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Context: lazy declarative languages
+ Purely Functional (Haskell)
+ Functional Logic (Curry, TOY)
efficacious semantic-based program manipulation tools
Static Analysis
Abstract Diagnosis
Synthesis of Specifications
We need a semantics which is (at the same time)
fully-abstract w.r.t. /O observations
goal-independent
“condensed” (as concise as possible)

no such semantics in literature
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Functional Logic Paradigm

-+ nested expressions
-+ higher-order features » functional paradigm

-+ lazy evaluation

FLP

Operational mechanism:

REWRITING

sub-expressions are rewritten according to program rules
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Pure FO-Curry fragment [features outline]

equation solving & built-in search:

0 + x = x 0 <=y = True
(8 x) +y =98 (x +y) (8 x) <=0 = False
double x = x + x (S x) <= (S y) =x <=y

the goal (x + x) <= 0 where x free returns 2 solutions,
namely {x -> 0} True and {x -> S %’} False



Pure FO-Curry fragment [features outline]

equation solving & built-in search:

0 + x = x 0 <=y = True
(8 x) +y =98 (x +y) (8 x) <=0 = False
double x = x + x (S x) <= (S y) = x <=y

the goal (x + x) <= 0 where x free returns 2 solutions,
namely {x -> 0} True and {x -> S %’} False

non-deterministic operations:
overlapping rules are allowed = non-confluent programs

coin = O
S 0

coin

coin returns 2 solutions, namely {} O and {} S 0



Nondeterminism & lazy evaluation

lazy evaluation
delays the evaluation of sub-expressions until it is not demanded

A subtle aspect of nondeterministic operations is their treatment if
they are passed as arguments

coin = 0 double x = x + X
coin S 0
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A semantics adequate w.r.t. an observation ¢

Requirements:

+ fix-point characterization (i.e., F[P] := Ifp P[P])

+ goal-independent & “condensed”

+ fully-abstract w.r.t. a behavioral observation ¢
Full-abstraction (EAGER languages):

+ F[P] = F[P,] < B?[P] = B?[P,]
Full-abstraction (LAZY languages):

+ F[P] = F[P,] <= VQ € UPE. B*[P, U Q] = B*[P,U Q]
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+ goal-independent & “condensed”

+ fully-abstract w.r.t. a behavioral observation ¢
Full-abstraction (EAGER languages):

+ F[P] = F[P,] < B?[P] = B?[P,]
Full-abstraction (LAZY languages):

+ F[P] = F[P,] <= VQ € UPE. B*[P, U Q] = B*[P,U Q]

using programs
can only define new operations
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Computed Results Behavior

Computed result behavior of programs:

B[P](e) := {(01 o2 0n)le - €n | €0 % %& €en, €y € T(C,V)}

Problem: collecting computed results for every most general call
leads to incorrect semantic denotations because of laziness

f x =8 (g x) f (S x)
g (S x) =0 g (S x)

S 0
0

f(x) have the same computed results in both programs, namely

BYIP(f(x)) = {{x/s(x)} - s(0)}

But for the goal g(f(x)) the former program computes ¢ - 0
whereas the latter computes {x/s(x)} - 0.



Systematic design of semantics by A.l. [Cousot 77]

PIP] PoIP]

Results from the A.l. theory:
+ PYP] :=aoP[P] oy
+ F[P] = lfp P*[P]

+ o(F[P]) < F[P]

+ «is precise = F“ is a standard semantics




Systematic design of semantics by A.l. [Cousot 77]

PP PaIP]

Optimal abstract
fix-point operator

Results from the A.l. theory:
+ PYP] :=aoP[P] oy
+ F[P] = lfp P*[P]

+ o(F[P]) < F[P]

+ «is precise = F“ is a standard semantics



Development of a semantics adequate w.r.t. B¢

We started from a (very) concrete semantics
modeling the small-step behavior (“trace semantics”)

P[P]: WSSTMEC — wsSTEC
F[P] = Ifo P[P]

£lelrey = B*[P](e)

where & is the semantic evaluation function
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Development of a semantics adequate w.r.t. B¢

...then, we proceed by successive abstractions

8"/ C"/ ~
(WSST, E) £ (ERT, <) & (WERS, <)



Evolving Result Abstraction
o ¢ .
(WSST, E)——(ERT, ) £—— (WERS, <)

We can observe differences in the computed results when
evaluation introduces a new constructor

IDEA: combine together all intermediate small steps that do not
introduce a new constructor

) ZL2L £(A,g(y)) S F(A, B) S C(h(z)) ZLEL (A

e-0 % {x/A}- Clo1) = {x/A}- C(A)
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Evolving Result Abstraction
o ¢ .
(WSST, E)——(ERT, <) —— (WERS, <)

We can observe differences in the computed results when
evaluation introduces a new constructor

combine together all intermediate small steps that do not
introduce a new constructor

{z/B

) 2 (A g(y) = F(A, B) = C(h(2)) C(A

-0 = {x/A}- Clo1) = {x/A}- C(A)
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Evolving Result semantics
o 5 .
(eI e (RIS e —p (WHRSSS)

The ERT (Evolving Result Trees) domain: ERT := 9(WSST)

/ {x/Z} -y y{x/S(Z)}'S(y)
\ {X/S(Xl)} 5(@1) 5 {X/S(S(Xz))}'5(5(92)) :

infinite depth



Evolving Result semantics
o 5 .
(eI e (RIS e —p (WHRSSS)

The ERT (Evolving Result Trees) domain: ERT := 9(WSST)

o/ X/ Zy[S()} - True
/% {x/5(2),y/S(S0n))} - True
£ 0 .

\* {x/5(5(x)). y/S(Z)} - False

’ {x/S(x1),y/Z} - False

infinite width



Evolving Result semantics
o 5 .
(eI e (RIS e —p (WHRSSS)

Induced optimal immediate consequence operator
PP[P]: ERTMEC — ERTMEC
PO[P]zo := (9o P[P] 0 87)(Z?)
= A (X). Y{E 05 58[[r]]§§/t_”>} f(t)y »re P}
Evaluation function over ERT

E9XI50 =0 - x

Lt = T(p(7))nn/ E2111]150] - - - Lyn/ E°ta1 5]

F[P] = A(FIP)) \

12/32




Evolving Result semantics
o 5 .
(S, D = (), <) = (TS, <)

Theorem (correctness)
FO[P] = FO[P,] = VQ € UPE. B[P, U Q] = B[P,U Q]

The converse implication doesn’t hold

Counterexample

Consider the programs P; and P,

f x = A x f x = id (A (id x))
FO[P(f(x)) =€ 0 % & - A(x) whereas

FOPI(f(x)) =c-0 % e A(or) % £ - A(x).
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The converse implication doesn’t hold

Counterexample

Consider the programs P; and P,

f x = A x f x = id (A (id x))
FO[P(f(x)) =€ 0 % & - A(x) whereas

FOPI(f(x)) =c-0 % e A(or) % £ - A(x).

Only when a substitution changes there is a visible
effect in the behavior
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Weakly Evolving Abstraction
(WSST, ) & (ERT, <)=—(WERS, J)

IDEA: combine together all partial computed results that refer
to the same substitution and lead to the same partial result

concise representation: we denotes with o .s;—sp the set of
partial computed results o - s where 51 <5 < 5.
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Weakly Evolving Abstraction
(WSST, ) & (ERT, <)=—(WERS, J)

IDEA: combine together all partial computed results that refer
to the same substitution and lead to the same partial result

concise representation: we denotes with o .s;—s, the set of

partial computed results o - s where 51 <5 < 5.
interval

s-gims-A(x) E'ng—1>€’A(Q2)g—2>€‘A(X)

€. 0-A(X)
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Weakly Evolving semantics
o 5 .
LS L

Induced immediate consequence operator

P’[P]: WERSY®® — WERS"¢C
P[Pl = M (%) Y {€"r 150 | f(t) = r e P}
Evaluation function over WERS

E'[x]%0 == 0. 0—x
ELo(t)g. =T (e () / € [t1E] - [yn/ € [ta) ]

Theorem (full-abstraction)
+ v(E[elz) = & [elu(z)
+ VP FY[P] = u(F[P])
+ FY[P] = F*[P,] <= ¥Q e UPE. B[P, U Q] = B[P, U Q]
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what about Haskell?

+ By a simple program transformation (Cnv) an Haskell program
is transformed into a Curry semantic-equivalent version

Theorem (Adequacy of Cnv)

Given P an Haskell program and ey ground expression.

2. B usingP = ... RBe, using Cnv(P)
e g

-+ ...all results apply to Haskell as well
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APPLICATIONS

Abstraction Framework:

-+ consider a true abstraction «

+ (WERS, %) —; (A, <)

+ abstract semantlcs F* can be effectively computed
Proposed case studies: depth(k) and POS

Applications:
-+ Static Analysis
-+ Abstract Debugging
-+ Automatic Synthesis of algebraic Specifications

17 /32



Application: Groundness Dependencies Analysis

first proposal in literature

Domain: (POS, <) set of positive formulas ordered by implication

Abstraction:
Collects POS abstractions of (final) computed results only

+,(S) = V{M(o{o/v})|o.t-v €S, vET(C,V)} (WERS)
+ /_(19) = /\y/teﬂ(y A (/\xevar(t) X)) (SUbStitUtionS)

true
Examples:

XY +x+yro=xA(ecy)
first argument ground, and result ground

Y
’Q" v iff second argument ground
XA

+x<yro—oA(xVy)
result ground, and at least one argument

ground
false
18 /32



Abstract semantic functions (G.D. Analysis)

Induced optimal immediate consequence operator

PE[P] == aroP” oyr

= MG eo. (R8N A Tre o)z,

f(t))—reP
Evaluation function over GR

E8 x> o]zer =0 <> x
Sgr[[gp(?,,) > o]zer 1= T8 (¢(22) > 0) A /\ o, o, fresh

where
E€ [t > oi]ze  if T8 (¢(27) > 0) < (0 — 0;) or
i = ti € T(C,V)

true otherwise

19/32



Analysis Example (G.D. Analysis)

Program:

[] ++ ys = ys

(x:xs) ++ ys = x (xs++ys)

Analysis session:

PEP]10 = {xs ++ ys> o — false
PEIP]TL = {xs ++ys> o xs A (0 ¢ ys)

PEIP]12 = {XS ++ys> o 0 <> (XsAys)
PE[P]13 = PE'[P]12 = P& [P]tw

... running tool

20 /32



Analysis Example (G.D. Analysis)

Program:
[] ++ ys = ys
(x:xs) ++ ys = x (xs++ys)

Analysis session:

PEP]T0 = {xs ++ ys > o — false

PEIP]TL = {xs ++ys> o xs A (g <> ys)
PEP]12 = {Xs ++ys> o> 0 > (xs A ys)
PEPI13 = PEIPI12 = PEIPT" the result of ++ is ground

if and only if both its
argument are ground

... running tool
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Application: Abstract Diagnosis

incompleteness incorrectness
symptom symptom

Automatic Debugging ‘

o S
Input: program P + specification &
Goal: automatically locate bugs in P X

in general it is undecidable rules which are

responsible for
symptoms X

Pl

How to deal with this problem?
+ Declarative Debugging = partial inspection of the
symptomatic computation tree

+ Abstract Diagnosis = use a correct approximation of the
semantics which is finitely representable
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Abstract Bugs & Symptoms

Let P be a program and « a property
+ (abstract) partially correct w.r.t. S
+ (abstract) complete w.r.t. S §* <
S (FIPD)
abstract

incompleteness
symptom

(Abstract Diagnosis)

< S(!

abstract
incorrectness
symptom



Abstract Bugs & Symptoms (Abstract Diagnosis)

Let P be a program and « a property

+ (abstract) partially correct w.r.t. S <S8°
+ (abstract) complete w.r.t. S §* <
8« a(FIPD)
abstract abstract
incompleteness incorrectness
symptom symptom
Problem: interference between incorrectness and
uncovered errors can be symptomless

Declarative Diagnosis
cannot reveal all errors simultaneously



Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

?
P[P]s- < S°

+ e <PY{l — r}]s~ and e £ S (abstractly incorrect rule)

+ e ANPY[P]sa = La and e < 8% (abstractly uncovered elem.)

24 /32



Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

?
« «
using S¢, P [[P]]Sa S 8
I — r
produces e. ..

+ e <PY{l — r}]s~ and e £ S (abstractly incorrect rule)

+ e ANPY[P]sa = La and e < 8% (abstractly uncovered elem.)

24 /32



Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

?
PMPlca < 8¢

H (%
usllniSr ' ... but e was not
produces e. .. et By &

+ e <PY{l — r}]s~ and e £ S (abstractly incorrect rule)

+ e ANPY[P]sa = La and e < 8% (abstractly uncovered elem.)

24 /32



Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

?
PMPlca < 8¢

H (%
usllniSr ' ... but e was not
produces e. .. et By &

+ e <PY{l — r}]s~ and e £ S (abstractly incorrect rule)

using S, P can't
produce e. ..

+ e ANPY[P]sa = La and e < 8% (abstractly uncovered elem.)

24 /32



Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

?
PMPlca < 8¢

H (&3
usllniSr ' ... but e was not
produces e. .. et By &

+ e <PY{l — r}]s~ and e £ S (abstractly incorrect rule)

using S, P can't ...but e was
produce e. .. expected by S

+ e ANPY[P]sa = La and e < 8% (abstractly uncovered elem.)

24 /32



Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

?
PMPlca < 8¢

H (%
usllniSr ' ... but e was not
produces e. .. et By &

+ e <PY{l — r}]s~ and e £ S (abstractly incorrect rule)

using S, P can't ...but e was
produce e. .. expected by S

+ e ANPY[P]sa = La and e < 8% (abstractly uncovered elem.)

Pros: 4 Static test (requires just one P*[P] step on S%)
+ reveal all abstract errors regardless of symptoms interference

Cons: 4 imprecision of a can lead to false positives:
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Example: infinite computation (Abstract Diagnosis)

Case study: depth(k)

Program: R: from n = n : from n

Specification: with kK = 3
Sti= {from(n) = {e.0-mS(X1) X0 X3}
We detect that rule R is abstractly incorrect since

P I{R}]s~ = {from(n) —{e.o-n:n:% % £S"

25/32



Application: Automatic Synthesis of algebraic
property-oriented Specifications

Automatically infer a set of equations of the form e; = e relating

program calls to their behavior
in general it is undecidable

-+ Black-Box approach = works only by running the executable
on a (automatically generated) set of tests from which the
specification is inferred.

¢/ no restrictions on the considered language
X cannot guarantee the correctness of the results
+ Glass-Box approach = assumes that the source code of the
program is available.
X language-dependent
v/ the inference can be semantic-based = the inferred equations
can be correct



What specifications?

Program:

not True = False
not False = True
or True _ = True
or False x = x

(Automatic Synthesis of Specifications)

and
and
imp
imp

True x = x
False _ = False
False x = True
True x = x

what kind of expression one would expect?

the lazy nature of the language makes this aspect not so trivial ...

27 /32



Equations Kinds (Automatic Synthesis of Specifications)

Contextual Equiv. states that two terms have the same
computed results for any context C[]

or x y=c imp (not x) y

not (not (not x)) =¢ not x

Computed-result Equiv. states that two terms have the same
computed results

Ground Equiv. states that two terms have the same outcome for
every ground instance.

28 /32
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Equations Kinds (Automatic Synthesis of Specifications)

Contextual Equiv. states that two terms have the same
computed results for any context C[]
€1 =C € <— 5V|Ie]_]]]:u[[p]] = 5V[[62]]fuﬂpﬂ
Computed-result Equiv. states that two terms have the same
computed results
e1 =cr €2 == cr(&[el] 7oppy) = cr(E” [ 7+ 1p7)

Ground Equiv. states that two terms have the same outcome for
every ground instance.

x =¢ not (not x)
and x (and y z) =¢ and (and x y) z

not (or x y) =¢ and (not x) (not y)
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Equations Kinds (Automatic Synthesis of Specifications)

Contextual Equiv. states that two terms have the same
computed results for any context C[]

€1 =C € < 5”[[e1]];u[[p]] = 5”[[62]]]:11[[,3}]

Computed-result Equiv. states that two terms have the same
computed results

€1 =cr €2 < Cr(gl/[[el]]]:u[[pﬂ) = cr(c‘,’”[[eg]]fu[[p]])

Ground Equiv. states that two terms have the same outcome for
every ground instance.

&1 =¢ e = g(cr(& (el 71py)) = 8(cr(E7 [ 71p7))

Specification in AbsSpec:

A set of equations e; ={C,CR,G} €2 where e1, e € T(X",V)
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Inference Process (Automatic Synthesis of Specifications)

Inference Process

Compute Generation Equations
(abstract) of =¢c generation
Semantics classification —>- m
APl X' :
Transforma-
_ tion of the
max_size — Semantics
Classification = “a set of pairs of the form (S, {e1,...,en})" J

29 /32



Inference Process (Automatic Synthesis of Specifications)

Inference Process

Program Compute Generation Equations
(abstract) of =¢ .
. - generation
Semantics classification

max_size —>

Transforma-
tion of the
Semantics

compute F¢[P]
S¢(x) = FoIP](f(x})) for every f € X*
Co = {(Srzy, {FGMN [ Fex}



Inference Process (Automatic Synthesis of Specifications)

Inference Process

Program Compute Generation Equations
(abstract) of =¢ .
. . generation
Semantics classification

max_size —>

Transforma-
tion of the
Semantics

iterate max_size times

+ take f € X" and (S, E1),...,{(Sk, Ex) € Ch

+ compute S = Sgnxa/S1] - [xn/Snl

+ update Cy inserting (S, {f(e;)}) where ¢; = minE;
C := Cpmax_size and print the equations e; =¢ -+ =¢ e, for
each (S, {e1,...,en}) €C.



Inference Process (Automatic Synthesis of Specifications)

Inference Process

Program Compute Generation Equations
(abstract) of =¢ .
. e . generation
Semantics classification

max_size —>

Transforma-
tion of the
Semantics

associated to every f(e;)
iterate max_s forany & € E x - E
+ take f € X" and (S, E1),...,(Sk, Ex) € Ch
+ compute S = Sgn[x/S1] - - [xn/Snl

+ update Cj inserting (S, {f(e;)}) where ¢; = minE;

C 1= Cmax_size and print the equations e; =¢ --- =¢ e, for
each (S, {e1,...,en}) €C.



Inference Process (Automatic Synthesis of Specifications)

Inference Process

Program Compute Generation Equations
(abstract) of =¢ .
. e . generation
Semantics classification -

max_size —>

Transformation
of the
Semantics

Compute = equations
+ Ccr = gather({{cr(S), {minE})|(S, E) € C})
+ print the induced =c;-equations

Compute = equations

+ Cc = gather({(g(5), {min E}) [ (S, E) € Ccr})
+ print the induced =¢-equations



Discussion on the results

+ Summary
+ Fix-point semantic characterization:
¢/ models the typical features of F/FL languages
X does not handle H.O. and Residuation
v/ goal-independent & “condensed”
v/ fully-abstract w.r.t. computed result behavior
+ Applications
+ Static Analysis
+ Abstract Debugging
+ Automatic Synthesis of Specifications

+ Future work

+ applying this techniques on more interesting abstract domains
+ extend our results to Higher-Order and Residuation
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Research activity

Collaborations:
+ I've been invited for CHR working-week in Ulm (Germany)

-+ Collaborated with the ELP group at Universidad Politcnica de
Valencia (Spain)
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