect’s most important tasks is to remove architecture by
finding ways to eliminate irreversibility in software designs.

Fowler, 2003

39Peter Dolog, SOE, Management and MDD

Model-driven development is simply the notion that we can construct a model of a
system that we can then transform into the real thing. (Mellor, Clark &
Futagami, 2003)

Model Driven Architecture

40Peter Dolog, SOE, Management and MDD

What is a model?
A model is a coherent set of formal elements describing something (for example, a

system, bank, phone, or train) built for some purpose that is amenable to a
particular form of analysis, such as:

Communication of ideas between people and machines

Completeness checking

Race condition analysis

Test case generation

Viability in terms of indicators such as cost and estimation

Standards

Transformation into an implementation

41Peter Dolog, SOE, Management and MDD

Models

Statements about a system under study (SUS)

A correct model makes only true statements

Often incomplete in concepts and/or details

Make value judgments about what’s important

Characteristics of a useful model

Abstraction of the SUS

Understandable

Accurate

Predictive

Inexpensive (relative to the SUS)

Models become primary development artifacts in MDA
Doug Tolbert, 2004

42Peter Dolog, SOE, Management and MDD

Notorious Failures: CASE

In the 1980’s, CASE technologies promised to marry design and implementation
technologies

Multiple failures

Model-to-implementation mapping abstractions weak

Immature enabling technologies
- Code generators, middleware, deployment

Vendor hype exceeded capabilities

Visible product failures (AD/Cycle)

Fueled market skepticism about value of underlying technologies

Doug Tolbert, 2004

43Peter Dolog, SOE, Management and MDD

Mellor et al. 2003

... model-driven development offers the potential for automatic transformation
of high-level abstract application-subject matter models into running
systems

... modeling technology has matured to the point where it can offer significant
leverage in all aspects of software development

... in an increasing number of application areas, you can generate much of the
application code directly from models

44Peter Dolog, SOE, Management and MDD

OMG –Metamodel Architecture

45Peter Dolog, SOE, Management and MDD

Point, Counterpoint

MDA is the next logical evolutionary step to complement 3GLs in the
business of software engineering
Axel Uhl, 2003

Has it been 10 years already? The “uber-modeling tool” vision rears
its ugly head yet again
Scott Ambler, 2003

46Peter Dolog, SOE, Management and MDD

Ambler, 2003

Generative MDD, epitomized by the Object Management Group’s Model Driven
Architecture, is based on the idea that people will use very sophisticated
modeling tools to create very sophisticated models that they can
automatically “transform” with those tools to reflect the realities of various
deployment platforms. Great theory—as was the idea that the world is flat.

... I believe that modeling is a way to think issues through before you code because it
lets you think at a higher abstraction level.

47Peter Dolog, SOE, Management and MDD
Cycle n : Development

Cycle 2: Development

Cycle 1: Development

Cycle 0: Initial Modeling

Initial Requirements
Modeling

(days)

Initial Architectural
Modeling

(days)

Model
Storming
(minutes)

Implementation
(Ideally Test Driven)

(hours)

Reviews
(optional)

All Cycles
(hours)

Goals: Gain an initial
understanding of the
scope, the business
domain , and your overall
approach .

Goal: Quickly explore in
detail a specific issue
before you implement it .

Goal: Develop working
software in an evolutionary
manner .

Agile MDD (AMDD) Project Level

48Peter Dolog, SOE, Management and MDD

AMDD – Simple Approach

49Peter Dolog, SOE, Management and MDD

AMDD – CASE Approach

50Peter Dolog, SOE, Management and MDD

AMDD – Agile MDA Approach

	Management and MDD
	Management
	Determination of software scope
	The Purpose of Planning
	The Steps
	Write it Down!
	Functional Decomposition
	Estimation of resources
	The Make-Buy Decision
	Computing Expected Cost
	Estimation Techniques
	Estimation: Implicit Techniques
	Estimation: Explicit Techniques
	Estimation: Explicit Techniques
	Process-Based Estimation
	Problem-based Example: LOC
	Problem-based Example : FP
	A Common Process Framework
	Process-based Estimation
	Process-Based Estimation
	Empirical Estimation Models
	Basic COCOMO 1981 Model
	The COCOMO II model
	Estimation: Empirical Models
	Estimation Guidelines
	Programmer Productivity Variations
	Sackman et al’s Study
	Maturity vs. productivity & quality
	MDD
	Definitions of “Architecture”
	Model Driven Architecture
	What is a model?
	Models
	Notorious Failures: CASE
	Mellor et al. 2003
	OMG –Metamodel Architecture
	Point, Counterpoint
	Ambler, 2003
	Agile MDD (AMDD) Project Level
	AMDD – Simple Approach
	AMDD – CASE Approach
	AMDD – Agile MDA Approach

