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Motivations

Context: lazy declarative languages

+ Purely Functional (Haskell)

+ Functional Logic (Curry, TOY)

Goal: efficacious semantic-based program manipulation tools

+ Static Analysis

+ Abstract Diagnosis

+ Synthesis of Specifications

We need a semantics which is (at the same time)

+ fully-abstract w.r.t. I/O observations

+ goal-independent

+ “condensed” (as concise as possible)

no such semantics in literature
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Functional Logic Paradigm

+ nested expressions

+ higher-order features

+ lazy evaluation

 functional paradigm

+ logical variables

+ partial data structures

+ built-it search

 logic paradigm



FO-

FLP

Operational mechanism:

VARIABLE
INSTANTIATION

+

REWRITING

= NARROWING

variables are instantiated so that

sub-expressions are rewritten according to program rules
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Pure FO-Curry fragment [features outline]

equation solving & built-in search:
0 + x = x

(S x) + y = S (x + y)

double x = x + x

0 <= y = True

(S x) <= 0 = False

(S x) <= (S y) = x <= y

the goal (x + x) <= 0 where x free returns 2 solutions,
namely {x -> 0} True and {x -> S x’} False

non-deterministic operations:
overlapping rules are allowed =⇒ non-confluent programs

coin = 0

coin = S 0

coin returns 2 solutions, namely {} 0 and {} S 0
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Nondeterminism & lazy evaluation

lazy evaluation

delays the evaluation of sub-expressions until it is not demanded

A subtle aspect of nondeterministic operations is their treatment if
they are passed as arguments:

coin = 0

coin = S 0

double x = x + x

need-time choice: the choice for the desired value of an operation
is made when it is demanded

double coin =⇒ coin + coin =⇒ 0 + coin =⇒ coin =⇒ S 0

call-time choice the choice for the desired value of a operation is
made at call time (not the evaluation)

double coin =⇒ coin + coin =⇒ 0 + 0 =⇒ 0 sharing
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A semantics adequate w.r.t. an observation φ

Requirements:

+ fix-point characterization (i.e., F JP K := lfp P JP K)

+ goal-independent & “condensed”

+ fully-abstract w.r.t. a behavioral observation φ

Full-abstraction (EAGER languages):

+ F JP1K = F JP2K ⇐⇒ BφJP1K = BφJP2K

Full-abstraction (LAZY languages):

+ F JP1K = F JP2K ⇐⇒ ∀Q ∈ UPΣ′

Σ . BφJP1 ∪ QK = BφJP2 ∪ QK

using programs
can only define new operations
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Computed Results Behavior

Computed result behavior of programs:

Bcr JP K(e0) :=

{
(σ1 · · ·σn)�e0

· en

∣∣∣∣ e0
σ1=⇒
p1

· · · σn=⇒
pn

en, en ∈ T (C,V)

}

Problem: collecting computed results for every most general call
leads to incorrect semantic denotations because of laziness

f x = S (g x)

g (S x) = 0

f (S x) = S 0

g (S x) = 0

f (x) have the same computed results in both programs, namely

Bcr JP K(f (x)) =
{
{x/s(x ′)} · s(0)

}
But for the goal g(f (x)) the former program computes ε · 0
whereas the latter computes {x/s(x ′)} · 0.
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Systematic design of semantics by A.I. [Cousot 77]

P JP K PαJP K
α

γ

(C ,v) (A,≤)

Results from the A.I. theory:

+ PαJP K := α ◦ P JP K ◦ γ
+ FαJP K := lfp PαJP K

+ α(F JPK) ≤ FαJPK
+ α is precise =⇒ Fα is a standard semantics

Optimal abstract
fix-point operator

F JP K α(F JP K)

FαJP Kα
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Development of a semantics adequate w.r.t. Bcr

We started from a (very) concrete semantics
modeling the small-step behavior (“trace semantics”)

P JP K : WSSTMGC →WSSTMGC

F JP K = lfp P JP K

Theorem

E JeKF JP K = BssJP K(e)

where E is the semantic evaluation function

most general
calls f (~x)

partial small-step
tree for f (~x)
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Development of a semantics adequate w.r.t. Bcr

most general
calls f (~x)

partial small-step
tree for f (~x)

. . . then, we proceed by successive abstractions

(WSST,v) −−−→−→←−−−−
∂

∂γ

(ERT,4) −−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)
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Evolving Result Abstraction
(WSST,v)−−−→−→←−−−−−

∂

∂γ

(ERT,4) −−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)

We can observe differences in the computed results when
evaluation introduces a new constructor

IDEA: combine together all intermediate small steps that do not
introduce a new constructor

f (x , g(y))
{x/A}
===⇒ f (A, g(y))

ε
=⇒ f (A,B)

ε
=⇒ C (h(z))

{z/B}
===⇒ C (A)

ε · % %−→ {x/A} · C (%1)
%1−→ {x/A} · C (A)

∂
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Evolving Result semantics
(WSST,v) −−−→−→←−−−−−

∂

∂γ

(ERT,4) −−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)

The ERT (Evolving Result Trees) domain: ERT := ∂(WSST)

ε · %
{x/S(x1)} · S(%1)

{x/Z} · y

{x/S(S(x2))} · S(S(%2))

{x/S(Z )} · S(y)

%

%

%1

%1

ε · %

{x/Z , y/S(y1)} · True

{x/S(x1), y/Z} · False

{x/S(Z ), y/S(S(y1))} · True

{x/S(S(x1)), y/S(Z )} · False

...

%

%

%

%

infinite depth
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Evolving Result semantics
(WSST,v) −−−→−→←−−−−−

∂

∂γ

(ERT,4) −−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)

Induced optimal immediate consequence operator

P∂JP K : ERTMGC → ERTMGC

P∂JP KI∂ := (∂ ◦P JP K ◦ ∂γ)(I∂)

= λf (−→xn).
j{

ε · % %−→ E∂JrK{
−→xn/
−→
tn }

I∂

∣∣∣ f (t)→ r ∈ P
}

Evaluation function over ERT

E∂JxKσI∂ := σ · x
E∂Jϕ(

−→
tn )KσI∂ := I∂(ϕ(−→yn))[y1/ E∂Jt1KσI∂ ] . . . [yn/ E∂JtnKσI∂ ]

Theorem

F∂JP K = ∂(F JP K)
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(WSST,v) −−−→−→←−−−−−

∂

∂γ

(ERT,4) −−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)

Theorem (correctness)

F∂JP1K = F∂JP2K =⇒ ∀Q ∈ UPΣ′
Σ . Bcr JP1 ∪ QK = Bcr JP2 ∪ QK

The converse implication doesn’t hold

Counterexample

Consider the programs P1 and P2

f x = A x f x = id (A (id x))

F∂JP1K(f (x)) = ε · % %−→ ε · A(x) whereas

F∂JP2K(f (x)) = ε · % %−→ ε · A(%1)
%1−→ ε · A(x).

Only when a substitution changes there is a visible
effect in the behavior
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Weakly Evolving Abstraction
(WSST,v) −−−→−→←−−−−−

∂

∂γ

(ERT,4)−−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)

IDEA: combine together all partial computed results that refer
to the same substitution and lead to the same partial result

concise representation: we denotes with σ � s1–s2 the set of
partial computed results σ · s where s1 . s . s2.

ε · % %−→ ε · A(x) ε · %1
%1−→ ε · A(%2)

%2−→ ε · A(x)

ε � %–A(x)

interval

ζ ζ
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Weakly Evolving semantics
(WSST,v) −−−→−→←−−−−−

∂

∂γ

(ERT,4) −−−→−→←−−−−
ζ

ζγ

(WERS, 4̂)

Induced immediate consequence operator

PνJP K : WERSMGC →WERSMGC

PνJP KIν = λf (−→xn).
ĵ{
EνJrK{

−→xn/
−→
tn }

Iν

∣∣∣ f (t)→ r ∈ P
}

Evaluation function over WERS

EνJxKσI∂ := σ � %–x

EνJϕ(
−→
tn )KσIν := Iν(ϕ(−→yn))[y1/ EνJt1KσIν ] . . . [yn/ EνJtnKσIν ]

Theorem (full-abstraction)

+ ν(E JeKI ) = EνJeKν(I )

+ ∀P FνJP K = ν(F JP K)

+ FνJP1K = FνJP2K ⇐⇒ ∀Q ∈ UPΣ′

Σ . Bcr JP1 ∪ QK = Bcr JP2 ∪ QK
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what about Haskell?

+ By a simple program transformation (Cnv) an Haskell program
is transformed into a Curry semantic-equivalent version

Theorem (Adequacy of Cnv)

Given P an Haskell program and e0 ground expression.

e0
p1
=⇒ . . .

pn
=⇒ en using P ⇐⇒ e0

p1
=⇒
ε
. . .

pn
=⇒
ε

en using Cnv(P )

+ . . . all results apply to Haskell as well
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APPLICATIONS

Abstraction Framework:

+ consider a true abstraction α

+ (WERS, 4̂) −−−→−→←−−−−
α

γ
(A,≤)

+ abstract semantics Fα can be effectively computed

Proposed case studies: depth(k) and POS

Applications:

+ Static Analysis

+ Abstract Debugging

+ Automatic Synthesis of algebraic Specifications

17 / 32



Application: Groundness Dependencies Analysis

first proposal in literature

Domain: (POS,≤) set of positive formulas ordered by implication

Abstraction:
Collects POS abstractions of (final) computed results only

+ Γ%(S) :=
∨
{Γ(σ{%/v}) |σ � t–v ∈ S , v ∈ T(C,V)} (WERS)

+ Γ(ϑ) :=
∧

y/t∈ϑ(y ↔ (
∧

x∈var(t) x)) (substitutions)

Y → X

X�
�
�

Q
Q
Q
Q

�
�
�

Q
Q
Q
QX ↔ Y

X ∧ Y

true

Q
Q
Q
Q

Q
Q
Q
Q

X ∨ Y

false

�
�
�

�
�
�

Y

X → Y

Examples:

+ x + y . % 7→ x ∧ (% ↔ y)
first argument ground, and result ground

iff second argument ground

+ x ≤ y . % 7→ % ∧ (x ∨ y)
result ground, and at least one argument

ground
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Abstract semantic functions (G.D. Analysis)

Induced optimal immediate consequence operator

Pgr JP K := αΓ ◦Pν ◦ γΓ

= λf (−→xn) . %.
∨

f (
−→
tn )→r∈P

(Γ({−→xn/
−→
tn}) ∧ Egr Jr . %KIgr )|−→xn ,%

Evaluation function over GR

Egr Jx . %KIgr := % ↔ x

Egr Jϕ(
−→
tn ) . %KIgr := Igr (ϕ(−→%n) . %) ∧

n∧
i=1

Φi
−→%n fresh

where

Φi :=


Egr Jti . %iKIgr if Igr (ϕ(−→%n) . %) ≤ (% → %i ) or

ti ∈ T (C,V)

true otherwise
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Analysis Example (G.D. Analysis)

Program:

[] ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

Analysis session:

Pgr JP K↑0 =
{

xs ++ ys . % 7→ false

Pgr JP K↑1 =
{

xs ++ ys . % 7→ xs ∧ (% ↔ ys)

Pgr JP K↑2 =
{

xs ++ ys . % 7→ % ↔ (xs ∧ ys)

Pgr JP K↑3 = Pgr JP K↑2 = Pgr JP K↑ω

. . . running tool

the result of ++ is ground
if and only if both its
argument are ground

20 / 32
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Application: Abstract Diagnosis

Automatic Debugging

Input: program P + specification S
Goal: automatically locate bugs in P

in general it is undecidable

How to deal with this problem?

+ Declarative Debugging ⇒ partial inspection of the
symptomatic computation tree

+ Abstract Diagnosis ⇒ use a correct approximation of the
semantics which is finitely representable

There are some cons:

+ symptom driven

+ semi-automatic

+ can’t ensure that a property
holds for P

does not
suffer

JP KS

%%
"

incorrectness
symptom

incompleteness
symptom

rules which are
responsible for
symptoms %
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The main idea (Abstract Diagnosis)

F JP KS

α(F JP K)

FαJP K

Sα

αα

(C,v,t,u,⊥C,>C)
Complete Lattice

(A,≤,∨,∧,⊥A,>A)
Noetherian Complete Lattice
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Abstract Bugs & Symptoms (Abstract Diagnosis)

Let P be a program and α a property

+ (abstract) partially correct w.r.t. Sα: α(F JP K) ≤ Sα

+ (abstract) complete w.r.t. Sα: Sα ≤ α(F JP K)

α(F JP K)Sα

%%
"

abstract
incorrectness

symptom

abstract
incompleteness

symptom

Problem: interference between incorrectness and
uncovered errors can be symptomless

⇓
Declarative Diagnosis

cannot reveal all errors simultaneously
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Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJPKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e � Sα (abstractly incorrect rule)

+ e ∧ PαJP KSα = ⊥A and e ≤ Sα (abstractly uncovered elem.)

using Sα,
l → r

produces e. . .

. . . but e was not
expected by Sα

using Sα, P can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJP K step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
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Example: infinite computation (Abstract Diagnosis)

Case study: depth(k)

Program: R : from n = n : from n

Specification: with κ = 3

Sκ :=
{

from(n) 7→ {ε � %–n:S(x̂1) : x̂2 : x̂3}

We detect that rule R is abstractly incorrect since

PκJ{R}KSκ =
{

from(n) 7→ {ε � %–n : n : x̂1 : x̂2} 6≤ Sκ
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Application: Automatic Synthesis of algebraic
property-oriented Specifications

Goal:

Automatically infer a set of equations of the form e1 = e2 relating
program calls to their behavior

in general it is undecidable

+ Black-Box approach ⇒ works only by running the executable
on a (automatically generated) set of tests from which the
specification is inferred.

4 no restrictions on the considered language
8 cannot guarantee the correctness of the results

+ Glass-Box approach ⇒ assumes that the source code of the
program is available.

8 language-dependent
4 the inference can be semantic-based ⇒ the inferred equations

can be correct
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What specifications? (Automatic Synthesis of Specifications)

Program:

not True = False

not False = True

or True _ = True

or False x = x

and True x = x

and False _ = False

imp False x = True

imp True x = x

what kind of expression one would expect?
the lazy nature of the language makes this aspect not so trivial . . .
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Equations Kinds (Automatic Synthesis of Specifications)

Contextual Equiv. states that two terms have the same
computed results for any context C [ ]

or x y =C imp (not x) y

not (not (not x)) =C not x

Computed-result Equiv. states that two terms have the same
computed results

Ground Equiv. states that two terms have the same outcome for
every ground instance.

Specification in AbsSpec: =C ⊆ =CR ⊆ =G

A set of equations e1 ={C ,CR,G} e2 where e1, e2 ∈ T (Σr ,V)
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Inference Process (Automatic Synthesis of Specifications)

Inference Process

Compute
(abstract)
Semantics

Generation
of =C

classification

Equations
generation

Transforma-
tion of the
Semantics

Spec.

Program

API: Σr

max size

Classification = “a set of pairs of the form 〈S , {e1, . . . , en}〉”
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Inference Process (Automatic Synthesis of Specifications)

Inference Process
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of =C
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Semantics

Spec.

Program

API: Σr

max size

Classification = “a set of pairs of the form 〈S , {e1, . . . , en}〉”

+ Compute =CR equations

+ CCR = gather({〈cr(S), {min E}〉 | 〈S , E 〉 ∈ C})
+ print the induced =CR-equations

+ Compute =G equations

+ CG = gather({〈g(S), {min E}〉 | 〈S , E 〉 ∈ CCR})
+ print the induced =G -equations
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Discussion on the results

+ Summary
+ Fix-point semantic characterization:

4 models the typical features of F/FL languages
8 does not handle H.O. and Residuation
4 goal-independent & “condensed”
4 fully-abstract w.r.t. computed result behavior

+ Applications

+ Static Analysis
+ Abstract Debugging
+ Automatic Synthesis of Specifications

+ Future work
+ applying this techniques on more interesting abstract domains
+ extend our results to Higher-Order and Residuation
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Collaborations:
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+ Collaborated with the ELP group at Universidad Politcnica de
Valencia (Spain)
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