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Motivations

• Growing interest in quantitative aspects

• Models - probabilistic, timed, weighted, ect.

• Behavior - from equivalences to distances

• Quantitative Linear-time properties 
tests over execution runs (no internal access!)

• Example: systems biology, machine learning, 
artificial intelligence, security, ect.  
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Given an initial state, SMCs can be interpreted as “machines”
that emit timed traces of states with a certain probability
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Events: Timed paths

𝕮(S0,R0, ... ,Rn-1,Sn)s0 s1 sn-1 sn

t0 tn-1
...

∈π:

Cylinder set (or cone)
 (si ∈Si, ti ∈Ri and Ri Borel set)

residence-time

P[s](𝕮(S0,R0, ... ,Rn-1,Sn)) =
“probability that, starting from s,

the SMC emits a timed path
with prefix in S0×R0× ... ×Rn-1×Sn”
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Trace Pseudometric

d(s,s’) = sup  |P[s](E) - P[s’](E)|
E ∈ σ(𝓣)

It’s a Behavioral Distance!
d(s,s’) = 0    iff    s≈ s’

σ-algebra generated by
Trace Cylinders

T
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A tiny yet tricky example

irrational numbermaximizing event 

is not ω-regular!
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It’s a Total Variation!

||μ - ν|| = sup |μ(E) - ν(E)| 
E ∈ Σ

The largest possible difference that
μ and ν assign to the same event

Given μ,ν: Σ → ℝ+ measures on (X,Σ)

Total Variation Distance
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Trace Distance
vs.

Model Checking 
(i.e., does it provide a good approximation error?)
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Probabilistic Model Checking

SMC  ⊨  Linear Real-time Spec.

i.e., measuring the likelihood that
a property is satisfied by the probabilistic model
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Probabilistic Model Checking

SMC  ⊨  Linear Real-time Spec.

i.e., measuring the likelihood that
a property is satisfied by the probabilistic model

represented as 
Metric Temporal Logic 

formulas

... or languages 
recognized

by Timed Automata
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I
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Metric Temporal Logic

φ ≔ p | ⊥ | φ→φ | X φ | φU φ I

I
φ φ φ ψ

t0 ti-1

... ⊨π:

Next

φU ψ

I

Until

(*)  I ⊆ ℝ closed interval with rational endpoints

+ + ∈ I...
ψ within time t ∈ I

(Alur-Henzinger)
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MTL distance

MTL(s,s’) = sup  |P[s]({π⊨φ}) - P[s’]({π⊨φ})|
φ ∈ MTL

set of timed paths
that satisfy φ

(max error w.r.t. MTL properties)
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(Muller)Timed Automata
without invariants
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q
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p,r , x<3, {y}

p,r
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g ≔ x ⋈ q  |  g ∧ g
for ⋈ ∈ {<,≤,>,≥}, q∈ℚ

(ℓ0,           ) x=0
y=0 (ℓ2,           ) x=2

y=0 (ℓ1,           ) x=2.5
y=0.5 ...

Clock Guards

p,r , 2 q , 1/2 q , 1/2

accepted!

(Alur-Dill)
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TA distance

TA(s,s’) = sup  |P[s]({π∈L(𝓐)}) - P[s’]({π∈L(𝓐)})|
𝓐 ∈ TA

set of timed paths
accepted by 𝓐

(max error w.r.t. timed regular properties)
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The theorem behind...

||μ - ν|| = sup |μ(E) - ν(E)| 
E ∈ F

For μ,ν: Σ → ℝ+ finite measures on (X,Σ)
and F⊆Σ field such that σ(F)=Σ  

Representation Theorem
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The theorem behind...

||μ - ν|| = sup |μ(E) - ν(E)| 
E ∈ F

F is much simpler than Σ, nevertheless 
it suffices to attain the supremum!

For μ,ν: Σ → ℝ+ finite measures on (X,Σ)
and F⊆Σ field such that σ(F)=Σ  

Representation Theorem
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A Series of Characterizations

MTL(s,s’) = MTL  (s,s’)
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TA(s,s’) = DTA(s,s’) = 1-DTA(s,s’) = 1-RDTA(s,s’)

¬U

max error w.r.t. φ∈MTL 
without Until

max error w.r.t.
Deterministic TAs

max error w.r.t.
single-clock DTAs

max error w.r.t.
Resetting 1-DTAs
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Decidability 
still an open

problem!

NP-hardness  [Lyngsø-Pedersen JCSS’02]

Approximating the trace distance 
up to any ε>0 whose size is polynomial 

in the size of the Interval MC is NP-hard.

easy to adapt 
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Approximation Algorithm

• li and ui must converge to

• For all i∈ℕ, li and ui must be computable.

ε
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l0 l1 ... u1 u0...
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||μ - ν|| total variation
distance

||μ - ν||

(general version)
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Representation Theorem

We need F0 ⊆ F1 ⊆ F2 ⊆ ...  such that  Ui Fi = F

li = sup |μ(E) - ν(E)| 
E ∈ Fi

so that   ∀i≥0, li ≤ li+1   &   supi li = ||μ - ν||    
increasing limiting

recall that...
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...seen before
Provide F0 ⊆ F1 ⊆ F2 ⊆ ... such that 

Ui Fi is a field for σ(𝓣)

Take Fi to be the collection of finite unions of cylinders 

𝕮(      ,R0, ... ,Ri-1,      ) ∈ 𝓣L0 Li

where Rj ∈ {[   ,     ) | 0≤n≤i2i }⋃{[i,∞)}n
2i

n+1
2i

each repartitioned in 2i [closed-open) intervals

[   )[   )[   )[   ) [   )[   )[
0      1        2       3       4             i-2     i-1      i... ℝ+
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We need Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ ...  such that  
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Coupling Characterization

We need Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ ...  such that  

Ui Ωi dense in Ω(μ,ν) w.r.t. total variation

ui = inf {w(≄) | w∈Ωi} 
so that   ∀i≥0, ui ≥ ui+1  &  infi ui = ||μ - ν||    

decreasing limiting
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𝓒: S×S →Δ(Sk × Sk)
such that 𝓒(s,s’)∈Ω(P[s]k,P[s’]k)

coupling structure 
of rank k Stochastic process 

generating pairs of timed 
paths divided in 

multisteps of length k

Trace dist. (from above)
...seen before



26/28

Provide Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ ... such that 
Ui Ωi is dense in Ω(P[s],P[s’])

Take Ωi = {P𝓒[s,s’]∈Ω(P[s],P[s’]) | 𝓒 of rank 2i}

where P𝓒[s,s’] is the probability generated by 𝓒

𝓒: S×S →Δ(Sk × Sk)
such that 𝓒(s,s’)∈Ω(P[s]k,P[s’]k)

coupling structure 
of rank k Stochastic process 

generating pairs of timed 
paths divided in 

multisteps of length k

Trace dist. (from above)
...seen before
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Decidability
• A1: rational transition probabilities & 

residence-time distributions are 
computable on [q,q’) with q,q’∈ℚ+ 

• A2: total variation between residence-time 
distributions is computable

For any ε>0, the approximation procedure 
for the trace distance is decidable.

Not that 
strong!

Exp(λ)
N(a,b) U(a,b)

...
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Concluding Remarks
• Trace Distance vs Model Checking

• MTL Formulas   &   Timed Automata

• several new characterizations

• Approx. algorithm for Trace Distance

• General results for Total Variation distance:

• algebraic representation theorem

• approximation strategies
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Thank you
for the attention


