Abstract Diagnosis

of First Order Functional Logic Programs

Giovanni Bacci Marco Comini

Dipartimento di Matematica e Informatica
University of Udine

LOPSTR 2010
23 July, Hagenberg

1/16

Motivations

incompleteness incorrectness
symptom symptom

Automatic Debugging ‘ S R]

Input: program R + specification &

Task: automatically locate bugs in R X X
in general it is undecidable rules which are
responsible for
symptoms X

How to cope with this problem?
+ Declarative Debugging = partial inspection of the
symptomatic computation tree
-+ Abstract Diagnosis = use a correct approximation of the
semantics which is finitely representable

2

16

Motivations

incompleteness incorrectness
symptom symptom

Automatic Debugging R]

. S
Input: program R + specification &
X X

in general it is undecidable rules which are
responsible for
symptoms X

Task: automatically locate bugs in R

How to cope with this problem?

+ Declarative Debugging

+ Abstract Diagnosis

There are some cons:
-+ symptom driven
-+ semi-automatic

-+ can’t ensure that a property
holds for P

Motivations

incompleteness incorrectness
symptom symptom

Automatic Debugging R]

. S
Input: program R + specification &
X X

in general it is undecidable rules which are
responsible for
symptoms X

Task: automatically locate bugs in R

How to cope with this problem?

+ Declarative Debugging

+ Abstract Diagnosis

There are some cons:
-+ symptom driven
does no . .
suffer -+ semi-automatic
-+ can’t ensure that a property

holds for P

1
1
((C,E,U,H,J_(C,TC) o : (A,S,V,/\,J_A,TA)
1
1

Complete Lattice Noetherian Complete Lattice

The Recipe:
-+ Abstraction function a: C — A

. 3/16

The main idea (Abstract Diagnosis)

(C,g5,u,n, 1c, Tc) N (A, <,V A LA, TA)

Complete Lattice Noetherian Complete Lattice

S PIR])

The Recipe:
-+ Abstraction function a:C — A
+ Fix-point operator P[R]:C - C

Denotations: Incremental Answer Trees (Concrete Semantics)

Ry: double(0) - 0
Ry: double(s(x)) — s(s(double(x)))

double(x)
B
N

{x/03-0 {x/s(x")}-s(s(1))

N

{x/s(0)}-s(s(0)) {x/s(s(x"))}-s*(1)

4/16

Denotations: Incremental Answer Trees (Concrete Semantics)

Ry: double(0) - 0
Ry: double(s(x)) — s(s(double(x)))

most general pattern € MGP

double(x)
B
N

{x/03-0 {x/s(x")}-s(s(1))

N

{x/s(0)}-s(s(0)) {x/s(s(x"))}-s*(1)

4/16

Denotations: Incremental Answer Trees (Concrete Semantics)

Ry: double(0) - 0
Ry: double(s(x)) — s(s(double(x)))

double(x)
B
N

{x/03-0 {x/s(x")}-s(s(1))

N

{x/s(0)}-s(s(0)) {x/s(s(x"))}-s*(1)

S(s(5(s(1))))

Denotations: Incremental Answer Trees (Concrete Semantics)

Ry: double(0) - 0
Ry: double(s(x)) — s(s(double(x)))

the two denotations are isomorphic

double(x) }—l
{1, {x/0}-0,

-1
/ \ {x/s(x")}-5(s(1)),

{x/03-0 {x/s(x")}-s(s(1))

PN {x/5(0)}-5(s(0)),

{x/s(0)}5(s(0)) {x/s(s(x"))}-5*(1) ECCOREECCCONIES!
// \\\ e —— some steps
,/ \\\ has taken place there

4/16

Denotations: Incremental Answer Trees

{x/0} - true X/S(X’)} - false
{X/Sm(o)}.t }//0
J1em(y") rue

x/s"(s(x))
{ y/s"(0) }-false

(Concrete Semantics)

Ri:0<y — True
Ry:s(x) <0 — False
Rs:s(x) <s(y) > x<y

the two denotations are isomorphic

{a-L, {x/0} - true, ...
{x/s'(0),y/s'(y')} - true, ...
{x/s(x"),y/0} - true, ...
{x/s" 1 (x"),y[s'(0)} - true, .. }

e ——> some steps
has taken place there

4/16

Fix-point operator (Concrete Semantics)

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) >r<R,
o-se&rlz, s+ L

where terms are evaluated by means of £[[z

Elx]z :={e-x}
oi-sie&fti]z fori=1,...,n
(WIn)ts-m |V =mgu(or,...,on), p-r <I(f(X))
31 = gty o (F ()t F(5)0)

E[F(D)]z

5/16

Fix-point operator (Concrete Semantics)

a rule is taken

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evaluated by means of £[[z

Elx]z :={e-x}
oi-sie&fti]z fori=1,...,n
EMF(D]z = n)ts |0 =mgu(or,...,on), p-r <I(f(X))
31 = migryer oy (F(R)p, F(3)9)

5/16

Fix-point operator (Concrete Semantics)

a rule is taken

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evaluated by means of £[|z e rhe
ITS rhs Is

evaluated

E[x]z = {e-x} wrt. T
oi-sie&fti]z fori=1,...,n

EMFD)]z = Wn)t:-r|0=mgu(o,...,on), pu-r<<I(f(X))
31 = migryer oy (F(R)p, F(3)9)

5/16

Fix-point operator (Concrete Semantics)

the new
contribution
is annotated

a rule is taken

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evaluated by means of £[|z e rhe
IS rns Is

evaluated

E[x]z = {e-x} wrt. T
oi-sie&fti]z fori=1,...,n

EMFD)]z = Wn)t:-r|0=mgu(o,...,on), pu-r<<I(f(X))
31 = migryer oy (F(R)p, F(3)9)

5/16

Fix-point operator (Concrete Semantics)

the new
contribution
is annotated

a rule is taken

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evaluated by means of £[|z e rhe
IS rns Is

evaluated

E[x]z = {e-x} wrt. T
oi-sie&fti]z fori=1,...,n

EMFD)]z = Wn)t:-r|0=mgu(o,...,on), pu-r<<I(f(X))
31 = migryer oy (F(R)p, F(3)9)

5/16

Fix-point operator (Concrete Semantics)

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) >r<R,
o-se&rlz, s+ L

where terms are evaluated by means of £[[z

Elx]z :={e-x}
oi-sie&fti]z fori=1,...,n
(WIn)ts-m |V =mgu(or,...,on), p-r <I(f(X))
31 = gty o (F ()t F(5)0)

E[F(D)]z

5/16

Fix-point operator (Concrete Semantics)

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evi g, components are ©f €[[z

evaluated in parallel
Elxlz ={e-x}
|J,--s,-65[[t,-ﬂz fori=1,...,n
v =mgu(o1,...,0n), u-r <I(f(X))
31 = My (o (F (1, F(3)0)

EMF(D)]z =5 Wn)ts-rm

5/16

Fix-point operator (Concrete Semantics)

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evi g, components are ©f €[[z

evaluated in parallel
Elxlz ={e-x}
|J,--s,-65[[t,-ﬂz fori=1,...,n
v =mgu(o1,...,0n), u-r <I(f(X))
30 = My (o (F ()1, F(3)0)

EMF(D)]z =5 Wn)ts-rm

partial answer
as F(X)pu =% r

5/16

Fix-point operator (Concrete Semantics)

PIR]z = Af(X).{e- L} U {({)?/_f}a) x-S

f(t) > r<R,
o-se&fr]z, s+ 1

where terms are evi g, components are ©f €[[z

evaluated in parallel
Elxlz ={e-x}
|J,--s,-65[[t,-ﬂz fori=1,...,n
v =mgu(o1,...,0n), u-r <I(f(X))
31 = My (o (F ()1, F(3)0)

EMF(D)]z =5 Wn)ts-rm

3 mgu + partial answer
neededness as F(X)pu =% r

5/16

Rule taken from Z: Components partial eveluation:
£(0,c(x,s(v))) =" c(x, 1)

f(z,c(s(1),s(1)))

Y N N
ay i
l

s
|
y 1

6/16

Rule taken from Z: Components partial eveluation:

F(0,c(x,5(v))) =" c(x; 1) f(z,c(s(1),s(1)))

6/16

Rule taken from Z: Components partial eveluation:
£(0,c(x,s(v))) =" c(x, 1) f(z,c(s(1),5(1)))

6/16

Rule taken from Z: Components partial eveluation:
£(0,c(x,s(v))) =" c(x, 1) f(z,c(s(1),5(1)))

6/16

moguVar(r)(f()?):U’a f(g.)’l?)

Rule taken from Z:
f(0,c(x,s(y))) =" c(x,1)

N
f I =0 (.....) C <o
o N
X y Lo

n={x/s(1),y/1,2/0}

[Case 2]
Components partial eveluation:
f(z,¢(5(1),5(1)))
............ /N
—_—
!
-

(induced substitution)

Rule taken from Z: Components partial eveluation:
£(0,c(x,s(v))) =" c(x, 1) f(z,c(s(1),5(1)))

6/16

Rule taken from Z: Components partial eveluation:
£(0,c(x,s(v))) =" c(x,1) f(z,¢(5(0),5(0)))

6/16

Rule taken from Z: Components partial eveluation:
£(0,c(x,s(v))) =" c(x,1) f(z,¢(5(0),5(0)))

6/16

Fix-point characterization

P[R] is continuous =—>

F[R] = ifp (P[R])
= P[[R]] Tw

(Concrete Semantics)

Fix-point characterization (Concrete Semantics)

P[R] is continuous =—>

F[R] = ifp (P[R])
= P[[R]] Tw

it generates only

Theorem (Correctness & Coprplet el el lEes -

1 o-s e&[t]rrg = 3s- t %* sand 1, (s)=s,

7/16

Fix-point characterization (Concrete Semantics)

P[R] is continuous =—>

F[R] = ifp (P[R])
= P[[R]] Tw

it generates only
Theorem (Correctness & Coprplet el el lEes

1 o-s e&[t]rrg = 3s- t %* sand 1, (s)=s,

2.t %* s = 3 <0.3s, =7.(5)V s.t. V-5, € E[t] rpry

it is able to generate
every partial answers
up to instantiation

7/16

Inducing the abstract operator [Cousot 77]

PIR] PRI

Results from the A.l. theory:
+ PO[R] = aoP[R] o
+ FR] = PY[R]tw
+ a(F[R]) < FoR]

Inducing the abstract operator [Cousot 77]

PIR] PRI

Optimal abstract
fix-point operator

Results from the A.l. theory:
+ PO[R] = a0 P[R] o
+ FR] = PY[R]tw
+ a(F[R]) < FoR]

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth — k

Abstract Domain: depth(k) (answers with depth at most k)

{x/s}- ¢
LN
7
x' 0

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth — k

Abstract Domain: depth(k) (answers with depth at most k)

{x/s}- ¢
LN
/]

%(7777)(/ 77777 0 ,,,,,,

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth — k

Abstract Domain: depth(k) (answers with depth at most k)

c P———>—— {x/s}- ¢
Ny LN
/ol

N

””” b4) 23

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth — k

Abstract Domain: depth(k) (answers with depth at most k)

Zi=1

{X/S}/l\)

zZ1 22 Z3 Z4

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth — k

Abstract Domain: depth(k) (answers with depth at most k)

Zi=1

{X/S}/l\)

zZ1 22 Z3 Z4

The abstraction over interpretations o is obtained
through successive extensions

16

Optimal abstract fix-point operator

P [R]zs = a"(P[R]yx(zr))

VR {(({%/f}w)b

f(t) »r<R,
o-se&[r]z~, s# 1L

where

E"[x]zx :={e-x}

EFF(B)]z= = {(1977) te-rm |V =mgu(oy,..., on), o r K I(f(X))

oi-si€Eti]r fori=1,...,n J

30 = gy (F(R) 1, F(3)D)

10/16

Abstract Bugs & Symptoms (Abstract Diagnosis)

Let R be a program and « a property
+ (abstract) partially correct w.r.t. S*: <S8°
-+ (abstract) complete w.r.t. S*: S <
S (FIRD)
abstract abstract

incompleteness incorrectness
symptom symptom

11/16

Abstract Bugs & Symptoms (Abstract Diagnosis)

Let R be a program and « a property
(abstract) partially correct w.r.t. S <S8“
(abstract) complete w.r.t. S*: S <

S a(F[R])
abstract abstract
incompleteness incorrectness
symptom symptom

automatically locate bugs responsible for symptoms

interference between incorrectness and

uncovered errors can be symptomless
Declarative Diagnosis

cannot reveal all errors symultaneosly

11/16

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:
?
PR] s < S®

+ e<PY{l > r}]s« and e £ S (abstractly incorrect rule)

+ e AP*[R]se =14 and e<S* (abstractly uncovered elem.)

12 /16

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:
] ?
using S, [- r !
produces e. .. Pa [[R]] S« < Sa

+ e<PY{l > r}]s« and e £ S (abstractly incorrect rule)

+ e AP*[R]se =14 and e<S* (abstractly uncovered elem.)

12 /16

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

- ?
using 8%, | = r ...but e was not !
produces e. . . expected by S¢ '« < Sa
+ e<PY{l > r}]s« and e £ S (abstractly incorrect rule)

+ e AP*[R]se =14 and e<S* (abstractly uncovered elem.)

12 /16

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

- ?
using 8%, | = r ...but e was not !
produces e. . . expected by S¢ '« < Sa
+ e<PY{l > r}]s« and e £ S (abstractly incorrect rule)

using S%, R can't
produce e. ..

+ e AP*[R]se =14 and e<S* (abstractly uncovered elem.)

12 /16

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

using 8%, | = r ...but e was not ? a
produces e. . . expected by S¢ '« < S

+ e<PY{l > r}]s« and e £ S (abstractly incorrect rule)

using S¢, R can't ...but e was
produce e. .. expected by S%

+ e AP*[R]se =14 and e<S* (abstractly uncovered elem.)

12 /16

Abstract Diagnosis Framework

Based on abstract version of Park's Induction Principle:

using 8%, | = r ...but e was not ? a
produces e. . . expected by S¢ '« < S

+ e<PY{l > r}]s« and e £ S (abstractly incorrect rule)

using S¢, R can't ...but e was
produce e. .. expected by S%

+ e AP*[R]se =14 and e<S* (abstractly uncovered elem.)

Pros: 4 Static test (requires just one P*[R] step on S%)
+ reveal all abstract errors regardless of symptoms interference
Cons: 4 imprecision of a can lead to false positives:

Pl = r}ls e SAPY[{I = r}lacs) £ (S)
However

Pl{l = r}ls ¢ SAP[{l = r}a(s) £ a(S) = r is abstractly incorrect

12 /16

Example: infinite computation (Abstract Diagnosis)

+ Program:
R: from(n) — n: from(n)
-+ Specification: with kK =3
from(n) ~ {e- L, - niL, e-nis(X)L,
e-nis(X1) %0 ks, € - n?s()?l)%’%z?)?;}
We detect that rule R is abstractly incorrect since

from(n) — {5 1, e-niL, e-ninil,

PR} s~ = tS"

£-n:n:Xp:Xs, € n:n:)?2:§<3}

In declarative debugging the goal must be wrapped with an unneeded function

(e.g. take : Int — [a] — [a]) in order to make the Computation Tree finite.

13 /16

Example: simultaneous bugs detection (Abstract Diagnosis)

+ Program:
Ri: double(0) — s(0) Ry: double(s(x)) — s(double(x))
+ Abstract Specification: with x = 2
o {double(x) o {e- 1, {x/0}-0, .{X/s(x’)} S(s(9)), .
{x/5(0)}-5(s(9)), {x/s(s(51)}-5(s(9))}
We detect that both Ry and R, are abstractly incorrect:
PI{R} s = {e- L, {x/0}-5(0)} £ 8"
P {Ro}sx = {e- L, 2+ 5(1), {x/s(0)}-5(0), tS”
{x/s(s(32)} - 3(3(9)), {x/s(s(5)} - 3G ()

in fact it sufficies x =1
14 /16

Example: symptoms interference (Abstract Diagnosis)

Consider the buggy program
main = C(h(f(x)),x) h(s(x)) =0 R:f(s(x)) =s(0)

where rule R should have been f(x) = s(h(x)) to be correct w.r.t.
the intended semantics on depth(k), with k > 2,

F(x) > {e-1, e-5(1), {x/s(x')}-$(0)}

S"=1h(x) > {e- 1, {x/s(x')} -0}
main {s-J_, € é(l,X), € é((.),X)}

The bug preserves the computed answer behavior both for h and f,
but not for main. In fact, main evaluates to {x/s(x")}- C(0,s(x")).

Rule R is abstractly incorrect:

PR s = {f(x) > {e- 1, {x/s(<)}-3(0)} £ 8"

15/16

Conclusion

+ Summary

+ Fix-point characterization:
v/ correctly models the typical features of FL languages
X does not handle H.O. and Residuation
v/ goal-indipendent & compositional

+ Abstract Diagnosis:
v/ consists in a static test
v/ does not need any symptom in advice
v/ points out more then one bug
v/ can check if the specified property S holds in R
X can give warnings even if there is no bug (false positives)
X does not detect bugs not affecting the observed property

+ Future work

+ applying A.D. technique for more interesting properties
+ extend our results to Higher-Order and Residuation

16

16

	Motivations

