Minimizing Markov chains Beyond Bisimilarity

Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, Radu Mardare Aalborg University, Denmark

I November 2016 - Rold Storkro, Denmark NWPT 2016

The focus of the talk

- Probabilistic Models (Markov chains)
- Automatic verification (e.g., Model Checking)
- state space explosion (even after model reduction, symbolic tech., partial-order reduction)
- Still too large: one needs to compromise in the accuracy of the model (introduce an error)
- Our proposal: metric-based state space reduction

Probabilistic Bisimulation

[Larsen \& Skou'91]

Probabilistic Bisimulation

[Larsen \& Skou'91]

Probabilistic Bisimulation

[Larsen \& Skou'91]

Bisimilarity Distance

$$
\mathcal{M}=\left(\mathrm{M}, \tau, \ell, \mathrm{~m}_{0}\right)
$$

$$
\mathcal{N}=\left(\mathrm{N}, \theta, \alpha, \mathrm{n}_{0}\right)
$$

Bisimilarity Distance

$$
\mathcal{M}=\left(\mathrm{M}, \tau, \ell, \mathrm{~m}_{0}\right)
$$

$$
\mathcal{N}=\left(\mathrm{N}, \theta, \alpha, \mathrm{n}_{0}\right)
$$

Bisimilarity Distance

$$
\mathcal{M}=\left(\mathrm{M}, \tau, \ell, \mathrm{~m}_{0}\right) \quad \mathcal{N}=\left(\mathrm{N}, \theta, \alpha, \mathrm{n}_{0}\right)
$$

Bisimilarity Distance

(fixed point characterization by van Breugel \& Worrell)
Given a parameter $\lambda \in(0, \mathrm{I}]$, called discount factor, the bisimilarity distance δ_{λ} is the least fixed point of

$$
\begin{gathered}
\Delta_{\lambda}(\mathrm{d})(\mathrm{m}, \mathrm{n})= \begin{cases}\mathrm{I} & \text { if } \ell(\mathrm{m}) \neq \alpha(\mathrm{n}) \\
\lambda \cdot \mathcal{K}(\mathrm{d})(\tau(\mathrm{m}), \theta(\mathrm{n})) & \text { otherwise }\end{cases} \\
\begin{array}{c}
\begin{array}{c}
\text { discount at } \\
\text { each step }
\end{array} \\
\underbrace{}_{\text {Kantorovich lifting }} \text { coupling }
\end{array} \\
\mathcal{K}(\mathrm{d})(\tau(\mathrm{m}), \theta(\mathrm{n}))=\min \left\{\sum \mathrm{d}(\mathrm{u}, \mathrm{v}) \cdot \mathrm{C}(\mathrm{u}, \mathrm{v}) \left\lvert\, \begin{array}{l}
\sum_{\mathrm{u} \in \mathrm{M}} \mathrm{C}(\mathrm{u}, \mathrm{v})=\theta(\mathrm{n})(\mathrm{v}) \\
\sum_{\mathrm{v} \in \mathrm{~N}} \mathrm{C}(\mathrm{u}, \mathrm{v})=\tau(\mathrm{m})(\mathrm{u})
\end{array}\right.\right\}
\end{gathered}
$$

Approximate verification

[Chen, van Breugel, Worrell - FoSSaCS'12]

...imagine that $|\mathcal{M}| \gg|\mathcal{N}|$, we can use \mathcal{N} in place of \mathcal{M}

Some natural questions

- Given an MC \mathcal{M}, and $k \in \mathbb{N}$, what is its closest k-state approximant?
- Does this always exist?
- Can we find one? How hard is it to get?

The CBA- λ problem

[The Closest Bounded Approximant w.r.t. δ_{λ}
INSTANCE: An MC \mathcal{M}, and a positive integer k OUTPUT: An MC \mathcal{N}^{*} with at most k states minimizing $\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}^{*}\right)$

$$
\text { MCs with } \leq \mathrm{k} \text { states }
$$

$$
\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}^{*}\right)=\inf \left\{\delta_{\lambda}(\mathcal{M}, \mathcal{N}) \mid \mathcal{N} \in \operatorname{MC}(k)\right\}
$$

CBA- λ has always a solution

$$
\begin{gathered}
\quad \inf \left\{\delta_{\lambda}(\mathcal{M}, \mathcal{N}) \mid \mathcal{N} \in \operatorname{MC}(\mathrm{k})\right\}= \\
= \\
=\inf \left\{\mathrm{d}\left(\mathrm{~m}_{0}, \mathrm{n}_{0}\right) \mid \Delta_{\lambda}(\mathrm{d}) \subseteq \mathrm{d}, \mathcal{N} \in \operatorname{MC}(\mathrm{k})\right\}
\end{gathered}
$$

Lemma (Meaningful labels)

For any $\mathcal{N}{ }^{\prime} \in \mathrm{MC}(k)$ there exists $\mathcal{N} \in \mathrm{MC}(k)$ with labels taken from \mathcal{M}, such that $\delta_{\lambda}(\mathcal{M}, \mathcal{N}) \leq \delta_{\lambda}\left(\mathcal{M}, \mathcal{N}^{\prime}\right)$.

$$
\begin{array}{lll}
\operatorname{mimimize} & d_{m_{0}, n_{0}} \\
\text { such that }
\end{array} \begin{array}{ll}
d_{m, n}=1 & \ell(m) \neq \alpha(n) \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & \ell(m)=\alpha(n) \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m, u \in M, n \in N \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, u \in M, n, v \in N
\end{array}
$$

CBA- λ as bilinear program

$$
\begin{array}{ll}
\operatorname{mimimize} & d_{m_{0}, n_{0}} \\
\text { such that } & m \in M, n \in N \\
l_{m, n} \leq d_{m, n} \leq 1 & m \in M, n \in N \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & n \in N, \ell(m) \neq \ell(u) \\
l_{m, n} \cdot l_{u, n}=0 & n \in N, \ell(m) \neq \ell(u) \\
l_{m, n}+l_{u, n}=1 & n \in N, \ell(m)=\ell(u) \\
l_{m, n}=l_{u, n} & n \in N \\
\sum_{m \in M} l_{m, n} \leq|M|-1 & m, u \in M, n \in N \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m \in M, n, v \in N \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m, u \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & \\
\end{array}
$$

The complexity of CBA- λ

We study its complexity by looking at its decision variant
The Bounded Approximant threshold w.r.t. δ_{λ} INSTANCE: An MC \mathcal{M}, a positive integer k, and a rational bound ε OUTPUT: yes iff $\delta_{\lambda}(\mathcal{M}, \mathcal{N}) \leq \varepsilon$ for some $\mathcal{N} \in \operatorname{MC}(k)$

Theorem:
For any $\lambda \in(0, I], B A-\lambda$ is in PSPACE
proof sketch: we can encode the question $\langle\boldsymbol{\mathcal { M }}, k, \varepsilon\rangle \in B A-\lambda$ to that of asking for the feasibility of a set of bilinear inequalities. This is a decision problem in for the existential theory of the reals, thus it can be solved in PSPACE [Canny - STOC'88].

The complexity of CBA- λ

We study its complexity by looking at its decision variant
The Bounded Approximant threshold w.r.t. δ_{λ} INSTANCE: An MC \mathcal{M}, a positive integer k, and a rational bound ε OUTPUT: yes iff $\delta_{\lambda}(\mathcal{M}, \mathcal{N}) \leq \varepsilon$ for some $\mathcal{N} \in \operatorname{MC}(k)$

Theorem:
For any $\lambda \in(0, I], \mathrm{BA}-\lambda$ is in PSPACE
Theorem:
For any $\lambda \in(0, \mathrm{I}], \mathrm{BA}-\lambda$ is NP -hard proof idea: by reduction from VERTEX COVER
...the hardness of BA- λ opens a new question: is it easy to choose a "good" bound k ?

\mathcal{N} is a significant approximant if $\delta_{\lambda}(\mathcal{M}, \mathcal{N})<1$

The MSAB- λ problem

The Minimum Significant Approximant Bound w.r.t. δ_{λ}
INSTANCE: An MC \mathcal{M}, and a positive integer k OUTPUT: The smallest k such that $\delta_{\lambda}(\mathcal{M}, \mathcal{N})<I$, for some $\mathcal{N} \in \operatorname{MC}(k)$

INSTANCE: An MC \mathcal{M}, and a for $\lambda=1$
OUTPUT: yes iff $\delta_{\lambda}(\mathcal{M}, \mathcal{N})<1$ for some $\mathcal{J N M C l}_{\boldsymbol{M}}$

A practical solution: EM Algorithm

- Given \mathcal{M} and a significant approximant \mathcal{N}_{0}
- it produces a sequence $\mathcal{N}_{0}, \ldots, \mathcal{N}_{\mathrm{h}}$ having successively decreased distance from \mathcal{M}
- \mathcal{N}_{h} is a sub-optimal solution of CBA- λ

Intuitive idea:
assign greater probability to transitions that are most representative of the behavior of $\boldsymbol{\mathcal { M }}$

Case	$\|M\|$	k	$\lambda=1$				$\lambda=0.8$			
			δ_{λ}-init	δ_{λ}-final	\#	time	δ_{λ}-init	δ_{λ}-final	\#	time
IPv4 (AM)	23	5	0.775	0.054	3	4.8	0.576	0.025	3	4.8
	53	5	0.856	0.062	3	25.7	0.667	0.029	3	25.9
	103	5	0.923	0.067	3	116.3	0.734	0.035	3	116.5
	53	6	0.757	0.030	3	39.4	0.544	0.011	3	39.4
	103	6	0.837	0.032	3	183.7	0.624	0.017	3	182.7
	203	6	-	-	-	TO	-	-	-	TO
$\begin{aligned} & \mathrm{IPv4} \\ & (\mathrm{AE}) \end{aligned}$	23	5	0.775	0.109	2	2.7	0.576	0.049	3	4.2
	53	5	0.856	0.110	2	14.2	0.667	0.049	3	21.8
	103	5	0.923	0.110	2	67.1	0.734	0.049	3	100.4
	53	6	0.757	0.072	2	21.8	0.544	0.019	3	33.0
	103	6	0.837	0.072	2	105.9	0.624	0.019	3	159.5
	203	6	-	-	-	TO	-	-	-	TO
$\begin{gathered} \text { DrkW } \\ (\mathrm{AM}) \end{gathered}$		7	0.565	0.466	14	259.3	0.432	0.323	14	252.8
	49	7	0.568	0.460	14	453.7	0.433	0.322	14	420.5
	59	8	0.646	-	-	TO	0.423	-	-	TO
$\begin{gathered} \text { DrkW } \\ (\mathrm{AE}) \end{gathered}$	39	7	0.565	0.435	11	156.6	0.432	0.321	2	28.6
	49	7	0.568	0.434	10	247.7	0.433	0.316	2	46.2
	59	8	0.646	0.435	10	588.9	0.423	0.309	2	115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf protocol and the classic Drunkard's Walk w.r.t. the heuristics AM and AE.

What we have seen

Theoretical Results

We studied metric-based state space reduction for MCs
I. Closest Bounded Approximant

- encoded as a bilinear program

2. Bounded Approximant

- PSPACE \& NP-hard for all $\lambda \in(0, I]$

3. Significant Bounded Approximant

- NP-complete for $\lambda=1$
-Practical Results
We proposed an EM method to obtain a sub-optimal approximants

Ongoing \& Future work

- Improve the encoding as bilinear program
- Study the CBA problem w.r.t. other - behavioral distances (e.g. Total Variation) - models (e.g. MDP, CTMC, Prob.Automata)

Appendix

Vertex Cover $\leq p$ BA- λ

$\langle\mathrm{G}, \mathrm{h}\rangle \in$ VertexCover $\Leftrightarrow\left\langle\boldsymbol{\mathcal { M }}_{\mathrm{G}}, \mathrm{m}+\mathrm{h}+2, \lambda^{2} / 2 \mathrm{~m}^{2}\right\rangle \in \mathrm{BA}-\lambda$

Vertex Cover $\leq p$ BA- λ

$\langle\mathrm{G}, \mathrm{h}\rangle \in$ VertexCover $\Leftrightarrow\left\langle\boldsymbol{\mathcal { M }}_{\mathrm{G}}, \mathrm{m}+\mathrm{h}+2, \lambda^{2} / 2 \mathrm{~m}^{2}\right\rangle \in \mathrm{BA}-\lambda$

