

Perspectives on Software Engineering

Peter Dolog dolog [at] cs [dot] aau [dot] dk 5.2.47 Information Systems February 14, 2008

Goals of this Lecture

To finish tutorial planning
To discuss perspectives on software engineering

- Stages
- Management Issues

To perform tutorial on interative and agile development basic reflections

Group	Date	
EVU 01	14 Februar 2008	
D403a, s601a	25 Februar 2008	
D401b, s601b	28 Februar 2008	
D402a, s601c	3 March 2008	
D401a, s601d	6 March 2008	
D403b (not presented), s601e (not presented)	10 March 2008	
D404a (not presented), i201ab (not presented)	26 March 2008	
-	27 March 2008	
d406b	31 March 2008	
D407a, d408a	3 April 2008	
D405a, D406a	7 April 2008	
	14 April 2008	
	28 April 2008	
	5 May 2008	

What is SE?

WHAT IS SOFTWARE ENGINEERING?

The IEEE Computer Society defines software engineering as "(1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software. (2) The study of approaches as in (1)."

SOE - Related Disciplines

Zelkowitz (1978):

Mathematics	Engineering	Management Science
Algorithms	Costs and Tradeoffs	Requirements, Risks, Personnel, Monitoring

SWEBOK (2004): Table 2 Related disciplines

Computer engineering
 Project management
 Quality management
 Management
 Software ergonomics
 Mathematics
 Systems engineering

Peter Durug, SUE, reispectives

Goals of this Lecture

To finish tutorial planning

To discuss perspectives on software engineering

- Stages
- Management Issues

To perform tutorial on interative and agile development basic reflections

SD Life Cycle (Zelkowitz)

Requirements analysis

Specification

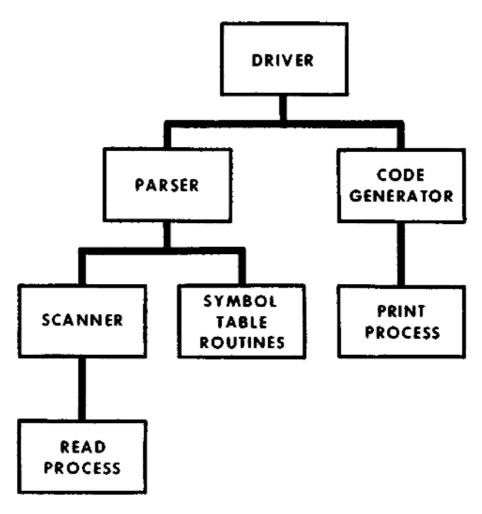
Design

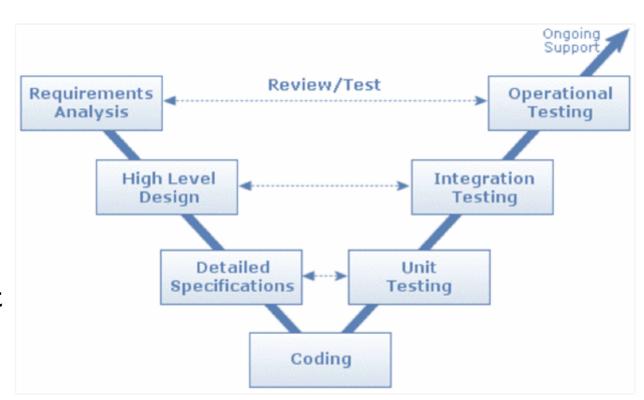
Coding

Testing

Operation and maintenance

Design, Structure Diagram




FIGURE 2. Sample baseline diagram for a compiler.

Peter Dolog, SOE, Perspectives

Testing

Unit test
Integration test
System test
Acceptance test

V-Model

Effort distribution in percentages

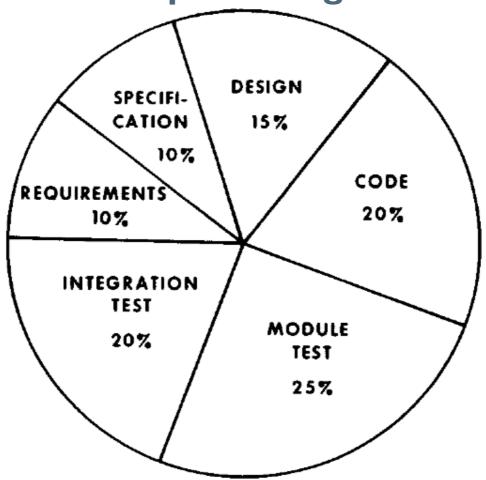


FIGURE 1. Effort required on various development activities (excluding maintenance)

Life-cycle Effort Distribution

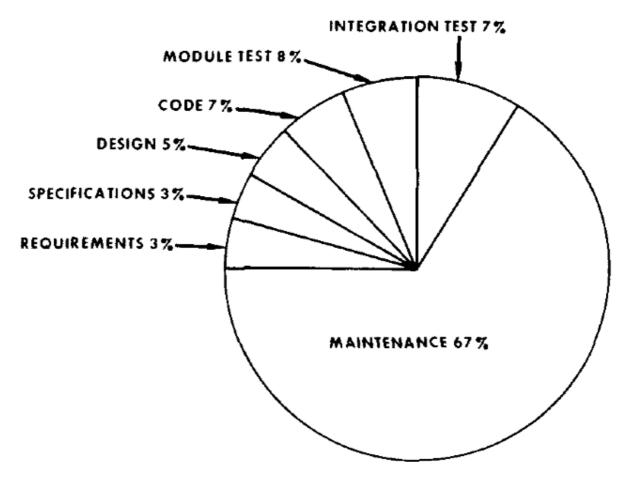


FIGURE 3. True effort on many large-scale software systems.

Goals of Software Engineering

Use techniques that manage complexity Increase reliability and correctness Develop techniques to predict costs accurately