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The focus of the talk

® Probabilistic Models (Markov chains)
® Automatic verification (e.g., Model Checking)

® state space explosion (even after model
reduction, symbolic tech., partial-order reduction)

® Still too large: one needs to compromise in the
accuracy of the model (introduce an error)

® Our proposal: metric-based state space reduction
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Bisimilarity Distance

(fixed point characterization by van Breugel & Worrell)

Given a parameter A€(0, 1], called discount factor,
the bisimilarity distance 0, is the least fixed point of

| if 2(m)=*a(n)
Aj(d)(m,n) =
A-?C(d)(r(m) O(n)) otherwise
-
discount at (Kantorowch liftin )
_ each step [couplmg]

F¢(d)(t(m),0(n)) = min { S d(u,v)- C(u,v)

2 ueM C(u,V) = 0(n)(v)
2veN C(u,v) = 7(m)(u)



Approximate verification
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Some natural questions

* Given an MC M, and k € N, what is its
closest k-state approximant!?

* Does this always exist!?

» Can we find one? How hard is it to get!?



The CBA-A problem

— The Closest Bounded Approximant w.r.t. 9, ~

INSTANCE: An MC M, and a positive integer k
OUTPUT: An MC V" with at most k states

o« o o« o 5 M’N*
. minimizing 0( ) )

( MCs with < k states ]

SA(M,N) = inf { SA(M,N) | V€ MVC(k)}

o of
eneralization ¢
b'\%imi\arity quotient




CBA-A has always a solution

inf { 5,(M, V) | NEMC(k)} =
= inf{ d(mo,no) |(Ax(d)=d) VEMC(K) }

— Lemma (Meaningful labels)

For any N’eMC(k) there exists N eMC(k) with labels
_ taken from M, such that 0A(M,N) < 0.(M,N°).

mimimize dmg,ng

such that ?Zmn—l S Ezmy#a(;) j
A (wyentn G’ - duo < dimpn £(m) = a(n) |
Deen it =7(m)(w) mu€M,neN |
D wens Cu = Onw meM,nveEN |
Lm 20 mueM,nuvel




CBA-A4 as bilinear program

mimimize dmo no

L = L nENﬁ() 0(u

) |
\Zmeplmn S |M[—-1  meN __J

Z’UEN Curyy = T(m)(u) m,u € M, n € N
ZuEMCZL,ZUnZQn,U mec M, nveN

Cur >0 m,u € M, n,veN




The complexity of CBA-A

We study its complexity by looking at its decision variant

~— The Bounded Approximant threshold w.r.t. 0, ~

INSTANCE: An MC M, a positive integer k, and
a rational bound &

C OUTPUT: yes iff 6,(M,N) < € for some NeMC(k) ,

Theorem:
[_ For any A€(0,1], BA-4 is in PSPACE j

proof sketch: we can encode the question (M k, €)e BA-A to that of asking for

the feasibility of a set of bilinear inequalities. This is a decision problem in for the
existential theory of the reals, thus it can be solved in PSPACE [Canny - STOC'88].




The complexity of CBA-A

We study its complexity by looking at its decision variant

~— The Bounded Approximant threshold w.r.t. 0, ~

INSTANCE: An MC M, a positive integer k, and
a rational bound &
OUTPUT: yes iff 6,(M,N) < € for some NeMC(k)

\_ J
Theorem:

[_ For any A€(0,1], BA-4 is in PSPACE j
Theorem:

[_ For any A€(0,1], BA-A is NP-hard j

proof idea: by reduction from VERTEX COVER



...the hardness of BA-A opens a new question:
is it easy to choose a “‘good” bound k!

N is a significant approximant if
OA(M,N) < |



The MSAB-A problem

~ The Minimum Significant Approximant Bound w.r.t. 6, ~

INSTANCE: An MC M, and a positive integer k
OUTPUT: The smallest k such that 0;(M,N)<I,
for some N eEMC(k)

-~ The Significant Bounded App

INSTANCE: An MC M, and a |
OUTPUT: yes iff 0,(M,N)<I| for some




A practical solution: EM Algorithm

® Given M and a significant approximant N

® it produces a sequence Ny, ..., N1 having
successively decreased distance from M

® NV, is a sub-optimal solution of CBA-4

- Intuitive idea: ~

assign greater probability to transitions that are most

representative of the behavior of M
N Y




A=1 A=0.8
Case M| |k Ox-init | dx-final | # | time | O -init | dx-final | # | time
23 | 5| 0.775 0.054 3 4.8 0.576 0.025 3 4.8
53 | 5 | 0.856 0.062 3 25.7 0.667 0.029 3 25.9
IPv4 103 | 5 | 0.923 0.067 3 | 116.3 | 0.734 0.035 3 | 116.5
(AM) 53 | 6 | 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 | 6 | 0.837 0.032 3 | 183.7 | 0.624 0.017 3 | 182.7
203 | 6 — — - TO — - — TO
23 | 5| 0.775 0.109 2 2.7 0.576 0.049 3 4.2
53 | 5 | 0.856 0.110 2 14.2 0.667 0.049 3 21.8
IPv4 103 | 5 | 0.923 0.110 2 67.1 0.734 0.049 3 | 1004
(AE) 53 | 6 | 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 | 6 | 0.837 0.072 2 | 105.9 | 0.624 0.019 3 | 159.5
203 | 6 — — - TO — - — TO
DrkW 39 | 7| 0.565 0.466 14 | 259.3 | 0.432 0.323 14 | 252.8
(AM) 49 | 7 | 0.568 0.460 14 | 453.7 | 0.433 0.322 14 | 420.5
59 | 8 | 0.646 — — TO 0.423 — — TO
DrkW 39 | 7| 0.565 0.435 11 | 156.6 | 0.432 0.321 2 28.6
(AE) 49 | 7 | 0.568 0.434 10 | 247.7 | 0.433 0.316 2 46.2
59 | 8 | 0.646 0.435 10 | 588.9 | 0.423 0.309 2 | 115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf pro-

tocol and the classic Drunkard’s Walk w.r.t. the heuristics AM and AE.




What we have seen

Theoretical Results

We studied metric-based state space reduction

for MCs
|. Closest Bounded Approximant

» encoded as a bilinear program
2. Bounded Approximant

+ PSPACE & NP-hard for all A€(0,1]
3. Significant Bounded Approximant

* NP-complete for A=

Practical Results
We proposed an EM method to obtain a
sub-optimal approximants




Ongoing & Future work

* Improve the encoding as bilinear program

» Study the CBA problem w.r.t. other

» behavioral distances (e.g. Total Variation)
- models (e.g. MDP, CTMC, Prob. Automata)



Appendix



Vertex Cover <p BA-A

o0 e o

C

(G ,h) € VertexCover & (Mg, m+h+2, 12/2m?2) e

<

SA-A



Vertex Cover <p BA-A

(G,h) € VertexCover < (Mg, m+h+2, 12/2m2) € BA-1



