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The focus of the talk

• Probabilistic Models (Markov chains)

• Automatic verification (e.g., Model Checking)

• state space explosion (even after model 
reduction, symbolic tech., partial-order reduction)

• Still too large: one needs to compromise in the 
accuracy of the model (introduce an error)

• Our proposal: metric-based state space reduction



Probabilistic Bisimulation
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…but small 
variations may
prevent aggregation
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Bisimilarity Distance

Given a parameter 𝜆∈(0,1], called discount factor,
the bisimilarity distance 𝛿𝜆 is the least fixed point of 

(fixed point characterization by van Breugel & Worrell)

𝓚(d)(𝜏(m),θ(n)) = min ∑ d(u,v)⋅C(u,v) 
∑u∈M C(u,v) = θ(n)(v)  
∑v∈N C(u,v) = 𝜏(m)(u)  

coupling

Δ𝜆(d)(m,n) = 
1                            if (m)≠𝛼(n)

𝜆⋅𝓚(d)(𝜏(m),θ(n))   otherwise

Kantorovich liftingdiscount at 
each step



|P(𝓜)([φ]) - P(𝓝)([φ])| ≤ 𝛿1(𝓜,𝓝) for all LTL formulas!

Approximate verification

difference in the 
probability of satisfying φ

[Chen, van Breugel, Worrell - FoSSaCS’12]

P(𝓜)([φ])

P(𝓝)([φ])

0 1

dd

approximate 
solution on φ

…imagine that |𝓜|≫|𝓝|, we can use 𝓝 in place of 𝓜



Some natural questions

• Given an MC 𝓜, and k ∈ ℕ, what is its 
closest k-state approximant?

• Does this always exist?

• Can we find one? How hard is it to get?



The CBA-𝜆 problem
The Closest Bounded Approximant w.r.t. 𝛿𝜆  

INSTANCE:  An MC 𝓜, and a positive integer k
OUTPUT:  An MC 𝓝* with at most k states
                  minimizing 𝛿𝜆(𝓜,𝓝*)

𝛿𝜆(𝓜,𝓝*) = inf { 𝛿𝜆(𝓜,𝓝) | 𝓝∈MC(k)}

MCs with ≤ k states

generalization of 

bisimilarity quotient



CBA-𝜆 has always a solution
inf { 𝛿𝜆(𝓜,𝓝) | 𝓝∈MC(k)} =

= inf{ d(m0,n0) | Δ𝜆(d)⊑d, 𝓝∈MC(k) }
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mimimize dm0,n0

such that dm,n = 1 `(m) 6= ↵(n)

�
P

(u,v)2M⇥N cm,n
u,v · du,v  dm,n `(m) = ↵(n)

P
v2N cm,n

u,v = ⌧(m)(u) m,u 2 M , n 2 N
P

u2M cm,n
u,v = ✓n,v m 2 M , n, v 2 N

cm,n
u,v � 0 m,u 2 M , n, v 2 N

Fig. 2. Characterization of CBA-� as a bilinear optimization problem.

following property:

for all m 2 M,n 2 N, l
m,n

= 0 i↵ ↵(n) = `(m) . (14)

Notice that, the constraints (7–8) ensure that l
m,n

2 {0, 1} (i.e., is a binary
variable). The constraints (7–10) ensure that an ↵ satisfying (14) is well defined
and has image is included in L. Conversely, for any labeling ↵ : N ! L there
exists an assignment of the variables l

m,n

that satisfy (7–10) and (14).
Finally, an assignment for the variables d

m,n

satisfying the constraints (5–6)
represents a prefix point of � C

�

. Note that (5) guarantees that d
m,n

= 1 whenever
↵(n) 6= `(m) —indeed, by (14), l

m,n

= 1 i↵ ↵(n) 6= `(m).
Let F

�

hM, ki denote the bilinear optimization problem in Fig. 1. From what
we said before we obtain the following result.

Theorem 8. inf {�
�

(M,N ) | N 2MC(k)} is the optimal value of F
�

hM, ki.

Corollary 9. Any instance of CBA-� admits an optimal solution.

Proof. We have to show that �
�

(M,N ⇤) = inf {�
�

(M,N ) | N 2 MC(k)} for
some N ⇤ 2 MC(k). Let h be the number of variables in F

�

hM, ki. The con-
straints (5–13) describe a compact subset of Rh —it is an intersection of closed
sets bounded by [0, 1]h. Since the objective function is linear, the infimum is
attained by a feasible solution. The thesis follows by Theorem 8. ut

4 The Bounded Approximant Threshold Problem

The Bounded Approximant problem w.r.t. �
�

(BA-�) is the threshold decision
problem of CBA-�, and it asks whether, for an MC M, integer k � 1, and
rational ✏ � 0, there exists N 2 MC(k) such that �

�

(M,N )  ✏. In this section,
we provide upper- and lower-bound for the complexity of BA-�.

The characterization of CBA-� as a bilinear optimization problem (Section 3)
provides us with the following complexity upper-bound.

Theorem 10. For any � 2 (0, 1], BA-� is in PSPACE.

Lemma (Meaningful labels)
For any 𝓝’∈MC(k) there exists 𝓝∈MC(k) with labels 
taken from 𝓜, such that 𝛿𝜆(𝓜,𝓝) ≤ 𝛿𝜆(𝓜,𝓝’).
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mimimize dm0,n0

such that lm,n  dm,n  1 m 2 M , n 2 N (5)

�
P

(u,v)2M⇥N cm,n
u,v · du,v  dm,n m 2 M , n 2 N (6)

lm,n · lu,n = 0 n 2 N , `(m) 6= `(u) (7)

lm,n + lu,n = 1 n 2 N , `(m) 6= `(u) (8)

lm,n = lu,n n 2 N , `(m) = `(u) (9)
P

m2M lm,n  |M |� 1 n 2 N (10)
P

v2N cm,n
u,v = ⌧(m)(u) m,u 2 M , n 2 N (11)

P
u2M cm,n

u,v = ✓n,v m 2 M , n, v 2 N (12)

cm,n
u,v � 0 m,u 2 M , n, v 2 N (13)

Fig. 1. Characterization of CBA-� as a bilinear optimization problem.

Proof. Let N 0 = (N 0, ✓0,↵0). If L(N 0) ✓ L(M), take N = N 0. Otherwise, define
N = (N, ✓,↵) as follows: N = N 0, ✓ = ✓0, and ↵(n) = ↵0(n) if ↵0(n) 2 L(M),
otherwise ↵(n) = `(m0), where m0 is the initial state of M. The initial state of
N is the one of N 0. Clearly, N 2 MC(k) and L(N ) ✓ L(M).

Let A and B denote the disjoint union of M with N and N 0, respectively. We
prove N �

�

N 0, by showing �A
�

v �B
�

. By Tarski fixed-point theorem, it su�ces
to show that  A

�

(�B
�

) v �B
�

. Let u, v 2 M [ N . When u and v have di↵erent
labels in B, then,  A

�

(�B
�

)(u, v)  1 = �B
�

(u, v) follows by definition of  
�

and
the fact that �B

�

=  B
�

(�B
�

). Let assume u and v have the same label in B. Then,
by construction of N (i.e, by definition of ↵0), u and v have the same label in
A. By the fact that N and N 0 have the same transition distribution function,
one can easily check that  A

�

(�B
�

)(u, v) = �B
�

(u, v). ut

In the following, fix hM, ki as instance of CBA-�, let m0 2 M be the initial
state of M, and denote L(M) simply as L. By Lemma 7, Theorem 5 and Tarski
fixed-point theorem

inf {�
�

(M,N ) | N 2 MC(k)} = (2)

= inf
�
�C
�

(M,N ) | N 2 MCL(k) and C 2 ⌦(M,N )
 

(3)

= inf
�
d(M,N ) | N 2 MCL(k), C 2 ⌦(M,N ), and � C

�

(d) v d
 
, (4)

where ⌦(M,N ) denotes the set of all coupling structures for the disjoint union of
M and N . This simple change in perspective yields a translation of the problem
of computing the optimal value of CBA-� to the bilinear program in Fig. 1.

In our encoding, N = {n0, . . . , nk�1} represents the set of states of an arbi-
traryN = (N, ✓,↵) 2 MC(k) with n0 denoting the initial state. The variable ✓n,v
is used to encode the transition probability ✓(n)(v). Hence, a feasible solution
satisfying (11–13) will have the variable cm,n

u,v

representing the value C(m,n)(u, v)
for a coupling structure C 2 ⌦(M,N ). An assignment for the variables l

m,n

sat-
isfying (7–10) encodes (uniquely) a labeling function ↵ : N ! L satisfying the



The complexity of CBA-𝜆
The Bounded Approximant threshold w.r.t. 𝛿𝜆  
INSTANCE:  An MC 𝓜, a positive integer k, and 
                    a rational bound ε
OUTPUT:  yes iff 𝛿𝜆(𝓜,𝓝) ≤ ε for some 𝓝∈MC(k)

We study its complexity by looking at its decision variant

Theorem:
For any 𝜆∈(0,1], BA-𝜆 is in PSPACE 

proof sketch: we can encode the question ⟨𝓜,k, ε⟩∈ BA-𝜆 to that of asking for 
the feasibility of a set of bilinear inequalities.  This is a decision problem in for the 
existential theory of the reals, thus it can be solved in PSPACE [Canny - STOC’88].



The complexity of CBA-𝜆
The Bounded Approximant threshold w.r.t. 𝛿𝜆  
INSTANCE:  An MC 𝓜, a positive integer k, and 
                    a rational bound ε
OUTPUT:  yes iff 𝛿𝜆(𝓜,𝓝) ≤ ε for some 𝓝∈MC(k)

Theorem:
For any 𝜆∈(0,1], BA-𝜆 is in PSPACE 

Theorem:
For any 𝜆∈(0,1], BA-𝜆 is NP-hard

proof idea: by reduction from VERTEX COVER

We study its complexity by looking at its decision variant



…the hardness of BA-𝜆 opens a new question:
is it easy to choose a “good” bound k?

𝓝 is a significant approximant if 
𝛿𝜆(𝓜,𝓝) < 1



The MSAB-𝜆 problem

The Minimum Significant Approximant Bound w.r.t. 𝛿𝜆  
INSTANCE:  An MC 𝓜, and a positive integer k
OUTPUT:  The smallest k such that 𝛿𝜆(𝓜,𝓝)<1,
                  for some 𝓝∈MC(k)

The Significant Bounded Approximant w.r.t. 𝛿𝜆  

INSTANCE:  An MC 𝓜, and a positive integer k
OUTPUT:  yes iff 𝛿𝜆(𝓜,𝓝)<1 for some 𝓝∈MC(k)

NP-completefor 𝜆=1



A practical solution: EM Algorithm

• Given 𝓜 and a significant approximant 𝓝0

• it produces a sequence 𝓝0, …, 𝓝h having 
successively decreased distance from 𝓜

• 𝓝h is a sub-optimal solution of CBA-𝜆

assign greater probability to transitions that are most 
representative of the behavior of 𝓜 

Intuitive idea:
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Case |M | k
� = 1 � = 0.8

��-init ��-final # time ��-init ��-final # time

IPv4
(AM)

23 5 0.775 0.054 3 4.8 0.576 0.025 3 4.8
53 5 0.856 0.062 3 25.7 0.667 0.029 3 25.9
103 5 0.923 0.067 3 116.3 0.734 0.035 3 116.5
53 6 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 6 0.837 0.032 3 183.7 0.624 0.017 3 182.7
203 6 – – – TO – – – TO

IPv4
(AE)

23 5 0.775 0.109 2 2.7 0.576 0.049 3 4.2
53 5 0.856 0.110 2 14.2 0.667 0.049 3 21.8
103 5 0.923 0.110 2 67.1 0.734 0.049 3 100.4
53 6 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 6 0.837 0.072 2 105.9 0.624 0.019 3 159.5
203 6 – – – TO – – – TO

DrkW
(AM)

39 7 0.565 0.466 14 259.3 0.432 0.323 14 252.8
49 7 0.568 0.460 14 453.7 0.433 0.322 14 420.5
59 8 0.646 – – TO 0.423 – – TO

DrkW
(AE)

39 7 0.565 0.435 11 156.6 0.432 0.321 2 28.6
49 7 0.568 0.434 10 247.7 0.433 0.316 2 46.2
59 8 0.646 0.435 10 588.9 0.423 0.309 2 115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf pro-
tocol and the classic Drunkard’s Walk w.r.t. the heuristics AM and AE.

seems to be slightly faster than AM. Both the heuristics can handle instances
of size up to ⇠100 states. On the drunkard’s walk model, the two heuristics
appear to have opposite behavior w.r.t. the previous experiment. In this case is
AE the one returning the best solutions and it does it with fewer iterations an
significantly lower execution times.

7 Conclusions and Future Work

We addressed the state space reduction problem for Markov chains by proposing
a new approach based on behavioral metrics. Specifically, we introduced the
closest bounded approximant and the minimum significant approximant bound
problems. For the two we provided both lower- and upper-bound complexity
results. The first problem has been characterized as the solution of a bilinear
optimization problem. Finally, we implemented an expectation maximization
algorithm that performs well in practice still providing suboptimal solutions of
relatively good quality.

We conclude by mentioning the wide applicability of our results in the field
of automatic verification and analysis of probabilistic systems. Clearly, similar
problems can be addressed for other distances and type of models. As a future
work It would be nice to apply similar techniques on Markov decision processes
and combine this methods with the compositional approach described in [1].



What we have seen

We studied metric-based state space reduction 
for MCs
1. Closest Bounded Approximant 

• encoded as a bilinear program
2. Bounded Approximant 

• PSPACE & NP-hard for all 𝜆∈(0,1]
3. Significant Bounded Approximant 

• NP-complete for 𝜆=1

Theoretical Results

We proposed an EM method to obtain a 
sub-optimal approximants 

Practical Results



Ongoing & Future work

• Improve the encoding as bilinear program

• Study the CBA problem w.r.t. other 
• behavioral distances (e.g. Total Variation)
• models (e.g. MDP, CTMC, Prob. Automata)  
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⟨G,h⟩ ∈ VertexCover  ⟺ ⟨𝓜G, m+h+2, 𝜆2/2m2⟩ ∈ BA-𝜆

 1-(1/m)

Vertex Cover ≤P BA-𝜆 
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⟨G,h⟩ ∈ VertexCover  ⟺ ⟨𝓜G, m+h+2, 𝜆2/2m2⟩ ∈ BA-𝜆

 1-(1/m)

BA-𝜆 is NP-hardfor all 𝜆∈(0,1]


