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Talk Outline

* Labelled Markov Chains
e probabilistic bisimilarity
e couplings

* Behavioral distances on Markov Chains
e probabilistic bisimilarity distance
* relation with probabilistic model checking

*x Metric-based state space reduction
e Closest Bounded Approximant (CBA)
« Minimum Significant Approximant Bound (MSAB)
e Expectation Maximization-like algorithm
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Probabilistic Systems

T: M— Dist(M)

the transitions of a state m are
presented by a probability
distribution T(m) on M

1/3 ifu=mj
labelled T(Mo)(u) =< 2/3 ifu=mo

Markov Chain |
O otherwise
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Propablilistic Bisimulation

Definition (Larsen & Skou 89)

An equivalence relation REMxM is a
probabilistic bisimulation if for all (m,n)eR
e 2(m)=2£(n) and
e forall CeM/r YuecT(M)(U) = uec T(N)(U) .
— _J
Definition

Probabilistic bisimilarity is the largest
probabilistic bisimulation

s )
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Complexity of Bisimulation

Proposition (Jonsson, Larsen 91)
f . . . \
An equivalence relation REMxM is a
probabilistic bisimulation if for all (m,n)eR

 2(m) =£(n) and
e exists (UE(/\)(T(m),T(ﬂ)) such that supp(w

\_

cR.
)CJ

s N
kset of couplings)

Theorem (Baier CAV96)

Probabilistic bisimilarity can be tested in
polynomial time —specifically O(h2e)
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Coupling

Definition (W. Doeblin 36)

on M Is a distribution w on MxM such that

¢ Ynemw(m,n) = py(m) (left marginal)
. > mem wW(mM,N) = v(n) (right marginal).

A coupling of a pair (u,v) of probability distributions

~

_J

One can think of a coupling as a measure-theoretic

relation between probabillity distribution
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?
Z w(u,v) Tr(u,v) = 1
u,veM
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Z w(u,v) Tr(u,v) = 1

u,veM
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Bisimilarity is not robust

Fundamental problem

Smolka (1990) observed that behavioral equivalences
are not robust for systems with real-valued data
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Behavioral Pseudometric

-

-

Equivalence Relation
R: MxM—{true,false}

Robust Alternative

Pseudometric

——> d: MxM—[0,1]

~

J




minimize Z w(u,v) d(u,v)
u,veM
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A quantitative generalization
of probabilistic bisimilarity

The A-discounted probabilistic bisimilarity pseudometric
is the smallest dx: MxM—[0,1] such that

(1 if £(m)=L(n)
da(m,n) :<

min AZ w(u,v) da(u,v) otherwise
\U)EQ(T(m),T(ﬂ)) u,veM
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A quantitative generalization
of probabilistic bisimilarity

The A-discounted probabilistic bisimilarity pseudometric
is the smallest dx: MxM—[0,1] such that

(1 if £(m)=L(n)

min AZ w(u,v) da(u,v) otherwise
\U)EQ(T(m),T(ﬂ)) u,veM

Kantorovich distance

(K(d)(u,v) = min Z w(u,v) )
weQ(y,v) u,veM
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Remarkable properties

~

-

Theorem (Desharnais et. al 99)

~
m~n iff  di(m,n) =0

J

Theorem (Chen, van Breugel, Worrell 12)
a8 )
\_

The probabillistic bisimilarity distance
can be computed in polynomial time
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Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)
' Forallo e LTL |Pr(mE®) - Pr(nkE= ¢) | < di(m,n) '
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Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)
' Forallo e LTL |Pr(mE®) - Pr(nkE= ¢) | < di(m,n) '

...iImagine that [M|>|N|, we can use N in place of M

- approximate
Pr(n = ¢) <[solution on cpj

¥~ Pr(m = )
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Metric-based
State Space Reduction

Closest Bounded Minimum Significant
Approximant (CBA) Approximant Bound (MSAB)
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Metric-based
State Space Reduction

Closest Bounded Minimum Significant
Approximant (CBA) Approximant Bound (MSAB)

minimize d minimize k
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L Ist of our Results

CBA as bilinear program

The CBA's threshold problem is
 NP-hard (complexity lower bound)
« PSPACE (complexity upper bound)

The MSAB’s threshold problem is NP-complete

Expectation Maximization heuristic for CBA
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The CBA-A problem

The Closest Bounded Approximant wrt d,
f e \
Instance: An MC M, and a positive integer k

Ouput: An MC N, with at most k states
minimizing da(Mmo,N
_ inimizing da(mo, o) Y

da(mo,fio) = ir/w\f { da(mo,no) | N € MC(k) }

we get a solution iff the
infimum is a minimum
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The CBA-A problem

The Closest Bounded Approximant wrt d,
f e \
Instance: An MC M, and a positive integer k

Ouput: An MC N, with at most k states
minimizing da(Mmo,N
_ inimizing da(mo, o) Y

dxa(Mo,No) = inf { dx(Mo,no) | N € MC(k) }

we get a solution iff the genera!\zationt%fm
infimum is a minimum bisimilarity quoO
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CBA-A as a Bilinear Program

dx(Mo,No) = inf { dx(Mo,no) | NeMC(K) }
= inf { d(mo,no) | Ta(d)<d, NeMC(k)}
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CBA-A as a Bilinear Program

dx(Mo,No) = inf { dx(Mo,no) | NeMC(K) }
= inf { d(mo,no) | Ta(d)<d, NeMC(k)}

mimimize dmg,ng

such that d,, , =1

AZ(%U)GMXN C:Z,Un ) duav < dm,n

2 ven Cuw = T(m)(u)

m,n

ZUEM Cu,’u
m,n
Cup = 0

— en,v

t(m) # a(n)
{(m) = a(n)

m,u e M, ne N
meM,nve N
m,u e M, nveN
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CBA-A as a Bilinear Program

dx(Mo,No) = inf { da(mo,no) | NEMtC_Q<) }

= inf { d(mo,no) ||I"\(d)<d,[NeMC(k)}

mimimize dmg,ng
such that[d,, » =1
)\Z(u,v)EMxN CZt:Un ) duav < dm,n

| Zoen e’ = 7(m)(u) m,u€ M, neN
HZuEMCZ%”ZQn,v meM,nveN
£%n20 m,u € M, n,v € N

S ——— e — e — e — e S —

e —

{(m) = a(n)
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CBA-A as a Bilinear Program

da(Mo,No) = inf { dx(Mo,no) | NeMC(K) }
= inf { d(mo,No) Hﬁ(d)sd, NeMC(k)}

mimimize dmg,ng

such that[d,, » =1
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CBA-A as a Bilinear Program

(continued)

Lemma (Meaningful labels)
( For any NeMC(k), there exists N'eMC(k) with )

labels taken from M, such that dx(M,N) > da(M,N’)
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CBA-A as a Bilinear Program

(continued)

Lemma (Meaningful labels)
[ For any NeMC(k), there exists N'eMC(k) with )

labels taken from M, such that dx(M,N) > da(M,N’)

mimimize dmg ng

such that lm.n < dmn <1 meM,neN
)‘Z(u,v)EMxN Cury * Auyo < dmyn me M, neN
ln *lun =0 n € N, l(m) # l(u)
lnn +lun =1 n € N, {(m) # £(u)
bm,n = lun n e N, {(m)={(u)
ZmeMlm,n§|M|_1 neN
D veN Cunw = T(m)(u) m,u € M, neN
ZuEMcZ”"J‘ZQn,U meM,nveN
Cuyp 20 m,u € M, n,ve N
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CBA-A as a Bilinear Program

g

Lemma (Meaningful labels)
For any NeMC(k), there exists N'eMC(k) with

labels taken from M, such that da(M,N) > dix(M,N’)

(continued)

)

mimimize d

such thay lm.n < dmn <1

Az(u,’v)EMxN Cum,;)n ’ duﬂ) < dm,n

meM,neN
“meM,neN

P——

lm,n : lu,n =0
lm,n + lu,n =1

lm,n — lu,n

n € N, £(m) #Z(ﬂ
n € N, {(m) # £(u)

ne N, (m)=bu) |
neN

2 ven Cuw = T(m)(u)

m,n ___
Z’LLGM Cuav _ 0?’1,,'1)

m,n
Cu,v 2 0

e e S ———

m,ue M, neN
meM,nveN

m,u € M, n,ve N
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CBA-A as a Bilinear Program

(continued)

this characterization has two main conseqguences...

1.C
2.C

BA-A admits always a solution

BA-A IS decidable
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Complexity of CBA-A

“To study the complexity of an optimization problem
one has to look at its decision variant”

(C. Papadimitriou)
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Complexity of CBA-A

“To study the complexity of an optimization problem
one has to look at its decision variant”

(C. Papadimitriou)

Bounded Approximant threshold wrt da T

Instance: An MC M, a positive integer k, and
a rational >0

Ouput: yes iff there exists N with at most k
L states such that dx(mo,no) = € y
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Complexity upper bound

Theorem

BA-A is in PSPACE

Proof sketch: we can encode the question {M,k,&>e BA-A to that of

checking the feasibility of a set of bilinear inequalities. This can be
encoded as a decision problem for the existential theory of the reals,
thus it can be solved in PSPACE [Canny—STOCB88].
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Complexity lower bound

Theorem

( BA-A is NP-hard )
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Complexity lower bound

Theorem

( BA-A is NP-hard

unlikely to solve
CBA as simple
linear program
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The MSAB-A problem

Instance: An MC M

Ouput: The smallest k such that da(mo,no)<1,
_ for some NeMC(k)

/ The Minimum Significant Approximant Bound wrt dx \

_J
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The MSAB-A problem

/ The Minimum Significant Approximant Bound wrt dx \

Instance: An MC M

Ouput: The smallest k such that da(mo,no)<1,
for some NeMC(k
_ =MEt y

For A<1, the MSAB-A problem is trivial,
because the solution is always k=1
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The MSAB-A problem

/ The Minimum Significant Approximant Bound wrt dx \

Instance: An MC M

Ouput: The smallest k such that da(mo,no)<1,
for some NeMC(k
_ =MEt y

For A<1, the MSAB-A problem is trivial,
because the solution is always k=1

For A=1, the same problem is surprisingly difficult...
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Complexity of MSAB-1

...as before we should look at its decision variant
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Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt d
- g PP TN

Instance: An MC M and a positive k
Ouput: yes iff there exists N with at most k

L states such that d{(mo,no)<1. y
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Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt d
- g PP 1 )\

Instance: An MC M and a positive k

Ouput: yes iff there exists N with at most k
_ states such that d{(mo,no)<1. Y

Theorem
( SBA-1 is NP-complete )
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SBA-1 € NP

-

(m:)
(M,k)eSBA-1  iff G(M) =(’.\aﬂd h+|C| <k
\_ © Yy

Lemma ~
Assume M be maximally collapsed. Then,

c D
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SBA-1 € NP

r Lemma ~

Assume M be maximally collapsed. Then,

(M KyeSBA-1  iff G(M) =

-

Proof sketch: compute with Tarjan all the SCCs of G(M). Then non

deterministically choose an SCC and a path to it. In poly-time we
can check the size of the path and of the SCC.
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SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:
(G,heVERTEX COVER iff (Mg, h+m+1)cSBA-1
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Towards an Algorithm...
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Towards an Algorithm...

 The CBA can be solved as a bilinear program.
Theoretically nice, but practically unfeasible!
(our implementation in PENBMI can
handle MCs with at most 5 states...)
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Towards an Algorithm...

 The CBA can be solved as a bilinear program.
Theoretically nice, but practically unfeasible!
(our implementation in PENBMI can
handle MCs with at most 5 states...)

* We are happy with sub-optimal solutions it
they can be obtained by a practical algorithm.
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EM-like Algorithm

* Given the MC M and an initial approximant No

* it produces a sequence N, ..., Nn of approximants
having strictly decreasing distance from M

 Nh may be a sub-optimal solution of CBA-A

do>di>...>dn

e S—— ———= = —————— e e

r:-T‘ S S
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EM-like Algorithm

Algorithm 1
Input: M = (M, 1,0), No = (N, 00,a), and h € N,
1. 2+0

repeat
11+ 1
compute C € 2(M,N;_1) such that 5y (M, N;_1) = 5 (M, Ni_1)
0; + UPDATETRANSITION(#;_1,C)
M < (N, 91'705)

until o (M, N;) > (M, N;—1) ori > h

return N, 1

XN OUE W
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EM-like Algorithm

Algorithm 1
Input: M = (M, 7,£), No = (N,60y,a), and h € N.
1. 2+0

repeat
1< 1+1
compute C € 2(M,N;_1) such that 5y (M, N;_1) = 5 (M, Ni_1)
; < UPDATETRANSITION(0;_1,C)
M < (N, (9@,05)

until o (M, N;) > (M, N;—1) ori > h

return N;_q

XN OUE W

~ Intuitive Idea ™
Updaatelransition assigns greater

probabillity to transitions that are most

. representative of the behavior of M y
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Two update heuristics

e Averaged Marginal (AM): given Nk we construct
Nk+1 by averaging the marginal of certain
‘coupling variables” obtained by optimizing
the number of occurrences of the edges that
are most likely to be seen in M.

 Averaged Expectations (AE): similar to the above,
but now the Nk+1 looks only the expectation
of the number of occurrences of the edges
likely to be found in M.
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A=1 A=0.8
Case |M] | K Ox-init | dx-final | # | time | dx-init | Iy-final | # | time
23 | 5| 0.775 0.054 3 4.8 0.576 0.025 3 4.8
53 | 5 | 0.856 0.062 3 25.7 0.667 0.029 3 25.9
IPv4 103 | 5 | 0.923 0.067 3 | 116.3 | 0.734 0.035 3 | 116.5
(AM) 53 | 6 | 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 | 6 | 0.837 0.032 3 | 183.7 | 0.624 0.017 3 | 182.7
203 | 6 - - - TO - — - TO
23 | 5| 0.775 0.109 2 2.7 0.576 0.049 3 4.2
53 | 5 | 0.856 0.110 2 14.2 0.667 0.049 3 21.8
IPv4 103 | 5 | 0.923 0.110 2 67.1 0.734 0.049 3 | 1004
(AE) 53 | 6 | 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 | 6 | 0.837 0.072 2 | 105.9 | 0.624 0.019 3 | 159.5
203 | 6 — - - TO - — - TO
DrkW 39 | 7| 0.565 0.466 14 | 259.3 | 0.432 0.323 14 | 252.8
(AM) 49 | 7| 0.568 0.460 14 | 453.7 | 0.433 0.322 14 | 420.5
59 | 8 | 0.646 - - TO 0.423 — - TO
DrkW 39 | 7| 0.565 0.435 11 | 156.6 | 0.432 0.321 2 28.6
(AE) 49 | 7| 0.568 0.434 10 | 247.7 | 0.433 0.316 2 46.2
59 | 8 | 0.646 0.435 10 | 588.9 | 0.423 0.309 2 | 115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf pro-
tocol and the classic Drunkard’s Walk w.r.t. the heuristics AM and AE.
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What we have seen

Theoretical
Metric-based state space reduction for MCs

1. Closest Bounded Approximant (CBA)
encoded as a bilinear program
2. Bounded Approximant (BA)

PSPACE & NP-hard for all A€(0,1]

3. Significant Bounded Approximant (SBA)
NP-complete for A=1

Practical
We proposed an EM-like method to

obtain a sub-optimal approximants
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Future Work

e [s BA-A SUM-OF-SQUARE-ROOTS-hard?
 Can we obtain a real/better EM-heuristics?

 \WWhat about different models/distances?
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Thank you
for your attention



Appendix



BA-A 1Is NP-hard

(G,he VERTEX COVER iff (Mg, m+h+2, A°/2m?)e BA-A
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