Abstract Diagnosis of First Order Functional Logic Programs

Giovanni Bacci Marco Comini

Dipartimento di Matematica e Informatica
University of Udine

LOPSTR 2010
23 July, Hagenberg

Motivations

Automatic Debugging

Input: program $\mathcal{R}+$ specification \mathcal{S}
Task: automatically locate bugs in \mathcal{R} in general it is undecidable rules which are responsible for symptoms X

How to cope with this problem?

+ Declarative Debugging \Rightarrow partial inspection of the symptomatic computation tree
+ Abstract Diagnosis \Rightarrow use a correct approximation of the semantics which is finitely representable

Motivations

Automatic Debugging

Input: program $\mathcal{R}+$ specification \mathcal{S}
Task: automatically locate bugs in \mathcal{R} in general it is undecidable
rules which are responsible for symptoms X

How to cope with this problem?

+ Declarative Debugging
+ Abstract Diagnosis

> There are some cons:
> + symptom driven
> + semi-automatic
> + can't ensure that a property \quad holds for P

Motivations

incompleteness symptom

Automatic Debugging

Input: program $\mathcal{R}+$ specification \mathcal{S}
Task: automatically locate bugs in \mathcal{R} in general it is undecidable
rules which are responsible for symptoms X

How to cope with this problem?

+ Declarative Debugging
+ Abstract Diagnosis

$$
\begin{aligned}
& \text { There are some cons: } \\
& + \text { symptom driven } \\
& + \text { semi-automatic } \\
& + \text { can't ensure that a property } \\
& \quad \text { holds for } P
\end{aligned}
$$

The Recipe:

+ Abstraction function $\alpha: \mathbb{C} \rightarrow \mathbb{A}$

The Recipe:

+ Abstraction function $\alpha: \mathbb{C} \rightarrow \mathbb{A}$
+ Fix-point operator $\mathcal{P} \llbracket \mathcal{R} \rrbracket: \mathbb{C} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& R_{1}: \text { double }(0) \rightarrow 0 \\
& R_{2} \text { : double }(s(x)) \rightarrow s(s(\text { double }(x)))
\end{aligned}
$$

Denotations: Incremental Answer Trees

(Concrete Semantics)

$$
\begin{aligned}
& R_{1} \text { : double }(0) \rightarrow 0 \\
& R_{2} \text { : double }(s(x)) \rightarrow s(s(\text { double }(x)))
\end{aligned}
$$

```
most general pattern }\in\mathbb{M}\mathbb{GP
```


Denotations: Incremental Answer Trees

(Concrete Semantics)

$$
\begin{aligned}
& R_{1} \text { : double }(0) \rightarrow 0 \\
& R_{2} \text { : double }(s(x)) \rightarrow s(s(\text { double }(x)))
\end{aligned}
$$

Denotations: Incremental Answer Trees

(Concrete Semantics)

$$
\begin{aligned}
& R_{1}: \text { double }(0) \rightarrow 0 \\
& R_{2}: \text { double }(s(x)) \rightarrow s(s(\text { double }(x)))
\end{aligned}
$$

```
the two denotations are isomorphic
\[
\begin{aligned}
& \{\varepsilon \cdot \perp,\{x / 0\} \cdot \dot{0} \\
& \quad\left\{x / s\left(x^{\prime}\right)\right\} \cdot \dot{s}(s(\perp)) \\
& \quad\{x / s(0)\} \cdot \dot{s}(s(\dot{0})) \\
& \left.\quad\left\{x / s\left(s\left(x^{\prime}\right)\right)\right\} \cdot \dot{s}(s(\dot{s}(s(\perp)))), \ldots\right\}
\end{aligned}
\]
the two denotations are isomorphic
```

- \Longrightarrow some steps
has taken place there

Denotations: Incremental Answer Trees

(Concrete Semantics)

$$
\begin{aligned}
& R_{1}: 0 \leq y \rightarrow \text { True } \\
& R_{2}: s(x) \leq 0 \rightarrow \text { False } \\
& R_{3}: s(x) \leq s(y) \rightarrow x \leq y
\end{aligned}
$$

the two denotations are isomorphic

Fix-point operator

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \cup\left\{\begin{array}{l|l}
(\vec{x} / \vec{t}\} \sigma) \upharpoonright_{\vec{x}} \cdot \dot{s} \left\lvert\, \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}\right.
\end{array}\right\}
$$

where terms are evaluated by means of $\mathcal{E} \llbracket \rrbracket_{\mathcal{I}}$

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{ll}
(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta & \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m g \operatorname{Var}^{\operatorname{Var}(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Fix-point operator

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \cup\left\{\left.(\{\vec{x} / \vec{t}\} \sigma)\right|_{\bar{x}} \cdot \dot{s} \left\lvert\, \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}\right.\right\}
$$

where terms are evaluated by means of $\mathcal{E} \llbracket \rrbracket_{\mathcal{I}}$

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{ll}
(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta \left\lvert\, \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m g u_{\operatorname{Var}(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}\right.
\end{array}\right\}
\end{aligned}
$$

Fix-point operator

a rule is taken

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) .\{\varepsilon \cdot \perp\} \cup\left\{\begin{array}{l}
\left.(\{\vec{x} / \vec{t}\} \sigma)\right|_{\vec{x}} \cdot \dot{s} \left\lvert\, \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}\right.
\end{array}\right\}
$$

where terms are evaluated by means of $\mathcal{E} \llbracket \rrbracket \mathcal{I}$

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{ll}
(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta \left\lvert\, \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m g u_{\operatorname{Var}(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}\right.
\end{array}\right\}
\end{aligned}
$$

Fix-point operator

(Concrete Semantics)

where terms are evaluated by means of $\mathcal{E} \llbracket \rrbracket \mathcal{I}$

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{l|l}
(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta & \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m \operatorname{gov} \operatorname{Var}(r)(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Fix-point operator

(Concrete Semantics)

where terms are evaluated by means of $\mathcal{E} \llbracket \rrbracket \mathcal{I}$

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{l|l}
(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta & \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m \operatorname{gov} \operatorname{Var}(r)(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Fix-point operator

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \cup\left\{\begin{array}{l|l}
(\vec{x} / \vec{t}\} \sigma) \upharpoonright_{\vec{x}} \cdot \dot{s} \left\lvert\, \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}\right.
\end{array}\right\}
$$

where terms are evaluated by means of $\mathcal{E} \llbracket \rrbracket_{\mathcal{I}}$

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{ll}
(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta & \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m g \operatorname{Var}^{\operatorname{Var}(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Fix-point operator

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \cup\left\{\begin{array}{l|l}
(\{\vec{x} / \vec{t}\} \sigma) \upharpoonright_{\vec{x}} \cdot \dot{s} & \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}
\end{array}\right\}
$$

where terms are evi sub-components are of $\mathcal{E} \llbracket \rrbracket_{\mathcal{I}}$
evaluated in parallel

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\}
\end{aligned}
$$

Fix-point operator

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \cup\left\{\begin{array}{l|l}
(\{\vec{x} / \vec{t}\} \sigma) \upharpoonright_{\vec{x}} \cdot \dot{s} & \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}
\end{array}\right\}
$$

where terms are evi sub-components are of $\mathcal{E} \llbracket \rrbracket_{\mathcal{I}}$
evaluated in parallel

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{l}
\left.(\vartheta \eta) \upharpoonright_{\vec{t}} \cdot r \eta \left\lvert\, \begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\exists \eta=m\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x}))
\end{array}\right.\right\}
\end{array}\right\} .\left\{\begin{array}{l}
\operatorname{Var(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}\right.
\end{aligned}
$$

partial answer as $f(\vec{x}) \mu \rightarrow^{*} r$

Fix-point operator

$$
\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}}:=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \cup\left\{\begin{array}{l|l}
(\vec{x} / \vec{t}\} \sigma) \upharpoonright_{\vec{x}} \cdot \dot{s} \left\lvert\, \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E} \llbracket r \rrbracket_{\mathcal{I}}, s \neq \perp
\end{array}\right.
\end{array}\right\}
$$

where terms are evi sub-components are of $\mathcal{E} \llbracket \rrbracket_{\mathcal{I}}$
evaluated in parallel

$$
\begin{aligned}
& \mathcal{E} \llbracket x \rrbracket_{\mathcal{I}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}}:=\left\{\begin{array}{c}
\left\{\begin{array}{l}
\sigma_{i} \cdot s_{i} \in \mathcal{E} \llbracket t_{i} \rrbracket_{\mathcal{I}} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}(f(\vec{x})) \\
\exists \eta=m \overbrace{\vec{t}} \cdot r \eta u_{V a r(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}\right\} \\
\begin{array}{l}
\exists \text { mgu }+ \\
\text { neededness }
\end{array}
\end{array}\right\} \begin{array}{l}
\text { partial answer } \\
\text { as } f(\vec{x}) \mu \rightarrow^{*} r
\end{array}
\end{aligned}
$$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow{ }^{*} c(x, \perp)$

Components partial eveluation:
$f(z, c(s(\perp), s(\perp)))$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow{ }^{*} c(x, \perp)$

Components partial eveluation:
$f(z, c(s(\perp), s(\perp)))$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow{ }^{*} c(x, \perp)$

Components partial eveluation:

$$
f(z, c(\dot{s}(\perp), \dot{s}(\perp)))
$$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow{ }^{*} c(x, \perp)$

Components partial eveluation:

$$
f(z, c(\dot{s}(\perp), \dot{s}(\perp)))
$$

$m^{\circ} g u_{\operatorname{Var}(r)}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow^{*} c(x, \perp)$

Components partial eveluation:

$$
f(z, c(\dot{s}(\perp), \dot{s}(\perp)))
$$

$$
\eta=\{x / \dot{s}(\perp), y / \perp, z / 0\}
$$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow{ }^{*} c(x, \perp)$

Components partial eveluation:

$$
f(z, c(\dot{s}(\perp), \dot{s}(\perp)))
$$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow^{*} c(x, \perp)$

Components partial eveluation:

$$
f(z, c(\dot{s}(\dot{0}), \dot{s}(\dot{0})))
$$

Rule taken from \mathcal{I} :
$f(0, c(x, s(y))) \rightarrow^{*} c(x, \perp)$

Components partial eveluation:

$$
f(z, c(\dot{s}(\dot{0}), \dot{s}(\dot{0})))
$$

Fix-point characterization

$\mathcal{P} \llbracket \mathcal{R} \rrbracket$ is continuous \Longrightarrow

$$
\begin{aligned}
\mathcal{F} \llbracket \mathcal{R} \rrbracket & :=I f p(\mathcal{P} \llbracket \mathcal{R} \rrbracket) \\
& =\mathcal{P} \llbracket \mathcal{R} \rrbracket \uparrow \omega
\end{aligned}
$$

Theorem (Correctness \& Coppletect correct partial answers

Fix-point characterization

$\mathcal{P} \llbracket \mathcal{R} \rrbracket$ is continuous \Longrightarrow

$$
\begin{aligned}
\mathcal{F} \llbracket \mathcal{R} \rrbracket & : \\
& =\text { Ifp }(\mathcal{P} \llbracket \mathcal{R} \rrbracket) \\
& =\mathcal{P} \llbracket \mathcal{R} \rrbracket \uparrow \omega
\end{aligned}
$$

Theorem (Correctness \& Copmpletg correct partial answers

$$
\text { 1. } \sigma \cdot s_{\perp} \in \mathcal{E} \llbracket t \rrbracket_{\mathcal{F} \llbracket \mathcal{R} \rrbracket} \Longrightarrow \exists s . t \underset{{\underset{\mathcal{R}}{ }}^{\sigma}}{\stackrel{\sigma}{*}} s \text { and } \tau_{\perp}(s)=s_{\perp}
$$

every partial answers
up to instantiation

Fix-point characterization

$\mathcal{P} \llbracket \mathcal{R} \rrbracket$ is continuous \Longrightarrow

$$
\begin{aligned}
\mathcal{F} \llbracket \mathcal{R} \rrbracket & :=\operatorname{lfp}(\mathcal{P} \llbracket \mathcal{R} \rrbracket) \\
& =\mathcal{P} \llbracket \mathcal{R} \rrbracket \uparrow \omega
\end{aligned}
$$

Theorem (Correctness \& Copipletє correct partial answers

1. $\sigma \cdot s_{\perp} \in \mathcal{E} \llbracket t \rrbracket_{\mathcal{F} \llbracket \mathcal{R} \rrbracket} \Longrightarrow \exists s . t \underset{{\underset{\mathcal{R}}{ }}^{\sigma}}{\underset{\sim}{*}} s$ and $\tau_{\perp}(s)=s_{\perp}$

it is able to generate every partial answers up to instantiation

Inducing the abstract operator

[Cousot 77]

Results from the A.I. theory:

$$
\begin{aligned}
& +\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket:=\alpha \circ \mathcal{P} \llbracket \mathcal{R} \rrbracket \circ \gamma \\
& +\mathcal{F}^{\alpha} \llbracket \mathcal{R} \rrbracket:=\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket \uparrow \omega \\
& +\alpha\left(\mathcal{F}^{\alpha} \llbracket \mathcal{R} \rrbracket\right) \leq \mathcal{F}^{\alpha} \llbracket \mathcal{R} \rrbracket
\end{aligned}
$$

Inducing the abstract operator

[Cousot 77]

Optimal abstract
fix-point operator
Results from the A.I. theory:

$$
\begin{aligned}
& +\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket:=\alpha \circ \mathcal{P} \llbracket \mathcal{R} \rrbracket \circ \gamma \\
& +\mathcal{F}^{\alpha} \llbracket \mathcal{R} \rrbracket:=\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket \uparrow \omega \\
& +\alpha\left(\mathcal{F}^{\alpha} \llbracket \mathcal{R} \rrbracket\right) \leq \mathcal{F}^{\alpha} \llbracket \mathcal{R} \rrbracket
\end{aligned}
$$

Case Study: depth(k)

Observed Property: it is observed the concrete behavior up to a fixed depth - k
Abstract Domain: depth(k) (answers with depth at most k)

Case Study: depth(k)

Observed Property: it is observed the concrete behavior up to a fixed depth - k
Abstract Domain: depth(k) (answers with depth at most k)

Case Study: depth(k)

Observed Property: it is observed the concrete behavior up to a fixed depth - k
Abstract Domain: depth(k) (answers with depth at most k)

Case Study: depth(k)

Observed Property: it is observed the concrete behavior up to a fixed depth - k
Abstract Domain: depth(k) (answers with depth at most k)

Case Study: depth(k)

Observed Property: it is observed the concrete behavior up to a fixed depth - k
Abstract Domain: depth(k) (answers with depth at most k)

The abstraction over interpretations α^{κ} is obtained through successive extensions

Optimal abstract fix-point operator

$$
\begin{aligned}
& \mathcal{P}^{\kappa} \llbracket \mathcal{R} \rrbracket_{\mathcal{I}^{\kappa}}:=\alpha^{\kappa}\left(\mathcal{P} \llbracket \mathcal{R} \rrbracket_{\gamma^{\kappa}\left(\mathcal{I}^{\kappa}\right)}\right) \\
& \quad=\lambda f(\vec{x}) \cdot\{\varepsilon \cdot \perp\} \vee \bigvee\left\{\left((\{\vec{x} / \vec{t}\} \sigma) \Gamma_{\vec{x}} \cdot \dot{s}\right) \dot{\psi}_{k} \left\lvert\, \begin{array}{l}
f(\vec{t}) \rightarrow r \ll \mathcal{R}, \\
\sigma \cdot s \in \mathcal{E}^{\kappa} \llbracket r \rrbracket_{\mathcal{I}^{\kappa}}, s \neq \perp
\end{array}\right.\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{E}^{\kappa} \llbracket x \rrbracket_{\mathcal{I}^{\kappa}}:=\{\varepsilon \cdot x\} \\
& \mathcal{E}^{\kappa} \llbracket f(\vec{t}) \rrbracket_{\mathcal{I}^{\kappa}}:=\left\{\begin{array}{l|l}
\sigma_{i} \cdot s_{i} \in \mathcal{E}^{\kappa} \llbracket t_{i} \rrbracket \rrbracket^{\kappa} \text { for } i=1, \ldots, n \\
\vartheta=m g u\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mu \cdot r \ll \mathcal{I}^{\kappa}(f(\vec{x})) \\
\exists \eta=m \operatorname{mg} u_{\operatorname{Var}(r) \cup \widehat{\mathcal{V}}}(f(\vec{x}) \mu, f(\vec{s}) \vartheta)
\end{array}\right\}
\end{aligned}
$$

Abstract Bugs \& Symptoms

Let \mathcal{R} be a program and α a property

+ (abstract) partially correct w.r.t. $\mathcal{S}^{\alpha}: \alpha(\mathcal{F} \llbracket \mathcal{R} \rrbracket) \leq \mathcal{S}^{\alpha}$
+ (abstract) complete w.r.t. $\mathcal{S}^{\alpha}: \mathcal{S}^{\alpha} \leq \alpha(\mathcal{F} \llbracket \mathcal{R} \rrbracket)$

automatically locate bugs responsible for symptoms
interference between incorrectness and
uncovered errors can be symptomless

Declarative Diagnosis
cannot reveal all errors symultaneosly

Abstract Bugs \& Symptoms

Let \mathcal{R} be a program and α a property

+ (abstract) partially correct w.r.t. $\mathcal{S}^{\alpha}: \alpha(\mathcal{F} \llbracket \mathcal{R} \rrbracket) \leq \mathcal{S}^{\alpha}$
+ (abstract) complete w.r.t. $\mathcal{S}^{\alpha}: \mathcal{S}^{\alpha} \leq \alpha(\mathcal{F} \llbracket \mathcal{R} \rrbracket)$

Task: automatically locate bugs responsible for symptoms
Problem: interference between incorrectness and uncovered errors can be symptomless
\Downarrow
Declarative Diagnosis
cannot reveal all errors symultaneosly

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

$$
\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket \mathcal{S}^{\alpha} \stackrel{?}{\leq} \mathcal{S}^{\alpha}
$$

$+e \leq \mathcal{P}^{\alpha} \llbracket\{I \rightarrow r\} \rrbracket_{\mathcal{S}^{\alpha}}$ and $e \not \subset \mathcal{S}^{\alpha}$
(abstractly incorrect rule)
$+e \wedge \mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket_{\mathcal{S}^{\alpha}}=\perp_{\mathbb{A}}$ and $e \leq \mathcal{S}^{\alpha} \quad$ (abstractly uncovered elem.)

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

```
using \mp@subsup{\mathcal{S}}{}{\alpha},I->r
    produces e.
```

 \(\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket_{\mathcal{S}^{\alpha}} \stackrel{?}{\leq} \mathcal{S}^{\alpha}\)
 \(+e \leq \mathcal{P}^{\alpha} \llbracket\{I \rightarrow r\} \rrbracket_{\mathcal{S}^{\alpha}}\) and \(e \npreceq \mathcal{S}^{\alpha}\)
 (abstractly incorrect rule)
 \(+e \wedge \mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket_{\mathcal{S}^{\alpha}}=\perp_{\mathbb{A}}\) and \(e \leq \mathcal{S}^{\alpha} \quad\) (abstractly uncovered elem.)

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:


```
+e\leq \mathcal{P}
+e^\mathcal{P}}\mp@subsup{\mathcal{N}}{}{\alpha}\llbracket\mathcal{R}\rrbracket\mp@subsup{|}{\mp@subsup{\mathcal{S}}{}{\alpha}}{}=\mp@subsup{\perp}{\mathbb{A}}{}\mathrm{ and e s S S
```


Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:


```
+e\leq\mp@subsup{\mathcal{P}}{}{\alpha}\llbracket{I->r}\\\mp@subsup{\mathcal{S}}{}{\alpha}}\mathrm{ and e && S
        using S S
        produce e...
    +e^\mathcal{P}}\mp@subsup{\mathcal{N}}{}{|}\llbracket\mathcal{R}\mp@subsup{\rrbracket}{\mp@subsup{\mathcal{S}}{}{\alpha}}{}=\mp@subsup{\perp}{\mathbb{A}}{}\mathrm{ and es S S
```


Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

```
using }\mp@subsup{\mathcal{S}}{}{\alpha},I->
    produces e..
```

 \(\underset{\substack{\ldots \text { but } e \text { was not } \\ \text { expected by } \mathcal{S}^{\alpha}}}{ } \stackrel{?}{\leq} \mathcal{S}^{\alpha}\)
 \(+e \leq \mathcal{P}^{\alpha} \llbracket\{I \rightarrow r\} \rrbracket_{\mathcal{S}^{\alpha}}\) and \(e \nless \mathcal{S}^{\alpha}\)
 (abstractly incorrect rule)
 using \(\mathcal{S}^{\alpha}, \mathcal{R}\) can't
 produce e...
 expected by \(\mathcal{S}^{\alpha}\)
 \(+e \wedge \mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket_{\mathcal{S}^{\alpha}}=\perp_{\mathbb{A}}\) and \(e \leq \mathcal{S}^{\alpha} \quad\) (abstractly uncovered elem.)

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

```
using }\mp@subsup{\mathcal{S}}{}{\alpha},I->
    produces e.
```

\ldots but e was not
expected by $\mathcal{S}^{\alpha}$$\quad \stackrel{?}{\leq} \mathcal{S}^{\alpha}$
$+e \leq \mathcal{P}^{\alpha} \llbracket\{I \rightarrow r\} \rrbracket_{\mathcal{S}^{\alpha}}$ and $e \nless \mathcal{S}^{\alpha}$
(abstractly incorrect rule)
using $\mathcal{S}^{\alpha}, \mathcal{R}$ can't
produce $e .$.
... but e was
expected by \mathcal{S}^{α}
$+e \wedge \mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket_{\mathcal{S}^{\alpha}}=\perp_{\mathbb{A}}$ and $e \leq \mathcal{S}^{\alpha} \quad$ (abstractly uncovered elem.)

Pros: $\quad+$ Static test (requires just one $\mathcal{P}^{\alpha} \llbracket \mathcal{R} \rrbracket$ step on \mathcal{S}^{α})

+ reveal all abstract errors regardless of symptoms interference
Cons: $\quad+$ imprecision of α can lead to false positives:

$$
\mathcal{P} \llbracket\{I \rightarrow r\} \rrbracket \mathcal{S} \sqsubseteq \mathcal{S} \wedge \mathcal{P}^{\alpha} \llbracket\{I \rightarrow r\} \rrbracket_{\alpha(\mathcal{S})} \neq \alpha(\mathcal{S})
$$

However

$$
\mathcal{P} \llbracket\{I \rightarrow r\} \rrbracket \mathcal{S} \nsubseteq \mathcal{S} \wedge \mathcal{P}^{\alpha} \llbracket\{I \rightarrow r\} \rrbracket_{\alpha(\mathcal{S})} \not \ddagger \alpha(\mathcal{S}) \Longrightarrow r \text { is abstractly incorrect }
$$

Example: infinite computation

+ Program:

$$
R: \operatorname{from}(n) \rightarrow n: \operatorname{from}(n)
$$

+ Specification: with $\kappa=3$

$$
\mathcal{S}^{\kappa}:=\left\{\begin{aligned}
\operatorname{from}(n) \mapsto & \left\{\varepsilon \cdot \perp, \varepsilon \cdot n!\perp, \varepsilon \cdot n \vdots s\left(\hat{x}_{1}\right) \vdots \perp\right. \\
& \left.\varepsilon \cdot n \vdots s\left(\hat{x}_{1}\right): \hat{x}_{2}: \hat{x}_{3}, \varepsilon \cdot n \vdots s\left(\hat{x}_{1}\right)!\hat{x}_{2}: \dot{\hat{x}_{3}}\right\}
\end{aligned}\right.
$$

We detect that rule R is abstractly incorrect since

$$
\mathcal{P}^{\kappa} \llbracket\{R\} \rrbracket_{\mathcal{S}^{\kappa}}=\left\{\begin{array}{r}
\operatorname{from}(n) \mapsto\left\{\varepsilon \cdot \perp, \varepsilon \cdot n!\perp, \varepsilon \cdot n^{!}!n^{\bullet} \perp,\right. \\
\left.\varepsilon \cdot n!n: \hat{x}_{2}: \hat{x}_{3}, \varepsilon \cdot n!n: \hat{x}_{2}: \dot{\hat{x}}_{3}\right\}
\end{array} \quad \neq \mathcal{S}^{\kappa}\right.
$$

In declarative debugging the goal must be wrapped with an unneeded function (e.g. take: Int $\rightarrow[\mathrm{a}] \rightarrow[\mathrm{a}]$) in order to make the Computation Tree finite.

+ Program:

$$
R_{1}: \text { double }(0) \rightarrow s(0) \quad R_{2}: \text { double }(s(x)) \rightarrow s(\text { double }(x))
$$

+ Abstract Specification: with $\kappa=2$

$$
\mathcal{S}^{\kappa}:=\left\{\begin{aligned}
\operatorname{double}(x) \mapsto & \left\{\varepsilon \cdot \perp,\{x / 0\} \cdot \dot{0},\left\{x / s\left(x^{\prime}\right)\right\} \cdot \dot{s}(s(\hat{y}))\right. \\
& \{x / s(0)\} \cdot \dot{s}(s(\dot{\hat{y}})),\left\{x / s\left(s\left(\hat{x}_{1}\right)\right\} \cdot \dot{s}(s(\dot{\hat{y}}))\right\}
\end{aligned}\right.
$$

We detect that both R_{1} and R_{2} are abstractly incorrect:

$$
\begin{aligned}
\mathcal{P}^{\kappa} \llbracket\left\{R_{1}\right\} \rrbracket_{\mathcal{S}^{\kappa}}= & \{\varepsilon \cdot \perp,\{x / 0\} \cdot \dot{s}(0)\} \not \leq \mathcal{S}^{\kappa} \\
\mathcal{P}^{\kappa} \llbracket\left\{R_{2}\right\} \rrbracket_{\mathcal{S}^{\kappa}}= & \left\{\varepsilon \cdot \perp, \varepsilon \cdot \dot{s}(\perp),\{x / s(0)\} \cdot \dot{s}(\dot{0}), \quad \neq \mathcal{S}^{\kappa}\right. \\
& \left\{x / s\left(s\left(\hat{x}_{1}\right)\right\} \cdot \dot{s}(\dot{s}(\hat{y})),\left\{x / s\left(s\left(\hat{x}_{1}\right)\right\} \cdot \dot{s}(\dot{s}(\dot{\hat{y}}))\right\}\right.
\end{aligned}
$$

Example: symptoms interference

Consider the buggy program

$$
\operatorname{main}=C(h(f(x)), x) \quad h(s(x))=0 \quad R: f(s(x))=s(0)
$$

where rule R should have been $f(x)=s(h(x))$ to be correct w.r.t. the intended semantics on depth (k), with $k>2$,

$$
\mathcal{S}^{\kappa}=\left\{\begin{array}{l}
f(x) \mapsto\left\{\varepsilon \cdot \perp, \varepsilon \cdot \dot{s}(\perp),\left\{x / s\left(x^{\prime}\right)\right\} \cdot \dot{s}(\dot{0})\right\} \\
h(x) \mapsto\left\{\varepsilon \cdot \perp,\left\{x / s\left(x^{\prime}\right)\right\} \cdot \dot{0}\right\} \\
\operatorname{main} \mapsto\{\varepsilon \cdot \perp, \varepsilon \cdot \dot{C}(\perp, x), \varepsilon \cdot \dot{C}(\dot{0}, x)\}
\end{array}\right.
$$

The bug preserves the computed answer behavior both for h and f, but not for main. In fact, main evaluates to $\left\{x / s\left(x^{\prime}\right)\right\} \cdot C\left(0, s\left(x^{\prime}\right)\right)$. Rule R is abstractly incorrect:

$$
\mathcal{P}^{\kappa} \llbracket\{R\} \rrbracket_{\mathcal{S}^{\kappa}}=\left\{f(x) \mapsto\left\{\varepsilon \cdot \perp,\left\{x / s\left(x^{\prime}\right)\right\} \cdot \dot{s}(0)\right\} \notin \mathcal{S}^{\kappa}\right.
$$

Conclusion

+ Summary
+ Fix-point characterization:
\checkmark correctly models the typical features of FL languages
X does not handle H.O. and Residuation
\checkmark goal-indipendent \& compositional
+ Abstract Diagnosis:
\checkmark consists in a static test
\checkmark does not need any symptom in advice
\checkmark points out more then one bug
\checkmark can check if the specified property \mathcal{S}^{α} holds in \mathcal{R}
\boldsymbol{X} can give warnings even if there is no bug (false positives)
\boldsymbol{X} does not detect bugs not affecting the observed property

+ Future work

+ applying A.D. technique for more interesting properties
+ extend our results to Higher-Order and Residuation

