
Refactoring and Patterns

Peter Dolog
dolog [at] cs [dot] aau [dot] dk
5.2.47
Information Systems
March 9, 2009

2Peter Dolog, SOE, Refactoring and Patterns

Goal

Refactoring
Tutorial on MDD and UP (D403b – relieved from duties and

s601e)
Design Patterns

3Peter Dolog, SOE, Refactoring and Patterns

Learning Goal

To identify where refactoring could help
To reflect on MDD and UP
To apply design patterns in future work

4Peter Dolog, SOE, Refactoring and Patterns

Goal

Refactoring
• What is refactoring
• Arguments for refactoring
• Bad Smells
• Obstacles

Tutorial on MDD and UP (D403b and s601e)
Design Patterns

5Peter Dolog, SOE, Refactoring and Patterns

Refactoring

Martin Fowler (and Kent Beck, John Brant, William Opdyke, Don Roberts),
Refactoring- Improving the Design of Existing Code, Addison Wesley, 1999.

Refactoring (noun):

a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behavior.

Refactor (verb):

to restructure software by applying a series of refactorings.

6Peter Dolog, SOE, Refactoring and Patterns

Address Book

Analysis Patterns book: Martin Fowler

7Peter Dolog, SOE, Refactoring and Patterns

Party

Analysis Patterns book: Martin Fowler

8Peter Dolog, SOE, Refactoring and Patterns

Refactoring: duplicated code
case 0:

activePiece = RightHook.getRightHook();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 1:
activePiece = LeftHook.getLeftHook();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 2:
activePiece = RightRise.getRightRise();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 3:
activePiece = LeftRise.getLeftRise();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break; //more

Source: Daniel
H Steinberg

9Peter Dolog, SOE, Refactoring and Patterns

Refactoring: duplicated code
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

10Peter Dolog, SOE, Refactoring and Patterns

Why should refactoring be done?

Argument 1
Refactoring Improves the Design of Software.
Without refactoring, the design of the program will decay. As
people change code - changes to realize short-term goals or
changes made without a full comprehension of the design of
the code - the code loses its structure.

11Peter Dolog, SOE, Refactoring and Patterns

When should refactoring be done?

Argument 2
Refactoring makes software easier to understand.
There are users of your code. The computer, the writer, and
the updater. The most important is the updater. Who cares
if the compiler takes a few more cycles to compile your code.
If it takes someone 3 weeks to update your code that is a
problem.

12Peter Dolog, SOE, Refactoring and Patterns

Who should be doing refactoring?

Argument 3
Refactoring helps you find bugs.
Part of refactoring code is understanding the code and putting
that understanding back into the code. In that process a
clarification takes place. In that clarification bugs will be found.

13Peter Dolog, SOE, Refactoring and Patterns

Who should be doing refactoring?

Argument 4
Refactoring Helps you Program Faster.
Without a good design, you can progress quickly for a while,
but soon poor design start to slow you down. You spend time
finding and fixing bugs and understanding the system instead of
adding new function. New features need more coding as you
patch over a patches...

14Peter Dolog, SOE, Refactoring and Patterns

Bad smells

Knowing how to refactor something does not tell you when to refactor and
how much to refactor.

Kent Beck and Martin Fowler coined a phrase ‘Bad Smells’ to describe the
hint of when to refactor.

This phrase was meant to reflect the ability and experience gained over time
by a programmer that is needed to recognize bad coding structure.

15Peter Dolog, SOE, Refactoring and Patterns

Bad smells: Duplicated code

“The #1 bad smell”

Same expression in two methods in the same class?

Make it a private ancillary routine and parameterize it - gather duplicated code
(Extract method)

Same code in two related classes?

•Push commonalities into closest mutual ancestor and parameterize

•Use template method DP for variation in subtasks - gather similar parts, leaving
holes (Form template method)

16Peter Dolog, SOE, Refactoring and Patterns

Bad smells: Duplicated code

Same code in two unrelated classes?
Ought they be related?

• Introduce abstract parent (Extract class, Pull up
method)
Does the code really belongs to just one class?

• Make the other class into a client (Extract method)

17Peter Dolog, SOE, Refactoring and Patterns

Bad smells: Long method

Often a sign of:

Trying to do too many things

Poorly thought out abstractions and boundaries

Best to think carefully about the major tasks and how they inter-relate.

Break up into smaller private methods within the class (Extract method)

Delegate subtasks to subobjects that “know best” (i.e., template method DP)
(Extract class/method, Replace data value with object)

18Peter Dolog, SOE, Refactoring and Patterns

Bad smells in code: Long method

Fowler’s heuristic:

When you see a comment, make a method.

Often, a comment indicates:

• The next major step

• Something non-obvious whose details detract from the
clarity of the routine as a whole.

In either case, this is a good spot to “break it up”.

19Peter Dolog, SOE, Refactoring and Patterns

Bad smells: Feature envy

A method seems more interested in another class than the one it’s defined in e.g., a
method
A::m() calls lots of get/set methods of class B

Solution:

Move m() (or part of it) into B!

(Move method/field, extract method)

Exceptions:

Visitor/iterator/strategy DP where the whole point is to decouple the data from the
algorithm
Feature envy is more of an issue when both A and B have interesting data

20Peter Dolog, SOE, Refactoring and Patterns

void Scene::setTitle (string titleText,
int titleX, int titleY,
Colour titleColour){…}

void Scene::getTitle (string& titleText,
int& titleX, int& titleY,
Colour& titleColour){…}

You see a set of variables that seem to “hang out” together

e.g., passed as parameters, changed/accessed at the same time

Usually, this means that there’s a coherent subobject just waiting to be
recognized and encapsulated

Bad smells: Data clumps

21Peter Dolog, SOE, Refactoring and Patterns

Bad smells: Data clumps

In the example, a Title class is dying to be born

If a client knows how to change a title’s x, y, text, and colour, then it knows
enough to be able to “roll its own” Title objects.

However, this does mean that the client now has to talk to another class.

This will greatly shorten and simplify your parameter lists (which aids
understanding) and makes your class conceptually simpler too.

Moving the data may create feature envy initially

May have to iterate on the design until it feels right.

(Preserve whole object, extract class, introduce parameter object)

22Peter Dolog, SOE, Refactoring and Patterns

Bad smells: Primitive obsession

All subparts of an object are instances of primitive types

(int, string, bool, double, etc.)
e.g., dates, currency, SIN, tel.#, ISBN, special string values

Often, these small objects have interesting and non-trivial constraints that can be
modelled

e.g., fixed number of digits/chars, check digits, special values

Solution:

Create some “small classes” that can validate and enforce the constraints.
This makes your system more strongly typed.

23Peter Dolog, SOE, Refactoring and Patterns

Bad Smell Examples
Duplicate Code

Long Methods

Large Classes

Long Parameter Lists

Feature Envy

Data Clumps

Primitive Obsession

24Peter Dolog, SOE, Refactoring and Patterns

Why not refactor?

Conventional wisdom would discourage

modifying a design

You might break something in the code

You have to update the documentation

Both expensive

But, there are longer term concerns: sticking with an inappropriate design

Makes the code harder to change

Makes the code harder to understand and maintain

Very expensive in the long run

25Peter Dolog, SOE, Refactoring and Patterns

Refactoring Philosophy

Make all changes small and methodical
Follow design patterns

Retest the system after each change
By rerunning all of your unit tests
If something breaks, it’s easy to see what caused the
failure

26Peter Dolog, SOE, Refactoring and Patterns

Principles of Refactoring

In general, each refactoring aims to

decompose large objects into smaller ones

distribute responsibility

Like design patterns

Adds composition and delegation

In some sense, refactorings are ways of applying
design patterns to existing code

27Peter Dolog, SOE, Refactoring and Patterns

Obstacles to Refactoring

Complexity

Changing design is hard, understanding code is hard

Possibility to introduce errors

Mitigated by testing

Clean first Then add new functionality

Cultural Issues

Producing negative lines of code, what an idea!

We pay you to add new features, not to improve the code!

If it ain t broke, don’t fix it

We do not have a problem, this is our software!

28Peter Dolog, SOE, Refactoring and Patterns

Refactoring: duplicated code
case 0:

activePiece = RightHook.getRightHook();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 1:
activePiece = LeftHook.getLeftHook();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 2:
activePiece = RightRise.getRightRise();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 3:
activePiece = LeftRise.getLeftRise();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break; //more

Source: Daniel
H Steinberg

29Peter Dolog, SOE, Refactoring and Patterns

Refactoring: duplicated code

case 4:
activePiece = Hill.getHill();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 5:
activePiece = StraightPiece.getStraightPiece();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break;

case 6:
activePiece = Square.getSquare();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);
break; //...

Source: Daniel H Steinberg

30Peter Dolog, SOE, Refactoring and Patterns

Refactoring: duplicated code
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

31Peter Dolog, SOE, Refactoring and Patterns

Could create an array
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

Piece [] pieceList = {RightHook.getRightHook(),

LeftHook.GetLeftHook(), RightRise.getRightRise(),

LeftRise.getLeftRise(), Hill.getHill(),

StraightPiece.getStraightPiece(), Square.getSquare()};

32Peter Dolog, SOE, Refactoring and Patterns

Now your switch statement becomes
case 0:

activePiece = RightHook.getRightHook(); break;
case 1:

activePiece = LeftHook.getLeftHook(); break;
case 2:

activePiece = RightRise.getRightRise(); break;
case 3:

activePiece = LeftRise.getLeftRise(); break;
case 4:

activePiece = Hill.getHill(); break;
case 5:

activePiece = StraightPiece.getStraightPiece(); break;
case 6:

activePiece = Square.getSquare(); break;
}

ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

Source: Daniel H Steinberg

public void letsRoll(){
activePiece =

pieceList[(int)(Math.random()*7)]
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

}

33Peter Dolog, SOE, Refactoring and Patterns

Introduce a new method

Source: Daniel H Steinberg

public void letsRoll(){
activePiece = pieceList[(int)(Math.random()*7)]
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

} public void letsRoll(){

activePiece = selectNextActivePiece();

ml = new MoveListener(activePiece);

gameBoard.addKeyListener(ml);

}

private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];

}

34Peter Dolog, SOE, Refactoring and Patterns

Introduce a new method
We don't need to create a new Move Listener...(and what's ml?)

public void letsRoll(){

activePiece = selectNextActivePiece();

ml = new MoveListener(activePiece);

gameBoard.addKeyListener(ml);

}

private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];

}

Source: Daniel H Steinberg

35Peter Dolog, SOE, Refactoring and Patterns

Introduce a new method
We don't need to create a new Move Listener...(and what's ml?)

Source: Daniel H Steinberg

public void letsRoll(){
activePiece = selectNextActivePiece();
ml = new MoveListener(activePiece);
gameBoard.addKeyListener(ml);

}
private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];
}

public void letsRoll(){
activePiece = selectNextActivePiece();
moveListener.setActivePiece(activePiece);

}

private Piece selectNextActivePiece(){
return pieceList[(int) Math.random()*7)];

}

36Peter Dolog, SOE, Refactoring and Patterns

public void letsRoll(){
activePiece = selectNextActivePiece();
moveListener.setActivePiece(activePiece);

}

private Piece selectNextActivePiece(){
return pieceList[(int) Math.random()*7)];

}

Eliminate the variable activePiece

public void letsRoll(){

moveListener.setActivePiece(

selectNextActivePiece());

}

private Piece selectNextActivePiece(){

return pieceList[(int) Math.random()*7)];

}

Source: Daniel H Steinberg

37Peter Dolog, SOE, Refactoring and Patterns

Goal

Refactoring
• What is refactoring
• Arguments for refactoring
• Bad Smells
• Obstacles

Tutorial on MDD and UP (D403b and s601e)
Design Patterns

	Refactoring and Patterns
	Goal
	Learning Goal
	Goal
	Refactoring
	Address Book
	Party
	Refactoring: duplicated code
	Refactoring: duplicated code
	Why should refactoring be done?
	When should refactoring be done?
	Who should be doing refactoring?
	Who should be doing refactoring?
	Bad smells
	Bad smells: Duplicated code
	Bad smells: Duplicated code
	Bad smells: Long method
	Bad smells in code: Long method
	Bad smells: Feature envy
	Bad smells: Data clumps
	Bad smells: Data clumps
	Bad smells: Primitive obsession
	Bad Smell Examples
	Why not refactor?
	Refactoring Philosophy
	Principles of Refactoring
	Obstacles to Refactoring
	Refactoring: duplicated code
	Refactoring: duplicated code
	Refactoring: duplicated code
	Could create an array
	Now your switch statement becomes
	Introduce a new method
	Introduce a new method
	Introduce a new method
	Eliminate the variable activePiece
	Goal

