
Abstract Diagnosis
of First Order Functional Logic Programs

Giovanni Bacci Marco Comini

Dipartimento di Matematica e Informatica
University of Udine

LOPSTR 2010
23 July, Hagenberg

1 / 16

Motivations

Automatic Debugging

Input: program R + specification S
Task: automatically locate bugs in R

in general it is undecidable

How to cope with this problem?

+ Declarative Debugging ⇒ partial inspection of the
symptomatic computation tree

+ Abstract Diagnosis ⇒ use a correct approximation of the
semantics which is finitely representable

There are some cons:

+ symptom driven

+ semi-automatic

+ can’t ensure that a property
holds for P

does not
suffer

JRKS

%%
"

incorrectness
symptom

incompleteness
symptom

rules which are
responsible for
symptoms %

2 / 16

Motivations

Automatic Debugging

Input: program R + specification S
Task: automatically locate bugs in R

in general it is undecidable

How to cope with this problem?

+ Declarative Debugging

⇒ partial inspection of the
symptomatic computation tree

+ Abstract Diagnosis

⇒ use a correct approximation of the
semantics which is finitely representable

There are some cons:

+ symptom driven

+ semi-automatic

+ can’t ensure that a property
holds for P

does not
suffer

JRKS

%%
"

incorrectness
symptom

incompleteness
symptom

rules which are
responsible for
symptoms %

2 / 16

Motivations

Automatic Debugging

Input: program R + specification S
Task: automatically locate bugs in R

in general it is undecidable

How to cope with this problem?

+ Declarative Debugging

⇒ partial inspection of the
symptomatic computation tree

+ Abstract Diagnosis

⇒ use a correct approximation of the
semantics which is finitely representable

There are some cons:

+ symptom driven

+ semi-automatic

+ can’t ensure that a property
holds for P

does not
suffer

JRKS

%%
"

incorrectness
symptom

incompleteness
symptom

rules which are
responsible for
symptoms %

2 / 16

The main idea (Abstract Diagnosis)

JRKS

α(JRK)

lfp (PαJRK)

Sα

α
α

(C,⊑,⊔,⊓,�C,⊺C)
Complete Lattice

(A,≤,∨,∧,�A,⊺A)
Noetherian Complete Lattice

The Recipe:

+ Abstraction function α∶C→ A

+ Fix-point operator P JRK∶C→ C

3 / 16

The main idea (Abstract Diagnosis)

lfp (P JRK)S

α(lfp (P JRK))

lfp (PαJRK)

Sα

α
α

(C,⊑,⊔,⊓,�C,⊺C)
Complete Lattice

(A,≤,∨,∧,�A,⊺A)
Noetherian Complete Lattice

The Recipe:

+ Abstraction function α∶C→ A
+ Fix-point operator P JRK∶C→ C

3 / 16

Denotations: Incremental Answer Trees (Concrete Semantics)

double(x)

ε ⋅ �

{x/0} ⋅ 0 {x/s(x ′)} ⋅ s(s(�))

{x/s(0)} ⋅ s(s(0)) {x/s(s(x ′′))} ⋅ s4(�)

R1∶double(0) → 0

R2∶double(s(x)) → s(s(double(x)))

most general pattern ∈MGP

{ ε ⋅ �, {x/0} ⋅
●

0,

{x/s(x ′)} ⋅ ●s(s(�)),

{x/s(0)} ⋅ ●s(s(
●

0)),

{x/s(s(x ′))} ⋅ ●s(s(●s(s(�)))), . . .}

● Ô⇒ some steps
has taken place there

the two denotations are isomorphic
x ≤ y

ε ⋅ �

{x/0} ⋅ true

{ x/sm(0)
y/sm(y ′)} ⋅ true

{x/s(x
′)

y/0
} ⋅ false

{x/s
n(s(x ′))

y/sn(0) } ⋅ false

. . .
. . .

R1∶0 ≤ y → True

R2∶ s(x) ≤ 0→ False

R3∶ s(x) ≤ s(y) → x ≤ y

{ ε ⋅ �, {x/0} ⋅
●

true, . . .

{x/s i(0), y/s i(y ′)} ⋅
●

true, . . .

{x/s(x ′), y/0} ⋅
●

true, . . .

{x/s i+1(x ′), y/s i(0)} ⋅
●

true, . . .}

4 / 16

Denotations: Incremental Answer Trees (Concrete Semantics)

double(x)

ε ⋅ �

{x/0} ⋅ 0 {x/s(x ′)} ⋅ s(s(�))

{x/s(0)} ⋅ s(s(0)) {x/s(s(x ′′))} ⋅ s4(�)

R1∶double(0) → 0

R2∶double(s(x)) → s(s(double(x)))

most general pattern ∈MGP

{ ε ⋅ �, {x/0} ⋅
●

0,

{x/s(x ′)} ⋅ ●s(s(�)),

{x/s(0)} ⋅ ●s(s(
●

0)),

{x/s(s(x ′))} ⋅ ●s(s(●s(s(�)))), . . .}

● Ô⇒ some steps
has taken place there

the two denotations are isomorphic
x ≤ y

ε ⋅ �

{x/0} ⋅ true

{ x/sm(0)
y/sm(y ′)} ⋅ true

{x/s(x
′)

y/0
} ⋅ false

{x/s
n(s(x ′))

y/sn(0) } ⋅ false

. . .
. . .

R1∶0 ≤ y → True

R2∶ s(x) ≤ 0→ False

R3∶ s(x) ≤ s(y) → x ≤ y

{ ε ⋅ �, {x/0} ⋅
●

true, . . .

{x/s i(0), y/s i(y ′)} ⋅
●

true, . . .

{x/s(x ′), y/0} ⋅
●

true, . . .

{x/s i+1(x ′), y/s i(0)} ⋅
●

true, . . .}

4 / 16

Denotations: Incremental Answer Trees (Concrete Semantics)

double(x)

ε ⋅ �

{x/0} ⋅ 0 {x/s(x ′)} ⋅ s(s(�))

{x/s(0)} ⋅ s(s(0)) {x/s(s(x ′′))} ⋅ s4(�)

R1∶double(0) → 0

R2∶double(s(x)) → s(s(double(x)))

most general pattern ∈MGP

●

s(s(●s(s(�))))

{ ε ⋅ �, {x/0} ⋅
●

0,

{x/s(x ′)} ⋅ ●s(s(�)),

{x/s(0)} ⋅ ●s(s(
●

0)),

{x/s(s(x ′))} ⋅ ●s(s(●s(s(�)))), . . .}

● Ô⇒ some steps
has taken place there

the two denotations are isomorphic
x ≤ y

ε ⋅ �

{x/0} ⋅ true

{ x/sm(0)
y/sm(y ′)} ⋅ true

{x/s(x
′)

y/0
} ⋅ false

{x/s
n(s(x ′))

y/sn(0) } ⋅ false

. . .
. . .

R1∶0 ≤ y → True

R2∶ s(x) ≤ 0→ False

R3∶ s(x) ≤ s(y) → x ≤ y

{ ε ⋅ �, {x/0} ⋅
●

true, . . .

{x/s i(0), y/s i(y ′)} ⋅
●

true, . . .

{x/s(x ′), y/0} ⋅
●

true, . . .

{x/s i+1(x ′), y/s i(0)} ⋅
●

true, . . .}

4 / 16

Denotations: Incremental Answer Trees (Concrete Semantics)

double(x)

ε ⋅ �

{x/0} ⋅ 0 {x/s(x ′)} ⋅ s(s(�))

{x/s(0)} ⋅ s(s(0)) {x/s(s(x ′′))} ⋅ s4(�)

R1∶double(0) → 0

R2∶double(s(x)) → s(s(double(x)))

most general pattern ∈MGP

{ ε ⋅ �, {x/0} ⋅
●

0,

{x/s(x ′)} ⋅ ●s(s(�)),

{x/s(0)} ⋅ ●s(s(
●

0)),

{x/s(s(x ′))} ⋅ ●s(s(●s(s(�)))), . . .}

● Ô⇒ some steps
has taken place there

the two denotations are isomorphic

x ≤ y

ε ⋅ �

{x/0} ⋅ true

{ x/sm(0)
y/sm(y ′)} ⋅ true

{x/s(x
′)

y/0
} ⋅ false

{x/s
n(s(x ′))

y/sn(0) } ⋅ false

. . .
. . .

R1∶0 ≤ y → True

R2∶ s(x) ≤ 0→ False

R3∶ s(x) ≤ s(y) → x ≤ y

{ ε ⋅ �, {x/0} ⋅
●

true, . . .

{x/s i(0), y/s i(y ′)} ⋅
●

true, . . .

{x/s(x ′), y/0} ⋅
●

true, . . .

{x/s i+1(x ′), y/s i(0)} ⋅
●

true, . . .}

4 / 16

Denotations: Incremental Answer Trees (Concrete Semantics)

double(x)

ε ⋅ �

{x/0} ⋅ 0 {x/s(x ′)} ⋅ s(s(�))

{x/s(0)} ⋅ s(s(0)) {x/s(s(x ′′))} ⋅ s4(�)

R1∶double(0) → 0

R2∶double(s(x)) → s(s(double(x)))

most general pattern ∈MGP

{ ε ⋅ �, {x/0} ⋅
●

0,

{x/s(x ′)} ⋅ ●s(s(�)),

{x/s(0)} ⋅ ●s(s(
●

0)),

{x/s(s(x ′))} ⋅ ●s(s(●s(s(�)))), . . .}

● Ô⇒ some steps
has taken place there

the two denotations are isomorphic
x ≤ y

ε ⋅ �

{x/0} ⋅ true

{ x/sm(0)
y/sm(y ′)} ⋅ true

{x/s(x
′)

y/0
} ⋅ false

{x/s
n(s(x ′))

y/sn(0) } ⋅ false

. . .
. . .

R1∶0 ≤ y → True

R2∶ s(x) ≤ 0→ False

R3∶ s(x) ≤ s(y) → x ≤ y

{ ε ⋅ �, {x/0} ⋅
●

true, . . .

{x/s i(0), y/s i(y ′)} ⋅
●

true, . . .

{x/s(x ′), y/0} ⋅
●

true, . . .

{x/s i+1(x ′), y/s i(0)} ⋅
●

true, . . .}

4 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

Fix-point operator (Concrete Semantics)

P JRKI ∶= λf (x⃗). {ε ⋅ �} ∪ {({x⃗/t⃗}σ)↾x⃗ ⋅
●
s ∣

f (t⃗) → r ≪R,
σ ⋅ s ∈ E JrKI , s ≠ �

}

where terms are evaluated by means of E J KI

E JxKI ∶= {ε ⋅ x}

E Jf (t⃗)KI ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ E JtiKI for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ I(f (x⃗))
∃η = m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

a rule is taken

its rhs is
evaluated
w.r.t. I

the new
contribution
is annotated

sub-components are
evaluated in parallel

partial answer
as f (x⃗)µ →∗ r

∃ mgu +
neededness

5 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 1]

Rule taken from I : Components partial eveluation:
f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(s(�), s(�)))

f

0 c

x s

y

f

z c

s

�

f

0 c

�

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 1]

Rule taken from I : Components partial eveluation:
f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(s(�), s(�)))

f

0 c

x s

y

f

z c

s

�

f

0 c

s

�

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 2]

Rule taken from I : Components partial eveluation:
f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(●s(�), ●s(�)))

f

0 c

x s

y

f

z c

●
s

�

f

0 c

●
s

�

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 2]

Rule taken from I : Components partial eveluation:
f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(●s(�), ●s(�)))

f

0 c

x s

y

f

z c

●
s

�

f

0 c

●
s

�

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 2]

Rule taken from I : Components partial eveluation:
f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(●s(�), ●s(�)))

f

0 c

x s

y

f

z c

●
s

�

f

0 c

●
s

�

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 2]

Rule taken from I : Components partial eveluation:
f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(●s(�), ●s(�)))

f

0 c

x s

y

f

z c

●
s

�

f

0 c

●
s

�

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 3]

Rule taken from I : Components partial eveluation:

f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(●s(
●
0),

●
s(

●
0)))

f

0 c

x s

y

f

z c

●
s

●
0

f

0 c

●
s

●
0

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

m̊guVar(r)(f (x⃗)µ, f (s⃗)ϑ) [Case 3]

Rule taken from I : Components partial eveluation:

f (0, c(x , s(y))) →∗ c(x ,�) f (z , c(●s(
●
0),

●
s(

●
0)))

f

0 c

x s

y

f

z c

●
s

●
0

f

0 c

●
s

●
0

%

η = {x/
●
s(�), y/�, z/0} (induced substitution)

6 / 16

Fix-point characterization (Concrete Semantics)

P JRK is continuous Ô⇒

F JRK ∶= lfp (PJRK)
=PJRK↑ω

Theorem (Correctness & Completeness)

1. σ ⋅ s� ∈ E JtKF JRK Ô⇒ ∃s. t σ↝
R
∗ s and τ�(s) = s�

it generates only
correct partial answers

2. t
σ↝
R
∗ s Ô⇒ ∃ϑ ≤ σ.∃s� = τ�(s)ϑ s.t. ϑ ⋅ s� ∈ E JtKF JRK

it is able to generate
every partial answers
up to instantiation

7 / 16

Fix-point characterization (Concrete Semantics)

P JRK is continuous Ô⇒

F JRK ∶= lfp (PJRK)
=PJRK↑ω

Theorem (Correctness & Completeness)

1. σ ⋅ s� ∈ E JtKF JRK Ô⇒ ∃s. t σ↝
R
∗ s and τ�(s) = s�

it generates only
correct partial answers

2. t
σ↝
R
∗ s Ô⇒ ∃ϑ ≤ σ.∃s� = τ�(s)ϑ s.t. ϑ ⋅ s� ∈ E JtKF JRK

it is able to generate
every partial answers
up to instantiation

7 / 16

Fix-point characterization (Concrete Semantics)

P JRK is continuous Ô⇒

F JRK ∶= lfp (PJRK)
=PJRK↑ω

Theorem (Correctness & Completeness)

1. σ ⋅ s� ∈ E JtKF JRK Ô⇒ ∃s. t σ↝
R
∗ s and τ�(s) = s�

it generates only
correct partial answers

2. t
σ↝
R
∗ s Ô⇒ ∃ϑ ≤ σ.∃s� = τ�(s)ϑ s.t. ϑ ⋅ s� ∈ E JtKF JRK

it is able to generate
every partial answers
up to instantiation

7 / 16

Inducing the abstract operator [Cousot 77]

P JRK PαJRK
α

γ

(C,⊑) (A,≤)

Results from the A.I. theory:

+ PαJRK ∶= α ○ P JRK ○ γ
+ FαJRK ∶= PαJRK↑ω
+ α(FαJRK) ≤ FαJRK

Optimal abstract
fix-point operator

F JRK α(F JRK)

FαJRKα

8 / 16

Inducing the abstract operator [Cousot 77]

P JRK PαJRK
α

γ

(C,⊑) (A,≤)

Results from the A.I. theory:

+ PαJRK ∶= α ○ P JRK ○ γ
+ FαJRK ∶= PαJRK↑ω
+ α(FαJRK) ≤ FαJRK

Optimal abstract
fix-point operator

F JRK α(F JRK)

FαJRKα

8 / 16

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth – k

Abstract Domain: depth(k) (answers with depth at most k)

{x/ s } ⋅ ●
c

s

x ′

s

●
0

y

�

�

{x/ s } ⋅ ●
c

s

ẑ1

s

●
ẑ3

yẑ1

●
ẑ3 ẑ4ẑ2

☇k=2☇k=1

The abstraction over interpretations ακ is obtained
through successive extensions

9 / 16

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth – k

Abstract Domain: depth(k) (answers with depth at most k)

{x/ s } ⋅ ●
c

s

x ′

s

●
0

y

�

�

{x/ s } ⋅ ●
c

s

ẑ1

s

●
ẑ3

yẑ1

●
ẑ3 ẑ4ẑ2

☇k=2☇k=1

The abstraction over interpretations ακ is obtained
through successive extensions

9 / 16

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth – k

Abstract Domain: depth(k) (answers with depth at most k)

{x/ s } ⋅ ●
c

s

x ′

s

●
0

y

�

�

{x/ s } ⋅ ●
c

s

ẑ1

s

●
ẑ3

y

ẑ1

●
ẑ3 ẑ4ẑ2

☇k=2

☇k=1

The abstraction over interpretations ακ is obtained
through successive extensions

9 / 16

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth – k

Abstract Domain: depth(k) (answers with depth at most k)

{x/ s } ⋅ ●
c

s

x ′

s

●
0

y

�

�

{x/ s } ⋅ ●
c

s

ẑ1

s

●
ẑ3

y

ẑ1

●
ẑ3 ẑ4ẑ2

☇k=2

☇k=1

The abstraction over interpretations ακ is obtained
through successive extensions

9 / 16

Case Study: depth(k) (Abstract Diagnosis)

Observed Property: it is observed the concrete behavior up to
a fixed depth – k

Abstract Domain: depth(k) (answers with depth at most k)

{x/ s } ⋅ ●
c

s

x ′

s

●
0

y

�

�

{x/ s } ⋅ ●
c

s

ẑ1

s

●
ẑ3

y

ẑ1

●
ẑ3 ẑ4ẑ2

☇k=2

☇k=1

The abstraction over interpretations ακ is obtained
through successive extensions

9 / 16

Optimal abstract fix-point operator

PκJRKIκ ∶= ακ(P JRKγκ
(I

κ
))

= λf (x⃗). {ε ⋅ �} ∨⋁{(({x⃗/t⃗}σ)↾x⃗ ⋅
●

s)☇k ∣
f (t⃗) → r ≪R,
σ ⋅ s ∈ EκJrKIκ , s ≠ �

}

where

EκJxKIκ ∶= {ε ⋅ x}

EκJf (t⃗)KIκ ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ϑη)↾t⃗ ⋅ rη

RRRRRRRRRRRRRRRR

σi ⋅ si ∈ EκJtiKIκ for i = 1, . . . ,n

ϑ = mgu(σ1, . . . , σn), µ ⋅ r ≪ Iκ(f (x⃗))
∃η = m̊guVar(r)∪V̂(f (x⃗)µ, f (s⃗)ϑ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

10 / 16

Abstract Bugs & Symptoms (Abstract Diagnosis)

Let R be a program and α a property

+ (abstract) partially correct w.r.t. Sα: α(F JRK) ≤ Sα

+ (abstract) complete w.r.t. Sα: Sα ≤ α(F JRK)
α(F JRK)Sα

%%
"

abstract
incorrectness

symptom

abstract
incompleteness

symptom

Task: automatically locate bugs responsible for symptoms

Problem: interference between incorrectness and
uncovered errors can be symptomless

⇓
Declarative Diagnosis

cannot reveal all errors symultaneosly

11 / 16

Abstract Bugs & Symptoms (Abstract Diagnosis)

Let R be a program and α a property

+ (abstract) partially correct w.r.t. Sα: α(F JRK) ≤ Sα

+ (abstract) complete w.r.t. Sα: Sα ≤ α(F JRK)
α(F JRK)Sα

%%
"

abstract
incorrectness

symptom

abstract
incompleteness

symptom

Task: automatically locate bugs responsible for symptoms

Problem: interference between incorrectness and
uncovered errors can be symptomless

⇓
Declarative Diagnosis

cannot reveal all errors symultaneosly

11 / 16

Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJRKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e /≤ Sα (abstractly incorrect rule)

+ e ∧ PαJRKSα = �A and e ≤ Sα (abstractly uncovered elem.)

using Sα, l → r
produces e. . .

. . . but e was not
expected by Sα

using Sα, R can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJRK step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
P J{l → r}KS ⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S)

However
P J{l → r}KS /⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S) Ô⇒ r is abstractly incorrect

12 / 16

Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJRKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e /≤ Sα (abstractly incorrect rule)

+ e ∧ PαJRKSα = �A and e ≤ Sα (abstractly uncovered elem.)

using Sα, l → r
produces e. . .

. . . but e was not
expected by Sα

using Sα, R can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJRK step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
P J{l → r}KS ⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S)

However
P J{l → r}KS /⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S) Ô⇒ r is abstractly incorrect

12 / 16

Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJRKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e /≤ Sα (abstractly incorrect rule)

+ e ∧ PαJRKSα = �A and e ≤ Sα (abstractly uncovered elem.)

using Sα, l → r
produces e. . .

. . . but e was not
expected by Sα

using Sα, R can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJRK step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
P J{l → r}KS ⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S)

However
P J{l → r}KS /⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S) Ô⇒ r is abstractly incorrect

12 / 16

Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJRKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e /≤ Sα (abstractly incorrect rule)

+ e ∧ PαJRKSα = �A and e ≤ Sα (abstractly uncovered elem.)

using Sα, l → r
produces e. . .

. . . but e was not
expected by Sα

using Sα, R can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJRK step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
P J{l → r}KS ⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S)

However
P J{l → r}KS /⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S) Ô⇒ r is abstractly incorrect

12 / 16

Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJRKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e /≤ Sα (abstractly incorrect rule)

+ e ∧ PαJRKSα = �A and e ≤ Sα (abstractly uncovered elem.)

using Sα, l → r
produces e. . .

. . . but e was not
expected by Sα

using Sα, R can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJRK step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
P J{l → r}KS ⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S)

However
P J{l → r}KS /⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S) Ô⇒ r is abstractly incorrect

12 / 16

Abstract Diagnosis Framework

Based on abstract version of Park’s Induction Principle:

PαJRKSα
?
≤ Sα

+ e ≤ PαJ{l → r}KSα and e /≤ Sα (abstractly incorrect rule)

+ e ∧ PαJRKSα = �A and e ≤ Sα (abstractly uncovered elem.)

using Sα, l → r
produces e. . .

. . . but e was not
expected by Sα

using Sα, R can’t
produce e. . .

. . . but e was
expected by Sα

Pros: + Static test (requires just one PαJRK step on Sα)
+ reveal all abstract errors regardless of symptoms interference

Cons: + imprecision of α can lead to false positives:
P J{l → r}KS ⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S)

However
P J{l → r}KS /⊑ S ∧ PαJ{l → r}Kα(S) /≤ α(S) Ô⇒ r is abstractly incorrect

12 / 16

Example: infinite computation (Abstract Diagnosis)

+ Program:

R ∶ from(n) → n ∶ from(n)

+ Specification: with κ = 3

Sκ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

from(n) ↦ { ε ⋅ �, ε ⋅ n●∶�, ε ⋅ n●∶s(x̂1)
●∶�,

ε ⋅ n●∶s(x̂1)
●∶x̂2

●∶x̂3, ε ⋅ n
●∶s(x̂1)

●∶x̂2
●∶
●
x̂3}

We detect that rule R is abstractly incorrect since

PκJ{R}KSκ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

from(n) ↦ { ε ⋅ �, ε ⋅ n●∶�, ε ⋅ n●∶n●∶�,

ε ⋅ n●∶n●∶x̂2
●∶x̂3, ε ⋅ n

●∶n●∶x̂2
●∶
●
x̂3}

/≤ Sκ

In declarative debugging the goal must be wrapped with an unneeded function

(e.g. take ∶ Int → [a] → [a]) in order to make the Computation Tree finite.

13 / 16

Example: simultaneous bugs detection (Abstract Diagnosis)

+ Program:

R1∶double(0) → s(0) R2∶double(s(x)) → s(double(x))

+ Abstract Specification: with κ = 2

Sκ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

double(x) ↦ { ε ⋅ �, {x/0} ⋅
●
0, {x/s(x ′)} ⋅

●
s(s(ŷ)),

{x/s(0)} ⋅ ●s(s(
●
ŷ)), {x/s(s(x̂1)} ⋅

●
s(s(

●
ŷ))}

We detect that both R1 and R2 are abstractly incorrect:

PκJ{R1}KSκ = {ε ⋅ �, {x/0} ⋅
●
s(0)} /≤ Sκ

PκJ{R2}KSκ = { ε ⋅ �, ε ⋅
●
s(�), {x/s(0)} ⋅ ●s(

●
0),

{x/s(s(x̂1)} ⋅
●
s(●s(ŷ)), {x/s(s(x̂1)} ⋅

●
s(●s(

●
ŷ))}

/≤ Sκ

in fact it sufficies κ = 1
14 / 16

Example: symptoms interference (Abstract Diagnosis)

Consider the buggy program

main = C(h(f (x)), x) h(s(x)) = 0 R ∶ f (s(x)) = s(0)

where rule R should have been f (x) = s(h(x)) to be correct w.r.t.
the intended semantics on depth(k), with k > 2,

Sκ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f (x) ↦ {ε ⋅ �, ε ⋅ ●s(�), {x/s(x ′)} ⋅ ●s(
●
0)}

h(x) ↦ {ε ⋅ �, {x/s(x ′)} ⋅
●
0}

main ↦ {ε ⋅ �, ε ⋅
●
C(�, x), ε ⋅

●
C(

●
0, x)}

The bug preserves the computed answer behavior both for h and f ,
but not for main. In fact, main evaluates to {x/s(x ′)} ⋅C(0, s(x ′)).
Rule R is abstractly incorrect:

PκJ{R}KSκ = {f (x) ↦ {ε ⋅ �, {x/s(x ′)} ⋅
●
s(0)} /≤ Sκ

15 / 16

Conclusion

+ Summary
+ Fix-point characterization:

4 correctly models the typical features of FL languages
8 does not handle H.O. and Residuation
4 goal-indipendent & compositional

+ Abstract Diagnosis:

4 consists in a static test
4 does not need any symptom in advice
4 points out more then one bug
4 can check if the specified property Sα holds in R
8 can give warnings even if there is no bug (false positives)
8 does not detect bugs not affecting the observed property

+ Future work
+ applying A.D. technique for more interesting properties
+ extend our results to Higher-Order and Residuation

16 / 16

	Motivations

