On the Total Variation Distance of SMCs

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare

Aalborg University, Denmark

14 April 2015 - London, UK

FoSSaCS'15

Outline

- Motivations
- Semi-Markov Chains (SMCs)
- Trace Distance vs Model Checking of SMCs
- Approximation Algorithm for Trace Distance
- Concluding Remarks

• Growing interest in *quantitative aspects*

- Growing interest in quantitative aspects
 - Models probabilistic, timed, weighted, ect.

- Growing interest in quantitative aspects
 - Models probabilistic, timed, weighted, ect.
 - **Behavior** from equivalences to distances

- Growing interest in quantitative aspects
 - Models probabilistic, timed, weighted, ect.
 - **Behavior** from equivalences to distances
- Quantitative Linear-time properties tests over execution runs (no internal access!)

- Growing interest in quantitative aspects
 - Models probabilistic, timed, weighted, ect.
 - **Behavior** from equivalences to distances
- Quantitative Linear-time properties tests over execution runs (no internal access!)
 - Example: systems biology, machine learning, artificial intelligence, security, ect.

Given an initial state, SMCs can be interpreted as "machines" that emit timed traces of states with a certain probability

"probability that, starting from s, $P[s](\mathfrak{C}(S_0,R_0,...,R_{n-1},S_n)) =$ the SMC emits a timed path with prefix in $S_0 \times R_0 \times ... \times R_{n-1} \times S_n$ "

$$P[s_0](\mathfrak{C}(L_0,R_0,\ldots,R_{n-1},L_n))=P[s_1](\mathfrak{C}(L_0,R_0,\ldots,R_{n-1},L_n))$$

$$P[s_0](\mathfrak{C}([p,r],\mathbb{R},[q])) = 1/3 + \varepsilon \neq 1/3 = P[s_1](\mathfrak{C}([p,r],\mathbb{R},[q]))$$

$$P[s_0](\mathfrak{C}([p,r],\mathbb{R},[q])) = 1/3 + \varepsilon \neq 1/3 = P[s_1](\mathfrak{C}([p,r],\mathbb{R},[q]))$$

Trace Pseudometric

$$d(s,s') = \sup_{E \in \sigma(\mathcal{T})} |P[s](E) - P[s'](E)|$$

$$\sigma_{\text{-algebra generated by}}$$
Trace Cylinders

Trace Pseudometric

$$d(s,s') = \sup_{E \in \sigma(\mathcal{T})} |P[s](E) - P[s'](E)|$$

$$\sigma\text{-algebra generated by}$$
Trace Cylinders

It's a Behavioral Distance! —

$$d(s,s') = 0$$
 iff $s \approx_T s'$

It's a Total Variation!

(a.k.a. supremum norm)

Given $\mu, \nu: \Sigma \to \mathbb{R}_+$ measures on (X, Σ)

Total Variation Distance

$$\|\mu - \nu\| = \sup_{E \in \Sigma} |\mu(E) - \nu(E)|$$

The largest possible difference that µ and V assign to the same event

Distance = Approx. Error

Distance = Approx. Error

Distance [?] Approx. Error

Application: Probabilistic Model Checking

Distance Approx. Error

Application: Probabilistic Model Checking

$$|P[M_0](\{s \models \phi\}) - P[M_1](\{s \models \phi\})|$$

Distance [?] Approx. Error

Application: Probabilistic Model Checking

$$|P[M_0](\{s \models \phi\}) - P[M_1](\{s \models \phi\})|$$

Distance [?] Approx. Error

Application: Probabilistic Model Checking

Distance [?] Approx. Error

Application: Probabilistic Model Checking

Trace Distance vs. Model Checking

(i.e., does it provide a good approximation error?)

Probabilistic Model Checking

i.e., measuring the likelihood that a property is satisfied by the probabilistic model

SMC ⊨ Linear Real-time Spec.

Probabilistic Model Checking

i.e., measuring the likelihood that a property is satisfied by the probabilistic model

SMC ⊨ Linear Real-time Spec.

represented as

Metric Temporal Logic
formulas

Probabilistic Model Checking

i.e., measuring the likelihood that a property is satisfied by the probabilistic model

SMC ⊨ Linear Real-time Spec.

represented as

Metric Temporal Logic
formulas

... or languages recognized by <u>Timed Automata</u>

(Alur-Henzinger)

Metric Temporal Logic

$$\phi \coloneqq p \mid \bot \mid \phi \rightarrow \phi \mid X^{'}\phi \mid \phi U^{'}\phi$$

(*) $I \subseteq \mathbb{R}$ closed interval with rational endpoints

(Alur-Henzinger)

Metric Temporal Logic

$$\phi \coloneqq p \mid \bot \mid \phi \rightarrow \phi \mid X \not \phi \mid \phi \not U \not \phi$$

(*) $I \subseteq \mathbb{R}$ closed interval with rational endpoints

MTL distance

(max error w.r.t. MTL properties)

MTL distance

(max error w.r.t. MTL properties)

$$\begin{array}{c} \text{set of timed paths} \\ \text{that satisfy } \phi \end{array} \qquad \begin{array}{c} \text{measurable} \\ \text{in } \sigma(\mathcal{T}) \end{array}$$

$$MTL(s,s') = \sup_{\varphi \in MTL} |P[s](\{\pi \models \varphi\}) - P[s'](\{\pi \models \varphi\})|$$

Relation with Trace Distance

$$MTL(s,s') \le d(s,s') = \sup_{E \in \sigma(\mathcal{T})} |P[s](E) - P[s'](E)|$$

MTL distance

(max error w.r.t. MTL properties)

$$\begin{array}{c} \text{set of timed paths} \\ \text{that satisfy } \phi \end{array} \begin{array}{c} \text{measurable} \\ \text{in } \sigma(\mathcal{T}) \end{array}$$

$$MTL(s,s') = \sup_{\varphi \in MTL} |P[s](\{\pi \models \varphi\}) - P[s'](\{\pi \models \varphi\})|$$

Relation with Trace Distance

$$MTL(s,s') = d(s,s') = \sup_{E \in \sigma(\mathcal{T})} |P[s](E) - P[s'](E)|$$

(Alur-Dill)

(Muller) Timed Automata

without invariants

Clock Guards-

$$g = x \bowtie q \mid g \land g$$

for $\bowtie \in \{<, \leq, >, \geq\}, q \in \mathbb{Q}$

TA distance

(max error w.r.t. timed regular properties)

set of timed paths accepted by \mathcal{A} TA(s,s') = sup $|P[s](\{\pi \in L(\mathcal{A})\}) - P[s'](\{\pi \in L(\mathcal{A})\})|$ $\mathcal{A} \in TA$

TA distance

(max error w.r.t. timed regular properties)

set of timed paths in
$$\sigma(\mathcal{T})$$
accepted by \mathcal{A}

$$D[\sigma](\{\mathbf{T},\sigma\},(\{\mathbf{T},\sigma$$

$$TA(s,s') = \sup_{\mathcal{A} \in TA} |P[s](\{\pi \in L(\mathcal{A})\}) - P[s'](\{\pi \in L(\mathcal{A})\})|$$

Relation with Trace Distance

$$TA(s,s') \le d(s,s') = \sup_{E \in \sigma(\mathcal{T})} |P[s](E) - P[s'](E)|$$

TA distance

(max error w.r.t. timed regular properties)

set of timed paths accepted by
$$\mathcal{A}$$

$$IP[s](\{\pi \in L(\mathcal{A})\}) - P[s'](\{\pi \in L(\mathcal{A})\})$$

$$TA(s,s') = \sup_{\mathcal{A} \in TA} |P[s](\{\pi \in L(\mathcal{A})\}) - P[s'](\{\pi \in L(\mathcal{A})\})|$$

Relation with Trace Distance

$$TA(s,s') = d(s,s') = \sup_{E \in \sigma(\mathcal{T})} |P[s](E) - P[s'](E)|$$

The theorem behind...

For $\mu, \nu: \Sigma \to \mathbb{R}_+$ finite measures on (X, Σ) and $F\subseteq\Sigma$ field such that $\sigma(F)=\Sigma$

Representation Theorem
$$||\mu - \nu|| = \sup_{E \in F} |\mu(E) - \nu(E)|$$

The theorem behind...

For $\mu, \nu: \Sigma \to \mathbb{R}_+$ finite measures on (X, Σ) and $F \subseteq \Sigma$ field such that $\sigma(F) = \Sigma$

Representation Theorem

$$||\mu - \nu|| = \sup_{E \in F} |\mu(E) - \nu(E)|$$

F is much simpler than Σ , nevertheless it suffices to attain the supremum!

$$MTL(s,s') = MTL^{\neg \cup}(s,s')$$

$$TA(s,s') = DTA(s,s') = I-DTA(s,s') = I-RDTA(s,s')$$

$$\max_{\text{without Until}} \text{max error w.r.t. } \varphi \in MTL$$

$$\text{without Until}$$

$$MTL(s,s') = MTL^{\neg U}(s,s')$$

$$TA(s,s') = DTA(s,s') = I-DTA(s,s') = I-RDTA(s,s')$$

 $\frac{\text{max error w.r.t.}}{\text{Deterministic TAs}}$ TA(s,s') = DTA(s,s') = I-DTA(s,s') = I-RDTA(s,s')

max error w.r.t. φ∈MTL without Until

 $MTL(s,s') = MTL^{\neg \cup}(s,s')$

max error w.r.t.

Deterministic TAs

$$TA(s,s') = DTA(s,s') = I-DTA(s,s') = I-RDTA(s,s')$$

max error w.r.t. single-clock DTAs

max error w.r.t. φ∈MTL without Until

 $MTL(s,s') = MTL^{\neg \cup}(s,s')$

max error w.r.t.

Deterministic TAs

max error w.r.t.
Resetting I-DTAs

$$TA(s,s') = DTA(s,s') = I-DTA(s,s') = I-RDTA(s,s')$$

max error w.r.t. single-clock DTAs

Approximation Algorithm for the Trace Distance

generalizes
Chan-Kiefer LICS'14
with timed-event

Approximation Algorithm for the Trace Distance

generalizes
Chan-Kiefer LICS'14
with timed-event

Approximation Algorithm for the Trace Distance

NP-hardness [Lyngsø-Pedersen JCSS'02]

easy to adapt to MCs... Approximating the trace distance up to any \$\iiint \text{0}\$ whose size is polynomial in the size of the Interval MC is NP-hard.

generalizes
Chan-Kiefer LICS'14
with timed-event

Decidability still an open problem!

Approximation Algorithm for the Trace Distance

NP-hardness [Lyngsø-Pedersen JCSS'02]

easy to adapt to MCs... Approximating the trace distance up to any \$\iiint\text{0}\$ whose size is polynomial in the size of the Interval MC is NP-hard.

- l_i and u_i must converge to d(s,s')
- For all $i \in \mathbb{N}$, I_i and u_i must be computable.

- $||\mathbf{u}||$ and $|\mathbf{u}||$ must converge to $||\mathbf{u}||$
- For all $i \in \mathbb{N}$, I_i and u_i must be computable.

... from below

... from below

... If Off Delow

Representation Theorem
$$\frac{recall\ that...}{||\mu - \nu||} = \sup_{E \in F} |\mu(E) - \nu(E)|$$

... from below

Representation Theorem —
$$\frac{recall\ that...}{|\mu - \nu|} = \sup_{E \in F} \frac{|\mu(E) - \nu(E)|}{|\mu(E) - \nu(E)|}$$

... from below

Representation Theorem —
$$\frac{r_{ecall\ that...}}{|\mu - \nu|}$$
 = $\sup_{E \in F} |\mu(E) - \nu(E)|$ F field that generates Σ

We need $F_0 \subseteq F_1 \subseteq F_2 \subseteq ...$ such that $U_i F_i = F$

$$I_i = \sup_{E \in F_i} |\mu(E) - \nu(E)|$$

... from below

Representation Theorem — recall that...

$$||\mu - \nu|| = \sup_{E \in F} |\mu(E) - \nu(E)|$$

$$E \in F$$
F field that generates Σ

We need $F_0 \subseteq F_1 \subseteq F_2 \subseteq ...$ such that $U_i F_i = F$

$$I_i = \sup_{E \in F_i} |\mu(E) - \nu(E)|$$

so that
$$\forall i \geq 0, |i| \leq |i| \leq$$

Trace dist. (from below)

— ...seen before ¬

Provide $F_0 \subseteq F_1 \subseteq F_2 \subseteq ...$ such that U_i F_i is a field for $\sigma(\mathcal{T})$

Trace dist. (from below)

----- ...seen before -

Provide $F_0 \subseteq F_1 \subseteq F_2 \subseteq ...$ such that U_i F_i is a field for $\sigma(\mathcal{T})$

Take F_i to be the collection of finite unions of cylinders

$$\mathfrak{C}(L_0,R_0,...,R_{i-1},L_i)\in \mathcal{T}$$

where
$$R_j \in \{ [\frac{n}{2^i}, \frac{n+1}{2^i}) \mid 0 \le n \le i2^i \} \cup \{ [i, \infty) \}$$

Trace dist. (from below)

— ...seen before ~

Provide $F_0 \subseteq F_1 \subseteq F_2 \subseteq ...$ such that U_i F_i is a field for $\sigma(\mathcal{T})$

Take F_i to be the collection of finite unions of cylinders

$$\mathfrak{C}(L_0,R_0,\ldots,R_{i-1},L_i)\in \mathcal{T}$$

where
$$R_j \in \{ [\frac{n}{2^i}, \frac{n+1}{2^i}) \mid 0 \le n \le i2^i \} \cup \{ [i, \infty) \}$$

each repartitioned in 2ⁱ [closed-open) intervals

... from aboveCoupling Characterization

$$||\mu - \nu|| = \min \{w(\neq) \mid w \in \Omega(\mu, \nu)\}$$

Coupling Characterization

it is know that.

$$||\mu - \nu|| = \min \{w(\neq) \mid w \in \Omega(\mu, \nu)\}$$

Coupling as a transportation schedule...

Coupling Characterization

it is know that.

$$||\mu - \nu|| = \min \{w(\neq) \mid w \in \Omega(\mu, \nu)\}$$

Coupling as a transportation schedule...

Coupling Characterization

it is know that

$$||\mu - \nu|| = \min \{w(\neq) \mid w \in \Omega(\mu, \nu)\}$$

... from aboveCoupling Characterization

$$||\mu - \nu|| = \min \{w(\neq) \mid w \in \Omega(\mu, \nu)\}$$

... from above _____ Coupling Characterization _____
$$\frac{it \ is \ know}{that...}$$
 | $\mu - \nu$ | = min $\{w(\not=) \mid w \in \Omega(\mu, \nu)\}$

We need $\Omega_0 \subseteq \Omega_1 \subseteq \Omega_2 \subseteq ...$ such that

 $U_i \Omega_i$ dense in $\Omega(\mu, \nu)$ w.r.t. total variation

$$u_i = \inf \{ w(\neq) \mid w \in \Omega_i \}$$

Coupling Characterization

It is know that...

$$||\mu - \nu|| = \min \{w(\neq) \mid w \in \Omega(\mu, \nu)\}$$

We need $\Omega_0 \subseteq \Omega_1 \subseteq \Omega_2 \subseteq ...$ such that

 $U_i \Omega_i$ dense in $\Omega(\mu, \nu)$ w.r.t. total variation

$$u_i = \inf \{ w(\neq) \mid w \in \Omega_i \}$$

so that
$$\forall i \geq 0, u_i \geq u_{i+1}$$
 & $\inf_i u_i = ||\mu - \nu||$ decreasing limiting

Trace dist. (from above)

--- ...seen before

Provide $\Omega_0 \subseteq \Omega_1 \subseteq \Omega_2 \subseteq ...$ such that $U_i \Omega_i$ is dense in $\Omega(P[s],P[s'])$

Trace dist. (from above)

...seen before -

Provide $\Omega_0 \subseteq \Omega_1 \subseteq \Omega_2 \subseteq ...$ such that $U_i \Omega_i$ is dense in $\Omega(P[s],P[s'])$

coupling structure

of rank k

 $C: S \times S \rightarrow \Delta(S^k \times S^k)$

such that $C(s,s') \in \Omega(P[s]^k,P[s']^k)$

Stochastic process generating pairs of timed paths divided in multisteps of length k

Trace dist. (from above)

...seen before -

Provide $\Omega_0 \subseteq \Omega_1 \subseteq \Omega_2 \subseteq ...$ such that $U_i \Omega_i$ is dense in $\Omega(P[s],P[s'])$

coupling structure

of rank k

$$C: S \times S \rightarrow \Delta(S^k \times S^k)$$

such that $C(s,s') \in \Omega(P[s]^k,P[s']^k)$

Stochastic process generating pairs of timed paths divided in multisteps of length k

Take $\Omega_i = \{P_{\mathcal{C}}[s,s'] \in \Omega(P[s],P[s']) \mid \mathcal{C} \text{ of rank } 2^i\}$

where $P_{\mathcal{C}}[s,s']$ is the probability generated by \mathcal{C}

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable _{Exp(λ)}

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable $\sum_{E\times p(\lambda)} |N^{(a,b)}|$

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable $\sum_{E\times p(\lambda)} |\sum_{n=1}^{N(a,b)} |\sum_{n=1}^{N(a,b$

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable $\sum_{Exp(\lambda)} | N(a,b) | U(a,b)$

Decidability

- Al: rational transition probabilities & residence-time distributions are computable on [q,q') with $q,q' \in \mathbb{Q}_+$
- A2: total variation between residence-time distributions is computable _{Exp(λ)} | N(a,b) | υ

For any \$>0, the approximation procedure for the trace distance is decidable.

Trace Distance vs Model Checking

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata
 - several new characterizations

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata
 - several new characterizations
- Approx. algorithm for Trace Distance

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata
 - several new characterizations
- Approx. algorithm for Trace Distance

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata
 - several new characterizations
- Approx. algorithm for Trace Distance

General results for Total Variation distance:

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata
 - several new characterizations
- Approx. algorithm for Trace Distance

- General results for Total Variation distance:
 - algebraic representation theorem

- Trace Distance vs Model Checking
 - MTL Formulas & Timed Automata
 - several new characterizations
- Approx. algorithm for Trace Distance

- General results for Total Variation distance:
 - algebraic representation theorem
 - approximation strategies

Thank you for the attention